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STABILITY OF LINE STANDING WAVES NEAR THE BIFURCATION

POINT FOR NONLINEAR SCHRÖDINGER EQUATIONS

Yohei Yamazaki

Abstract

In this paper we consider the transverse instability for a nonlinear Schrödinger

equation with power nonlinearity on R� TL, where 2pL is the period of the torus

TL. There exists a critical period 2pLo; p such that the line standing wave is stable for

L < Lo; p and the line standing wave is unstable for L > Lo; p. Here we farther study

the bifurcation from the boundary L ¼ Lo; p between the stability and the instability for

line standing waves of the nonlinear Schrödinger equation. We show the stability for

the branch bifurcating from the line standing waves by applying the argument in Kirr,

Kevrekidis and Pelinovsky [16] and the method in Grillakis, Shatah and Strauss [12].

However, at the bifurcation point, the linearized operator around the bifurcation point

is degenerate. To prove the stability for the bifurcation point, we apply the argument

in Maeda [18].

1. Introduction

We consider the stability for standing waves of the nonlinear Schrödinger
equation with power nonlinearity

iqtu ¼ �Du� jujp�1
u; ðt; x; yÞ A R� R� TL;ð1:1Þ

where p > 1 and u ¼ uðt; x; yÞ is an unknown complex-valued function for
t A R, x A R and y A TL. Here, TL ¼ R=2pLZ and L > 0. In [24], Takaoka
and Tzvetkov showed by the Strichartz estimate that the Cauchy problem of
(1.1) is locally well-posed in H 1 (see [10, 14, 25]). The equation (1.1) has the
following conservation laws:

EðuÞ ¼ 1

2
k‘uk2L2ðR�TLÞ �

1

pþ 1
kukpþ1

Lpþ1ðR�TLÞ; QðuÞ ¼ 1

2
kuk2L2ðR�TLÞ;ð1:2Þ

where u A H 1ðR� TLÞ.

65

2010 Mathematics Subject Classification. 35B32, 35B35, 35C08, 35Q55.

Key words and phrases. bifurcation, Schrödinger equation, standing wave, transverse instability.

Received February 4, 2014; revised March 25, 2014.



By a standing wave, we mean a non-trivial solution of (1.1) with the form
uðt; x; yÞ ¼ eiotjðx; yÞ, where o > 0 and j A H 1ðR� TLÞ is a solution of

�Djþ oj� jjjp�1j ¼ 0; ðx; yÞ A R� TL:ð1:3Þ

Then, j is a solution of (1.3) if and only if S 0
oðjÞ ¼ 0, where for u A H 1ðR� TLÞ

SoðuÞ ¼ EðuÞ þ oQðuÞ;ð1:4Þ

and S 0
o is the Fréchet derivative of So. The equation (1.3) has a positive

solution jo which is symmetric in x and independent of y. Namely, jo is the
positive symmetric solution of

�q2xjþ oj� jjjp�1j ¼ 0; x A R;ð1:5Þ

and we regard jo as a function on R� TL. Then, we call eiotjo a line standing
wave.

The stability of standing waves is defined as follows.

Definition 1.1. We say that the standing wave eiotj is orbitally stable in
H 1 if for any e > 0 there exists d > 0 such that for all u0 A H 1ðR� TLÞ with
ku0 � jkH 1 < d, the solution uðtÞ of (1.1) with the initial data uð0Þ ¼ u0 exists
globally in time and satisfies

sup
t>0

inf
y AR;

ðx;yÞ AR�TL

kuðt; �; �Þ � eiyjð� � x; � � yÞkH 1 < e:

Otherwise, we say the standing wave eiotj is orbitally unstable in H 1.

In [5], Cazenave and Lions showed that the standing wave eiotjo of the
nonlinear Schrödinger equation with power nonlinearity on R is stable for
1 < p < 5. However, in some case the standing wave eiotjo of (1.1) is unstable
for 1 < p < 5. The following transverse instability results for the line standing
wave was proved in Rousset-Tzvetkov [22] for p ¼ 3 and the author [26] for
1 < p < 5. Let

Lo;p ¼
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðp� 1Þðpþ 3Þo
p :ð1:6Þ

Theorem 1.2. Let o > 0 and 1 < p < 5.
(i) If 0 < L < Lo;p, then the line standing wave eiotjo is stable.
(ii) If L > Lo;p, then the line standing wave eiotjo is unstable.

Remark 1. It is known that for pb 5 the standing wave eiotjo is unstable
on R (see [23, 27]). Therefore, it is obvious that eiotjo is also unstable on
R� TL.
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Remark 2. In [21], Rousset and Tzvetkov proved the transverse instability
for the line standing wave eiotjo of the cubic nonlinear Schrödinger equation
on R2.

In this paper, we show the stability for the standing wave eiotjo at L ¼ Lo;p.
To prove Theorem 1.2 (ii), in [22] and [26], they used the linear instability for the
linearized equation around the standing wave eiotjo and showed some nonlinear
estimates. On the other hand, under the conditions of Theorem 1.2 (i), it is easily
verified that inffl > 0 : l A sðS 00

oðjoÞÞg > 0, KerðS 00
oðjoÞÞ ¼ Spanfijo; qxjog and

the negative eigenvalue of S 00
oðjoÞ is only one and simple. Moreover, the func-

tion d 00ðoÞ > 0, where

dðoÞ ¼ SoðjoÞ:ð1:7Þ
Therefore, we can show the stability in Theorem 1.2 (i) by applying the method
in Grillakis, Shatah and Strauss [12, 13]. However, at L ¼ Lo;p the operator
S 00
oðjoÞ has an extra eigenfunction corresponding to the eigenvalue 0. Thus, we

can not construct a Lyapunov functional by the argument in [12, 13]. Moreover,
since the linearized operator of (1.1) around the line standing wave does not have
unstable eigenvalues, we can not show the instability by the spectrum analysis in
[9, 13, 22, 26] and the variational analysis in [12, 17].

There are not many papers treating the stability results in degenerate cases
[6, 19, 18]. These papers mainly treat abstract Hamiltonian systems in the case
of d 00ðo0Þ ¼ 0 and the linearized operator of the stationary equation do not has
extra eigenfunctions corresponding to 0. Comech-Pelinovsky [6] showed that
if d 00ðo0Þ ¼ 0 and d 00ðoÞa 0 in a one-sided open neighborhood of o0, then the
standing wave is unstable. In this case the linearized operator of the evolution
equation has a degenerate zero eigenvalue, so they showed that the degeneracy
of zero eigenvalue lead to a polynomial growth of perturbations. In Ohta [19],
observing the high order term of the action ~SSo corresponding to the abstract
Hamiltonian system, the author showed the instability of a standing wave ~jjo if
the following conditions is satisfied. There exist a function ~cc and m A R such

that h~jjo; ~cci ¼ hJ ~jjo; ~cci ¼ 0, ~SS 00
oð~jjoÞ ~cc ¼ m ~QQ 0ð~jjoÞ and h ~SS 000

o ð ~cc; ~ccÞ; ~cci0 3m, where

J is a suitable skew-symmetric operator and ~QQ is a conservation law. His proof
is based on [12, 17] which uses a Lypunov functional to ‘‘push out’’ the unstable
solution from the neighborhood of the standing wave. Maeda [18] showed that
if d 00ðo0Þ ¼ 0 and dðoÞ is strictly convex in an open neighborhood a standing
wave ~jjo0

is stable, and that if d 00ðo0Þ ¼ 0 and dðo0 þ oÞ � dðo0Þ � od 0ðo0Þ < 0
in a one-sided open neighborhood of o0 a standing wave ~jjo0

is unstable. To
capture the degeneracy of d 00ðoÞ, Maeda considered a curve CðoÞ ¼ ~jjo0þo þ
rðoÞ ~QQ 0ð~jjo0þoÞ. Using the Taylor expansion around CðoÞ instead of ~jjo0

and

identity ~SSo0þo ¼ ~SSo0
þ o ~QQ, Maeda calculated ~SSo0

ðCðoÞÞ very precisely to analyze
the degeneracy of d 00ðoÞ.

In our case, since the linearized operator S 00
oðjoÞ of the stationary equation

(1.3) has an extra eigenfunction corresponding to 0, we can not show the stability
only in the analysis of dðoÞ and the modulation for the symmetries of (1.1).
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Moreover, our case does not satisfies the assumption in [19]. Therefore, we can
not directly apply these results to prove the stability for the line standing wave
eiotjo at L ¼ Lo;p. However, the observations of these results which are the
analysis of the linearized operator and the degeneracy of d 00ðoÞ are very useful.
In this paper, we follow the work of [18].

We change the equation (1.1) on R� TL to the equation (1.1) on R� T by
the map

uðt; x; yÞ 7! L2=ðp�1ÞuðL2t;Lx;LyÞ;ð1:8Þ

where u is a solution of (1.1) on R� TL and T ¼ R=2pZ. By (1.8), the line
standing wave eiotjo is changed to eioL

2tjoL2 . Therefore, the line standing wave
eiotjo for (1.1) on R� TLo; p

is stable if and only if the line standing wave eio�tjo�
for (1.1) on R� T is stable, where

o� ¼
4

ðp� 1Þðpþ 3Þ :ð1:9Þ

In this case, ðjo� ;o�Þ is a bifurcation point on the solutions ðjo;oÞ of the
equation (1.3) at L ¼ 1 (see Proposition 1 in Section 2 and also [15, 16]). More-
over, the bifurcation from the line standing waves is similar to the symmetry-
breaking bifurcation from symmetric standing waves of a nonlinear Schrödinger
equation with a symmetric potential.

There are many papers studying the bifurcation of the standing wave and
the stability for the bifurcation branch [8, 15, 16, 20]. These papers treat the
bifurcation of the standing wave for a nonlinear Schrödinger equation with a
linear potential. Using variational arguments, Rose-Weinstein [20] showed the
existence and the stability for a non-trivial standing wave bifurcating from the
zero solution at o > l0, where �l0 is the lowest eigenvalue for the linear part
of the equation. In [8, 15, 16], these authors studied the symmetry-breaking
bifurcation of standing waves and the stability for bifurcation branches. Kirr,
Kevrekidis, Shlizerman and Weinstein [15] treated a three dimensional nonlinear
Schrödinger/Gross-Pitaevskii equation with cubic nonlinearity and a symmetric
double well linear potential which has large barrier between the two wells.
Fukuizumi and Sacchetti [8] studied a nonlinear Schrödinger equation with power
nonlinearity and a symmetric double well linear potential in the semi-classical
setting. In [8, 15], these authors proved that asymmetric standing waves bifur-
cates from symmetric standing waves, and showed the stability for these stand-
ing waves by using the Lyapunov-Schmidt reduction method to the two-level
approximation equation for the standing waves. Kirr, Kevrekidis and Pelinov-
sky [16] considered the following one dimensional nonlinear Schrödinger equation
with a symmetric potential:

iqtu ¼ �q2xuþ VðxÞuþ mjujp�1
u;ð1:10Þ

where V is a bounded symmetric potential, p > 1 and m A R. In [16], Kirr,
Kevrekidis and Pelinovsky showed that if m < 0 and �Dþ V has the lowest
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eigenvalue �l0, a branch of symmetric standing waves uniquely continues for all
o > l0 or bifurcates to two branches which are a branch of symmetric standing
waves and a branch of asymmetric standing waves. Moreover, they obtained the
stability condition for asymmetric standing waves for pb 2 by applying Crandall-
Rabinowitz Transversality [3, 7].

In our paper, we prove that the set of solutions of (1.3) near ðjo� ;o�Þ
consists of two curves which are a branch of the line standing waves ðjo;oÞ and
a branch of standing waves ðjðaÞ;oðaÞÞ which depends of the transverse direc-
tion y A T (see Proposition 1 in Section 2). To analyze the stability for the line
standing wave eio�tjo� , we show the following stability result for the standing
waves depending of the transverse direction.

Theorem 1.3. There exist 2 < p1 < p2 < 3 with the following properties.
(i) If 2a p < p1, then the standing wave eioðaÞtjðaÞ is stable for small

jaj > 0.
(ii) If p2 < p < 5, then the standing wave eioðaÞtjðaÞ is unstable for small

jaj > 0.

Remark 3. In Theorem 1.3, we assume pb 2 because we need the regularity
of jðaÞ with respect to a. In the case p1 < p < p2, we can not obtain the sign
of qokjðaðoÞÞkL2 by the estimate in this paper (see the proof of Theorem 1.3 in
Section 2). Therefore, we can not show the stability for p1 < p < p2 in this
paper.

The proof of Theorem 1.3 follows the proof of the stability for the branch
of asymmetric standing waves which bifurcates from symmetric standing waves in
[16]. In [16], to prove the secondary pitchfork bifurcation, Kirr, Kevrekidis and
Pelinovsky applied a Lyapunov-Schmidt decomposition and the Morse Lemma.
For 2a p < 3, this argument dose not guarantee that the two branches of
standing waves are C2 which turns out to be necessary for determining their
stability. Thus, the authors recovered the C2 regularity of the branches and
showed their stability by using Crandall-Rabinowitz Transversality and certain
upper and lower exponential decay rates of standing waves. Their proof of the
stability is based on [11, 12], which investigates the linearized operator around
asymmetric standing waves and the dependence of L2-norm on parameter a for
these standing waves.

In our case, the line standing wave eio�tjo� is the bifurcation point, which
implies the linearized operator of (1.3) is more degenerate. In fact, in [16] since
the kernel of the linearized operator of the stationary equation around the
bifurcation point has an extra function, they did not show the stability for the
bifurcation point. To prove the following result of the stability for the bifur-
cation point, we combine the argument of the stability in [18] and the information
of the stability for the bifurcation branch of standing waves eioðaÞtjðaÞ. In the
following main result, we prove the stability for the bifurcation point coincides the
stability for the branch ðjðaÞ;oðaÞÞ which bifurcates from line standing waves.
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Theorem 1.4. Let p1, p2 be as in Theorem 1.3.
(i) If 2 < p < p1, then the standing wave eio�tjo� is stable.
(ii) If p > p2, then the standing wave eio�tjo� is unstable.

Remark 4. We can show the stability of the bifurcation point for other
equations by applying the same argument as in the proof of Theorem 1.4. In
this paper, we only treat the transverse instability case in Sections 2, 3 and a
symmetry-breaking case in Section 4.

The kernel of the linearized operator around jo� is spanned by ijo� , qxjo� ,
j
ðpþ1Þ=2
o� cos y and j

ðpþ1Þ=2
o� sin y. By the modulation for the gauge symmetry

and the translation symmetries, we can eliminate the degeneracy for ijo� and

qxjo� . To capture the degeneracy for j
ðpþ1Þ=2
o� cos y and j

ðpþ1Þ=2
o� sin y, we

consider a curve Fð~aaÞ ¼ jð~aaÞ þ rð~aaÞ f which satisfies QðFð~aaÞÞ ¼ Qðjo� Þ, where
f is a suitable function and ~aa ¼ ða1; a2Þ is a parameter which is introduced to
modulate the translation for the direction y A T (see Section 3). Then, we
decompose the solution u as Fð~aaðuÞÞ þ wðuÞ and we calculate the Taylor
expansion of the action. This idea follows [18, 19]. Moreover, in [18], Maeda

used equality ~SSo0þo ¼ ~SSo0
þ o ~QQ to analyze the linearized operator ~SS 00

o0þoð~jjo0
Þ

of (1.3). To investigate the ‘‘graph’’ of the action ~SSo which means dðo0 þ oÞ
� dðo0Þ � od 0ðo0Þ, Maeda combined the curve CðoÞ and the Taylor expan-
sion of the action around ~jjo0þo. We also use SoðaÞ ¼ So� þ ðoðaÞ � o�ÞQ
to investigate the non-degenerate information about SoðaÞðjð~aaÞÞ � So� ðjo� Þ �
ðoðaÞ � o�ÞQðjo� Þ. In [18], since d 00ðo0Þ is degenerate, the correction term
rðoÞ ¼ oðoÞ. However, in our case d 00ðo�Þ ¼ q2oSoðjoÞjo¼o�

is not degenerate
and positive, so rð~aaÞ and oðaÞ � o� are the same order. Therefore, we can
not regard rð~aaÞ as an error term and have to consider the e¤ect of rðaÞ for
SoðaÞðjð~aaÞÞ � So� ðjo� Þ � ðoðaÞ � o�ÞQðo�Þ. By choosing f ¼ qojo� , we see that

S 00
o�
ðjo� Þqojo� ¼ �jo� is orthogonal to a error term w. Accordingly, we can

neglect the e¤ect of r.
The rest of this paper consists of the following three sections. In Section 2,

by applying the argument in [16] we show the bifurcation for the line standing
waves and the stability for a branch of standing waves which depend of the
transverse direction. In Section 3, we prove the stability of the line standing
wave eio�tjo� which is a bifurcation point. In Section 4, we show the stability of
the bifurcation point on symmetric standing waves of the nonlinear Schrödinger
equation with a symmetric potential. In Sections 3 and 4, our proof is based on
the argument in [18].

Notations

1. For functions f and g, f ðaÞ@ gðaÞ if and only if f and g satisfy

0 < lim inf
jaj!0

f ðaÞ
gðaÞ a lim sup

jaj!0

f ðaÞ
gðaÞ < y:
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2. For f ; g A L2ðXÞ, h f ; giL2 :¼ Re
Ð
X
f g.

3. For f A H�1ðX Þ and g A H 1ðX Þ, h f ; giH�1;H 1 denotes the coupling be-
tween H�1 and H 1.

4. For a operator A, the vector space KerðAÞ means the kernel of A.
5. For vectors f1; . . . ; fn, the vector space Spanf f1; . . . ; fng means the vector

space which is spanned by f1; . . . ; fn.

2. Bifurcation of line sanding waves

In this Section, we consider the bifurcation from the line standing waves.
Let

Fðj;oÞ ¼ �Djþ oj� jjjp�1
j;ð2:1Þ

where j A H 1ðR� T;RÞ and o A R. Then,

DjFðj;oÞ ¼ �Dþ o� pjjjp�1;ð2:2Þ
where DjF means the Fréchet derivative of F with respect to j A H 1ðR� T;RÞ.
Let jo be the positive symmetric solution of (1.5) and o� be the constant defined
by (1.9). Moreover, we regard jo as a function on R� TL. Then, DjFðj;oÞ is
a bounded operator from H 1 to H�1 or from H 2 to L2 and satisfies the following
property.

Lemma 2.1. For o > 0,

F ðjo;oÞ ¼ 0:ð2:3Þ
Moreover,

KerðDjFðjo� ;o�ÞÞ ¼ Spanfqxjo� ;c0 cos y;c0 sin yg;ð2:4Þ
where

c0 ¼ ðjo� Þ
ðpþ1Þ=2:

Proof. Since the function jo is a solution of (1.3), by (2.1) we have (2.3).
Since

DjFðjo� ;o�Þc0 cos y ¼ ð�q2x þ 1þ o� � pjjo� j
p�1Þc0 cos y;ð2:5Þ

and c0 is an eigenfunction of �q2x þ o� � pjjo� j
p�1 corresponding to the

lowest eigenvalue �1, c0 cos y A KerðDjF ðjo� ;o�ÞÞ. Similarly, we obtain
qxjo� ;c0 sin y A KerðDjF ðjo� ;o�ÞÞ. On the other hand, if n is an integer

with n2 > 1, then the operator �q2x þ n2 þ o� � pjjo� j
p�1 is positive. Moreover,

the kernels of �q2x þ o� � pjjo� j
p�1 and �q2x þ 1þ o� � pjjo� j

p�1 are simple.
Since we have the equality

DjFðjo� ;o�Þuðx; yÞ ¼
X
n AZ

ð�q2x þ n2 þ o� � pjjo� j
p�1ÞunðxÞeiny;ð2:6Þ
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for

uðx; yÞ ¼
X
n AZ

unðxÞeiny;ð2:7Þ

we get (2.4). r

In the following lemma, we calculate an integral of ja
o.

Lemma 2.2. For o > 0, a > 1ð
R

ðjoÞ
aþp

dx ¼ ðpþ 1Þðaþ 1Þo
2aþ pþ 1

ð
R

ðjoÞ
aþ1

dx:

Proof. Since jo is a solution of

�q2xjþ oj� jjjp�1
j ¼ 0;ð2:8Þ

we have ð
R

ðjoÞ
aþp

dx ¼ �
ð
R

ðjoÞ
aq2xjo dxþ o

ð
R

ðjoÞ
aþ1

dx:

By an integral by partsð
R

ðjoÞ
a
q2xjo dx ¼ ½ðjoÞ

a
qxjo�

y
�y � a

ð
R

ðjoÞ
a�1ðqxjoÞ

2
dx

¼ �a

ð
R

ðjoÞ
a�1ðqxjoÞ

2
dx:

Multiplying (2.8) by qojo and integrating this, we obtain

�ðqxjoÞ
2 þ oj2

o � 2

pþ 1
ðjoÞ

pþ1 ¼ 0:

By combing the above three equations, we get the conclusion. r

To show the bifurcation of the line standing waves for 2a p < 3, we use the
lower and upper decay rates of standing waves. If a C1 function u on R� T is
symmetric in y A ½�p; p� ¼ T, then u satisfies qyuðx;�pÞ ¼ qyuðx; pÞ ¼ 0 in x A R.
Therefore, the proof of the following the proof of lemma follows Lemma 4.1 in
Berestycki-Nirenberg [2] (see the proof of Lemma 4.1 in [2]).

Lemma 2.3. Let o > 0, p > 1 and j is a positive solution of (1.3) satisfying

jðx; yÞ ¼ jðx;�yÞ; for ðx; yÞ A R� ½�p; p� ¼ R� T:

Then, for e > 0, there exist Ae;Be > 0 such that for ðx; yÞ A R� T,

Aee
�ð
ffiffiffi
o

p
þeÞjxj

a jðx; yÞaBee
�ð
ffiffiffi
o

p
�eÞjxj:
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In the following lemma, we calculate the derivative of the second eigenvalue
of DjFðjo;oÞ.

Lemma 2.4. Let lðoÞ is the second eigenvalue of DjF ðjo;oÞ. Then,

l 0ðo�Þ :¼ lim
o"o�

l 0ðoÞ ¼ � ðpþ 3Þðp� 1Þ
4

:ð2:9Þ

Proof. Let fðoÞ is the eigenvector of DjF ðjo;oÞ corresponding to lðoÞ
with fðo�Þ ¼ c0 cos y, kfðoÞkL2 ¼ kc0 cos ykL2 and fðoÞ is C1 with respect to
o. Then,

DjF ðjo;oÞfðoÞ ¼ lðoÞfðoÞ:ð2:10Þ

By di¤erentiating (2.10) with respect to o, we have for o < o�,

fðoÞ � pðp� 1ÞðjoÞ
p�2qojofðoÞ þDjF ðjo;oÞqofðoÞð2:11Þ

¼ l 0ðoÞfðoÞ þ lðoÞqofðoÞ:

Multiplying fðoÞ by (2.11), we obtain

kfðoÞk2L2 � pðp� 1Þ
ð
R�T

ðjoÞ
p�2fðoÞ2qojo dxdy ¼ kfðoÞk2L2l

0ðoÞ:

Moreover, since c0 ¼ ðjo� Þ
ð pþ1Þ=2,

kc0 cos yk2L2 lim
o"o�

l 0ðoÞ ¼
ð
R�T

ðjo� Þ
pþ1 cos2 y dxdy

� pðp� 1Þ
ð
R�T

ðjo� Þ
2p�1qojo� cos

2 y dxdy

¼ 1

2

ð
R�T

ðjo� Þ
pþ1

dxdy� p� 1

2

ð
R�T

qoðj2p
o Þjo¼o�

dxdy

� �
:

Using joðxÞ ¼ o1=ðp�1Þj1ð
ffiffiffiffi
o

p
xÞ, we haveð

R

qoðj2p
o Þjo¼o�

dx ¼ qo

ð
R

o2p=ðp�1Þðj1ð
ffiffiffiffi
o

p
xÞÞ2p dx

� �����
o¼o�

¼ 3pþ 1

2o�ðp� 1Þ

ð
R

ðjo� Þ
2p

dx:

By Lemma 2.2, we obtain

kc0 cos yk2L2 lim
o"o�

l 0ðoÞ ¼ 1

2

ð
R�T

ðjo� Þ
pþ1

dxdy� 3pþ 1

4o�

ð
R�T

ðjo� Þ
2p

dxdy

� �

¼ �ðpþ 3Þðp� 1Þ
8

ð
R�T

ðjo� Þ
pþ1

dxdy:
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Since 2kc0 cos yk2L2 ¼
Ð
R�T

ðjo� Þ
pþ1

dxdy, we have

lim
o"o�

l 0ðoÞ ¼ � ðpþ 3Þðp� 1Þ
4

: r

By Lyapunov-Schmidt decomposition and Crandall-Rabinowitz Transver-
sality in [16], we can show the following bifurcation result. In this paper, we
only give the sketch of the proof of Proposition 1 (see the proof of Theorem 4 in
[16] for the detail of the proof of Proposition 1).

Proposition 1. Let pb 2. Then there exist an open interval I and
jðaÞ A C 2ðI ;H 2

symðR� TÞÞ such that 0 A I , jðaÞ > 0,

�DjðaÞ þ oðaÞjðaÞ � jjðaÞjp�1jðaÞ ¼ 0;ð2:12Þ
jðaÞ ¼ jo� þ ac0 cos yþ cðaÞ;ð2:13Þ

where cðaÞ A C2ðI ;H 2
symðR� TÞÞ, kcðaÞkH 2 ¼ Oða2Þ,

oðaÞ ¼ o� þ
o 00ð0Þ

2
a2 þ oða2Þ:ð2:14Þ

Moreover,

o 00ð0Þ ¼ p2ðp� 1Þ2

l 0ðo�Þkc0 cos yk2L2

hðjo� Þ
p�2ðc0 cos yÞ2;ð2:15Þ

ðL�jðc0 cos yÞ?
H 2
Þ�1ððjo� Þ

p�2ðc0 cos yÞ2ÞiL2

þ pðp� 1Þðp� 2Þ
3l 0ðo�Þkc0 cos yk2L2

hðc0 cos yÞ2; ðjo� Þ
p�3ðc0 cos yÞ2iL2 ;

l2ðaÞ ¼ �l 0ðo�Þo 00ð0Þa2 þ oða2Þ;ð2:16Þ

kjðaÞk2L2 ¼ kjo�k
2
L2 þ

1

2
ð2l 0ðo�Þkc0 cos yk2L2ð2:17Þ

þ o 00ð0Þqokjok
2
L2 jo¼o�

Þa2 þ oða2Þ;

where L� ¼ DjF ðjo� ;o�Þ, the function l2ðaÞ is the second eigenvalue of the
linearized operator of (1.3) around jðaÞ.

The sketch of the proof for Proposition 1. Since KerðDjF ðjo� ;o�ÞÞ has
extra directions c0 cos y and c0 sin y by Lemma 2.1, the line standing
wave eio�tjo� bifurcates in directions c0 cos y and c0 sin y. Indeed, if we
regard F ðj;oÞ as a function from H 2

sym � R to L2
sym � R, then the kernel of

DjFðjo� ;o�ÞjH 2
sym!L2

sym
is spanned by c0 cos y where L2

symðR�TÞ ¼ fu A L2ðR�TÞ :
uðx; yÞ ¼ uð�x; yÞ ¼ uðx;�yÞ; ðx; yÞ A R� ½�p; p�g and H 2

symðR� TÞ ¼
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H 2ðR� TÞVL2
symðR� TÞ. Therefore, by Lyapunov-Schmidt decomposition we

reduced the infinite dimensional problem F ðj;oÞ ¼ 0 to the finite dimensional
problem

Fjjða;oÞ :¼ hFðjo� þ ac0 cos yþ cðo; aÞ;oÞ;c0 cos yiL2 ¼ 0;

where cðo; aÞ A H 2
symðR� TÞ which is the function defined by Lyapunov-Schmidt

decomposition. To apply Crandall-Rabinowitz Transversality, we consider the
problem gða;oÞ ¼ 0, where

gða;oÞ ¼

Fjjða;oÞ � Fjjð0;oÞ
a

if a0 0;

qFjj
qa

ð0;oÞ if a ¼ 0:

8>><
>>:

Then for a0 0, Fjjða;oÞ ¼ 0 if and only if gða;oÞ ¼ 0. If p > 2, then Fjj is a C2

function and g is a C1 function. In the case p ¼ 2, using the positivity of jo�
and the Lebesgue dominant converge theorem, we can prove g is C1. Since

qg

qo
ð0;o�Þ ¼ l 0ðo�Þkc0 cos yk2L2 ;

qg

qa
ð0;o�Þ ¼ 0;

we can define oðaÞ with gða;oðaÞÞ ¼ 0 by applying the implicit function theorem.
Therefore, jðaÞ :¼ jo� þ ac0 cos yþ cðoðaÞ; aÞ is a solution of F ðjðaÞ;oðaÞÞ ¼ 0
and

o 0ð0Þ ¼ �
qg

qa
qg

qo

ð0;o�Þ ¼ 0:

Using certain upper and lower exponential decay rates in Lemma 2.3, the
positivity of jðaÞ and the Lebesgue dominant converge theorem, we can obtain

o 00ð0Þ ¼ lim
a!0

o 0ð0Þ
a

¼ �1

l 0ðo�Þ
lim
a!0

1

a

qg

qa
ða;oðaÞÞ;

and (2.15).
Let l2ðaÞ be the second eigenvalue of LðaÞ :¼ �Dþ oðaÞ � pðjðaÞÞp�1 and

f2ðaÞ be a eigenfunction of LðaÞ corresponding to l2ðaÞ with kf2ðaÞkL2 ¼ 1 and
f2ð0Þ ¼ kc0 cos yk�1

L2 c0 cos y. By the continuity of LðaÞ with respect to a, we
can assume that f2ðaÞ is C1 with respect to a. If p > 2, then Fjj is C 2. There-
fore, jðaÞ is C2. If p ¼ 2, then LðaÞ ¼ �Dþ oðaÞ � 2jðaÞ is C2 with respect
to a. Since

dj

da
ðaÞ ¼ c0 cos y� ðP?LðaÞjðc0 cos yÞ?Þ

�1
P?ðLðaÞc0 cos y

þ o 0ðaÞðc0 cos yþ cðoðaÞ; aÞÞÞ;
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we have jðaÞ is C2, where

ðc0 cos yÞ? ¼ fu A L2
sym : hu;c0 cos yiL2 ¼ 0g

and P? is the orthogonal projection form L2
sym onto ðc0 cos yÞ?. Since

l2ðaÞ ¼ hLðaÞf2ðaÞ; f2ðaÞiL2 ;

we can show

dl2

da
ðaÞ ¼ o 00ðaÞ � 2pðp� 1Þ ðjðaÞÞp�2 dj

da
ðaÞ df2

da
ðaÞ; f2ðaÞ

� �
L2

� pðp� 1Þ
* 

ðp� 2ÞðjðaÞÞp�3 dj

da
ðaÞ

� �2

þ ðjðaÞÞp�2 d
2j

da2
ðaÞ
!
f2ðaÞ; f2ðaÞ

+
L2

;

and (2.16). Moreover, calculating
d 2

da2
kjðaÞk2L2 ja¼0, we obtain (2.17). r

Next, we consider the stability for the bifurcation branch jðaÞ. To prove
Theorem 1.3, we apply Proposition 1 and the method in Grillakis-Shatah-Strauss
[12, 13].

The proof of Theorem 1.3. By (2.16) in Proposition 1, we have

l2ðaÞ ¼ �l 0ðo�Þo 00ð0Þa2 þ oða2Þ:

First, we calculate the sign of l2ðaÞ. Let c� ¼ c0 cos y and the linearize operator
of (1.3) around jðaÞ from H 1ðR� TÞ to H�1ðR� TÞ be LðaÞ. Here,

LðaÞ ¼ �Dþ oðaÞ � pjjðaÞjp�1:

By (2.15) in Proposition 1, we have

l 0ðo�Þkc�k
2
L2o

00ð0Þ ¼ p2ðp� 1Þ2hðjo� Þ
p�2ðc�Þ

2; ðL�jðc�Þ
?
H 2
Þ�1ððjo� Þ

p�2ðc�Þ
2ÞiL2

þ pðp� 1Þðp� 2Þ
3

hðc�Þ
2; ðjo� Þ

p�3ðc�Þ
2iL2 :

Since for u A L2ðRÞ

L�ðu cosðnyÞÞ ¼ ð�q2x þ n2 þ o� � pðjo� Þ
p�1Þðu cosðnyÞÞ;
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we obtain

hðjo� Þ
p�2ðc�Þ

2; ðL�jðc�Þ?H 2
Þ�1ððjo� Þ

p�2ðc�Þ
2ÞiL2

¼ 1

4
hðjo� Þ

p�2ðc0Þ
2;A�1

0 ððjo� Þ
p�2ðc0Þ

2ÞiL2

þ 1

8
hðjo� Þ

p�2ðc0Þ
2;A�1

2 ððjo� Þ
p�2ðc0Þ

2ÞiL2 ;

where for n A Z

An ¼ �q2x þ n2 þ o� � pðjo� Þ
p�1:

By the definition of c0, we have

l 0ðo�Þkc�k
2
L2o

00ð0Þ ¼ p2ðp� 1Þ2

4
hðjo� Þ

2p�1;A�1
0 ðjo� Þ

2p�1iL2ð2:18Þ

þ p2ðp� 1Þ2

8
hðjo� Þ

2p�1;A�1
2 ðjo� Þ

2p�1iL2

þ pðp� 1Þðp� 2Þ
8

ð
R�T

ðjo� Þ
3p�1

dxdy:

Since

q2xjo� ¼ o�jo� � ðjo� Þ
p;

and

ðqxjo� Þ
2 ¼ o�ðjo� Þ

2 � 2

pþ 1
ðjo� Þ

pþ1;

we have that for a A R,

A0ðjo� Þ
a ¼ �aða� 1Þðjo� Þ

a�2ðqxjo� Þ
2 � aðjo� Þ

a�1ðq2xjo� Þ

þ o�ðjo� Þ
a � pðjo� Þ

aþp�1

¼ o�ð1� a2Þðjo� Þ
a þ 2aða� 1Þ

pþ 1
þ a� p

� �
ðjo� Þ

aþp�1:

Therefore,

A�1
0 ðjo� Þ

2p�1 ¼ pþ 1

2pðp� 1Þ ððjo� Þ
p � ðpþ 1Þo�jo� Þ:ð2:19Þ

By Lemma 2.2 and (2.19) we obtain that

hðjo� Þ
2p�1;A�1

0 ðjo� Þ
2p�1iL2 ¼ �ð3p� 1Þðpþ 1Þ

4p2ðp� 1Þ

ð
R�T

ðjo� Þ
3p�1

dxdy:ð2:20Þ
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On the other hand, since kA�1
2 kL2!L2 ¼ 1

3 and o� ¼ 4=ðpþ 3Þðp� 1Þ,

hðjo� Þ
2p�1;A�1

2 ðjo� Þ
2p�1iL2 a

4ðpþ 1Þð3p� 1Þ
3ð7p� 3Þðpþ 3Þðp� 1Þ

ð
R�T

ðjo� Þ
3p�1

dxdy:

Therefore,

l 0ðo�Þkc�k
2
L2o

00ð0Þ

a
ðp� 1Þð3p4 � 164p3 � 284p2 þ 216p� 27Þ

48ð7p� 3Þðpþ 3Þ

ð
R�T

ðjo� Þ
3p�1

dxdy:

Since

l 0ðo�Þkc�k
2
L2o

00ð0Þ < 0

for 2a p < 5, the negative eigenvalue of the linearized operator LðaÞ is only one
and simple for a in a neighborhood of 0 for 2a p < 5. By Proposition 1 we

have kqxjðaÞ � qxjo�kL2 ! 0 and
1

a
qyjðaÞ þ c0 sin y

����
����
L2

! 0 as a ! 0. Since

lim
a!0

kqxjðaÞkL2 ¼ kqxjo�kL2 ; lim
a!0

1

a
kqyjðaÞkL2 ¼ kc0 sin ykL2 ;

and

lim
a!0

1

a
hqxjðaÞ; qyjðaÞi ¼ 0;

we obtain that for small jaj > 0,

1

a
jhqxjðaÞ; qyjðaÞij0

1

a
kqxjðaÞkL2kqyjðaÞkL2 ;

and qxjðaÞ and qyjðaÞ are linearly independent.
Since qxjðaÞ and qyjðaÞ are linear independent for su‰ciently small jaj > 0,

the kernel of LðaÞ is two dimension and is spanned by qxjðaÞ and qyjðaÞ
for su‰ciently small jaj > 0. Therefore, the result in Grillakis-Shatah-Strauss

[12, 13] implies that if
dkjðaÞk2L2

do
> 0 then eioðaÞtjðaÞ is orbitally stable, and if

dkjðaÞk2L2

do
< 0 then eioðaÞtjðaÞ is unstable. We define

RðpÞ ¼ 2ðl 0ðo�ÞÞ2kc�k
2
L2

qokjok
2
L2 jo¼o�

þ l 0ðo�Þo 00ð0Þ:

By (2.17), we have that if RðpÞ < 0 then eioðaÞtjðaÞ is orbitally stable, and if
RðpÞ > 0 then eioðaÞtjðaÞ is unstable. Next we calculate RðpÞ. By Lemma 2.2
and the identity joðxÞ ¼ o1=ðp�1Þj1ð

ffiffiffiffi
o

p
xÞ we have
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qokjok
2
L2 jo¼o�

¼ qo o2=ðp�1Þ�1=2

ð
R�T

ðj1Þ
2
dxdy

� �����
o¼o�

ð2:21Þ

¼ ð5� pÞðpþ 3Þ
4ðpþ 1Þðp� 1Þo2

�

ð
R�T

ðjo� Þ
pþ1

dxdy:

Since

kc�k
2
L2 ¼

1

2

ð
R�T

ðjo� Þ
pþ1

dxdy;

by Proposition 1 and (2.21) we have

2ðl 0ðo�ÞÞ2kc�k
2
L2

qokjok
2
L2 jo¼o�

¼ 4ðpþ 1Þðp� 1Þ
ð5� pÞðpþ 3Þ :ð2:22Þ

By Lemma 2.2, (2.18) and (2.19), we obtain that

l 0ðo�Þkc�k
2
L2o

00ð0Þ ¼ � 2pðpþ 1Þ3ðp2 þ 6p� 1Þ
ð5p� 1Þð3pþ 1Þðpþ 3Þ2ðp� 1Þ

ð
R�T

ðjo� Þ
pþ1

dxdy

þ p2ðp� 1Þ2

8
hðjo� Þ

2p�1;A�1
2 ðjo� Þ

2p�1iL2 :

Therefore,

l 0ðo�Þo 00ð0Þ ¼ � 4pðpþ 1Þ3ðp2 þ 6p� 1Þ
ð5p� 1Þð3pþ 1Þðpþ 3Þ2ðp� 1Þ

ð2:23Þ

þ
p2ðp� 1Þ2hðjo� Þ

2p�1;A�1
2 ðjo� Þ

2p�1iL2

4
Ð
R�T

ðjo� Þ
pþ1

dxdy
:

Combing (2.22) and (2.23), we have

RðpÞ ¼ 4ðpþ 1Þðp6 þ 18p5 � 11p4 � 130p3 þ 13p2 þ 16p� 3Þ
ð5� pÞðpþ 3Þ2ð5p� 1Þð3pþ 1Þðp� 1Þ

þ
p2ðp� 1Þ2hðjo� Þ

2p�1;A�1
2 ðjo� Þ

2p�1iL2

4
Ð
R�T

ðjo� Þ
pþ1

dxdy
:

Since A2 is positive,

RðpÞb 4ðpþ 1Þðp6 þ 18p5 � 11p4 � 130p3 þ 13p2 þ 16p� 3Þ
ð5� pÞðpþ 3Þ2ð5p� 1Þð3pþ 1Þðp� 1Þ

:ð2:24Þ

For 1 < p < 5, the sign of the right hand side of (2.24) is same as the sign of

PolðpÞ :¼ p6 þ 18p5 � 11p4 � 130p3 þ 13p2 þ 16p� 3:
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Then, for p A ½3;yÞ, PolðpÞ > 48p3. Therefore, there exists 2 < p2 < 3 such that
RðpÞ > 0 for p2 < p < 5. By (2.20) we have

hðjo� Þ
2p�1;A�1

2 ðjo� Þ
2p�1iL2

a
128pðpþ 1Þ4ð3p� 1Þ

3ð7p� 3Þð5p� 1Þð3pþ 1Þðpþ 3Þ3ðp� 1Þ3
ð
R�T

ðjo� Þ
pþ1

dxdy:

Hence,

RðpÞa 4ðpþ 1Þðp6 þ 18p5 � 11p4 � 130p3 þ 13p2 þ 16p� 3Þ
ð5� pÞðpþ 3Þ2ð5p� 1Þð3pþ 1Þðp� 1Þ

ð2:25Þ

þ 32p3ðpþ 1Þ4ð3p� 1Þ
3ð7p� 3Þð5p� 1Þð3pþ 1Þðpþ 3Þ3ðp� 1Þ

;

and the right hand side of (2.25) is negative at p ¼ 2. By the continuity of the
right hand side of (2.25) at p ¼ 2, there exists 2 < p1 < p2 such that RðpÞ < 0 for
2 < p < p1. r

3. The stability for the line standing wave at o ¼ o�

In this Section, we show the stability for the line standing wave at o ¼ o�.
To prove the stability for the line standing wave at o ¼ o�, we use the result of
the stability for the branch eioðaÞtjðaÞ and apply the argument in [18].

To modulate the translation for the direction y A T we introduce a polar
coordinate ða1; a2Þ ¼ ða cos ~aa;�a sin ~aaÞ for a1; a2 A R and we define for a1; a2 A R,

jða1; a2Þðx; yÞ :¼ jðaÞðx; yþ ~aaÞ ¼ jo� ðxÞ þ a1c0ðxÞ cos y

þ a2c0ðxÞ sin yþ cðaÞðx; yþ ~aaÞ;

oða1; a2Þ :¼ oðaÞ:

Then, jða1; a2Þ is a solution of

�Djþ oða1; a2Þj� jjjp�1
j ¼ 0;

and jð0; 0Þ ¼ jo� . Let

~RRðpÞ ¼ 2l 0ðo�Þkc0 cos yk2L2 þ o 00ð0Þqokjok
2
L2 jo¼o�

:

In the following lemma, we construct a curve to capture the degeneracy of the
linearized operator of the stationary equation (1.3).

Lemma 3.1. There exist a neighborhood U of ð0; 0Þ in R2 and a C1 function
r : U ! R such that rð0; 0Þ ¼ 0 and for ða1; a2Þ A U

Qðjða1; a2Þ þ rða1; a2Þqojo� Þ ¼ Qðjo� Þ:
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Moreover, if ~RRðpÞ0 0, then

jrða1; a2Þj@ jQðjo� Þ �Qðjða1; a2ÞÞj@ a2 @ jo� � oða1; a2Þj;
and

rða1; a2Þhjo� ; qojo�iL2 ¼ Qðjo� Þ �Qðjða1; a2ÞÞ þ oða2Þ:ð3:1Þ

Proof. Since

qrQðjða1; a2Þ þ rqojo� Þjr¼0; ða1;a2Þ¼ð0;0Þ ¼ hjo� ; qojo�iL2 0 0;

by the implicit function theorem we have that there exist U of ð0; 0Þ and a C1

function r : U ! R such that rð0; 0Þ ¼ ð0; 0Þ and for ða1; a2Þ A U

Qðjða1; a2Þ þ rða1; a2Þqojo� Þ ¼ Qðjo� Þ:

By Proposition 1 we have

2Qðjða1; a2ÞÞ ¼ 2Qðjo� Þ þ
~RRðpÞ
2

a2 þ oða2Þ:

Therefore,

jQðjo� Þ �Qðjða1; a2ÞÞj@ a2 @ jo� � oða1; a2Þj:

Then hjo� ; qojo�iL2 > 0 and

Qðjo� Þ ¼ Qðjða1; a2Þ þ rða1; a2Þqojo� Þ

¼ Qðjða1; a2ÞÞ þ rða1; a2Þhjða1; a2Þ; qojo�iL2 þ ðrða1; a2ÞÞ2Qðqojo� Þ:

By the continuity of rða1; a2Þ and jða1; a2Þ we have

jrða1; a2Þj@ jQðjo� Þ �Qðjða1; a2ÞÞj: r

We define curves Fða1; a2Þ and hða1; a2Þ as the following equations.

Fða1; a2Þ :¼ jða1; a2Þ þ rða1; a2Þqojo� ; ða1; a2Þ A U ;

hða1; a2Þ :¼ Soða1;a2Þðjða1; a2ÞÞ � So� ðjo� Þ þ ðo� � oða1; a2ÞÞQðjo� Þ ða1; a2Þ A U :

The following lemma shows that the positivity of the curve hða1; a2Þ�
1
2 ðrða1; a2ÞÞ

2hjo� ; qojo�iL2 coincides the positivity of ~RRðpÞ.

Lemma 3.2. For ða1; a2Þ A U ,

hða1; a2Þ ¼
o 00ð0Þ ~RRðpÞ

16
ðða1Þ2 þ ða2Þ2Þ2 þ oðða1Þ4 þ ða2Þ4Þ:ð3:2Þ
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Moreover, for ða1; a2Þ A U ,

hða1; a2Þ �
1

2
ðrða1; a2ÞÞ2hjo� ; qojo�iL2

¼ �l 0ðo�Þkc0 cos yk2L2
~RRðpÞ

8qokjok
2
L2 jo¼o�

ðða1Þ2 þ ða2Þ2Þ2 þ oðða1Þ4 þ ða2Þ4Þ:

Proof. For ða1; a2Þ A U , we define

hðaÞ ¼ hða1; a2Þ;

where ða1; a2Þ ¼ ða cos ~aa;�a sin ~aaÞ and ab 0. Then hðaÞ is well-defined by the
definition of hða1; a2Þ. To prove (3.2) with respect to hða1; a2Þ, we show (3.2)
with respect to hðaÞ. Since o 00ð0Þ > 0 and

oðaÞ ¼ o� þ
o 00ð0Þ

2
a2 þ oða2Þ;

oðaÞ is increasing on a small interval ð0; dÞ. Thus, there exists the inverse
function aþðoÞ of oðaÞ from ðo�;oðdÞÞ to ð0; dÞ. Moreover, aþ is di¤erentiable
with respect to o > o�. For o, o0 with o0 0o�

SoðjðaþðoÞÞÞ � So0
ðjðaþðo0ÞÞÞ

o� o0

¼
hS 00

o0
ðjðaþðo0ÞÞÞðjðaþðoÞÞ � jðaþðo0ÞÞÞ; jðaþðoÞÞ � jðaþðo0ÞÞiL2

o� o0

þ oððjðaþðoÞÞ � jðaþðo0ÞÞÞ2Þ
o� o0

þQðjðaþðoÞÞÞ

! Qðjðaþðo0ÞÞÞ as o ! o0:

Here we used that jðaþÞ is di¤erentiable with respect to o. On the other hand,
since qajðaÞja¼0 ¼ c0 cos y, for o > o�

SoðjðaþðoÞÞÞ � So� ðjo� Þ
o� o�

¼
SoðaþÞðjðaþÞÞ � So� ðjo� Þ
1
2o

00ð0ÞðaþÞ2 þ oððaþÞ2Þ
;

¼
hS 00

o�
ðjo� ÞðjðaþÞ � jo� Þ; jðaþÞ � jo�iL2

1
2o

00ð0ÞðaþÞ2 þ oððaþÞ2Þ

þ
oððjðaþÞ � jo� Þ

2Þ
1
2o

00ð0ÞðaþÞ2 þ oððaþÞ2Þ
þQðjo� Þ

! Qðjo� Þ as o # o�:
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Therefore, SoðjðaþðoÞÞÞ is a C1 function with respect to o on ðo�;oðdÞÞ and

dSoðjðaþðoÞÞÞ
do

¼ QðjðaþðoÞÞÞ:

Moreover, QðjðaþðoÞÞÞ is also C1 with respect to o on ðo�;oðdÞÞ and

lim
o#o�

QðjðaþðoÞÞÞ �Qðjo� Þ
o� o�

¼
~RRðpÞ

2o 00ð0Þ 0 0:ð3:3Þ

Since SoðjðaþðoÞÞÞ is C2 with respect to o on ðo�;oðdÞÞ and

hðaþðoÞÞ ¼ SoðjðaþðoÞÞÞ � So� ðjo� Þ � ðo� o�Þ
dSoðjðaþðoÞÞÞ

do

����
o¼o�

;

by (3.3) we have

hðaþðoÞÞ ¼
~RRðpÞ

4o 00ð0Þ ðo� o�Þ2 þ oððo� o�Þ2Þ ¼
o 00ð0Þ ~RRðpÞ

16
ðaþÞ4 þ oððaþÞ4Þ:

Similarly, we can show (3.2) for a < 0. By the relation a2 ¼ ða1Þ2 þ ða2Þ2 we
have (3.2).

On the other hand, by Lemma 3.1, we have

ðrða1; a2ÞÞ2hjo� ; qojo�iL2 ¼
ðQðjo� Þ �Qðjða1; a2ÞÞÞ2

hjo� ; qojo�iL2

þ oðða1Þ4 þ ða2Þ4Þ

¼ ð ~RRðpÞÞ2

8qokjok
2
L2 jo¼o�

ðða1Þ2 þ ða2Þ2Þ2 þ oðða1Þ4 þ ða2Þ4Þ:

Combing (3.2) and the above equality, we obtain the conclusion. r

In the following lemma, we investigate the ‘‘graph’’ of So� ðFða1; a2ÞÞ.

Lemma 3.3. For ða1; a2Þ A U ,

So� ðFða1; a2ÞÞ � So� ðjo� Þð3:4Þ

¼ hða1; a2Þ �
1

2
ðrða1; a2ÞÞ2hjo� ; qojo�iL2 þ oððrða1; a2ÞÞ2Þ:

Proof. For ða1; a2Þ A U ,

So� ðFða1; a2ÞÞ ¼ Soða1;a2ÞðFða1; a2ÞÞ þ ðo� � oða1; a2ÞÞQðjo� Þ

¼ Soða1;a2Þðjða1; a2ÞÞ þ ðo� � oða1; a2ÞÞQðjo� Þ

þ 1

2
ðrða1; a2ÞÞ2hS 00

oða1;a2Þðjða1; a2ÞÞqojo� ; qojo�iL2

þ oððrða1; a2ÞÞ2Þ:

Since S 00
o�
ðjo� Þqojo� ¼ �jo� , we obtain (3.4). r
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We define the distance and tubular neighborhoods of jo� as follows. Set

disto� ðuÞ ¼ inf
y AR;

ðx;yÞ AR�T

kuð� ; �Þ � eiyjo� ð� � x; � � yÞk
H 1 ;

Ne ¼ fu A H 1ðR� TÞ : disto� ðuÞ < eg;
N 0

e ¼ fu A Ne : QðuÞ ¼ Qðjo� Þg:
In the following lemma, to eliminate the symmetry, we decompose functions in
the tubular neighborhood Ne.

Lemma 3.4. Let e > 0 su‰ciently small. Then, there exist C2 functions y :
Ne ! R, a : Ne ! R, b : Ne ! R, ~aa ¼ ða1; a2Þ : Ne ! U and w : Ne ! H 1ðR� TÞ
such that for u A Ne

eiyðuÞuð� � bðuÞ; �Þ ¼ Fð~aaðuÞÞð� ; �Þ þ wðuÞð� ; �Þ þ aðuÞjð~aaðuÞÞð� ; �Þ;

where hwðuÞ; jð~aaðuÞÞiL2 ¼ hwðuÞ; ijð~aaðuÞÞiL2 ¼ hwðuÞ; qxjð~aaðuÞÞiL2 ¼ hwðuÞþ
aðuÞjð~aaðuÞÞ;c0 cos yiL2 ¼ hwðuÞ þ aðuÞjð~aaðuÞÞ;c0 sin yiL2 ¼ 0.

Proof. Let c�1ðx; yÞ ¼ c0ðxÞ cos y and c�2ðx; yÞ ¼ c0ðxÞ sin y. We define

Gðu; y; b; a1; a2Þ ¼

heiyuð� � b; �Þ �Fða1; a2Þ; ijða1; a2ÞiL2

heiyuð� � b; �Þ �Fða1; a2Þ; qxjða1; a2ÞiL2

heiyuð� � b; �Þ �Fða1; a2Þ;c�1iL2

heiyuð� � b; �Þ �Fða1; a2Þ;c�2iL2

0
BBBB@

1
CCCCA:

Then, Gðjo� ; 0; 0; 0; 0Þ ¼ 0. Since

qG

qðy; b; a1; a2Þ

����
y¼b¼a1¼a2¼0;

u¼jo�

¼

kjo�k
2
L2 0 0 0

0 �kqxjo�k
2
L2 0 0

0 0 �kc�1k
2
L2 0

0 0 0 �kc�2k
2
L2

0
BBBBB@

1
CCCCCA;

by the implicit function theorem for su‰ciently small e > 0 there exist C2

functions y; b : Ne ! R and ~aa ¼ ða1; a2Þ : Ne ! U such that for u A Ne

Gðu; yðuÞ; bðuÞ;~aaðuÞÞ ¼ 0:

We define

aðuÞ ¼ heiyðuÞuð� � bðuÞ; �Þ �Fð~aaðuÞÞ; jð~aaðuÞÞiL2

kjð~aaðuÞÞk2L2

;

and

wðuÞðx; yÞ ¼ eiyðuÞuðx� bðuÞ; yÞ �Fð~aaðuÞÞ � aðuÞjð~aaðuÞÞ:

Then w satisfies the orthogonal conditions. r
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Next we estimate aðuÞ on N 0
e .

Lemma 3.5. Let e > 0 su‰ciently small. There exists C > 0 such that for
u A N 0

e ,

jaðuÞjaCkwðuÞkL2ðrð~aaðuÞÞ þ kwðuÞkL2Þ:ð3:5Þ

Proof. For u A N 0
e ,

Qðjo� Þ ¼ QðFð~aaðuÞÞ þ wðuÞ þ aðuÞjð~aaðuÞÞÞ

¼ Qðjo� Þ þ aðuÞkjð~aaðuÞÞk2L2 þ rð~aaðuÞÞhqojo� ;wðuÞiL2

þ rð~aaðuÞÞaðuÞhqojo� ; jð~aaðuÞÞiL2 þQðwðuÞÞ þ ðaðuÞÞ2Qðjð~aaðuÞÞÞ:

Thus,

aðuÞ ¼ �kjð~aaðuÞÞk�2
L2 ½rð~aaðuÞÞfhqojo� ;wðuÞiL2 þ aðuÞhqojo� ; jð~aaðuÞÞiL2g

þQðwðuÞÞ þ ðaðuÞÞ2Qðjð~aaðuÞÞÞ�;

and we obtain (3.5). r

In the following lemma, we investigate linearized operators of (1.3).

Lemma 3.6. There exist k0 > 0 and e0 > 0 such that for a1; a2; a A ð�e0; e0Þ, if
w A H 1ðR� TÞ satisfies hw; jða1; a2ÞiL2 ¼ hw; ijða1; a2ÞiL2 ¼ hw; qxjða1; a2ÞiL2 ¼
hwþ ajða1; a2Þ;c0 cos yiL2 ¼ hwþ ajða1; a2Þ;c0 sin yiL2 ¼ 0, then

hS 00
o�
ðFða1; a2ÞÞw;wiH�1;H 1 b k0kwk2H 1 :

Proof. For u A H 1ðR� TÞ, we have

S 00
o�
ðjo� Þu ¼

�Dþ o� � pjjo� j
p�1 0

0 �Dþ o� � jjo� j
p�1

 !
Re u

Im u

� �

¼
X
n AZ

�q2x þ n2 þ o� � pjjo� j
p�1 0

0 �q2x þ n2 þ o� � jjo� j
p�1

 !
uR
n

uI
n

� �
;

where

Re uðx; yÞ ¼
X
n AZ

uR
n ðxÞeiny; ðx; yÞ A R� T;

Im uðx; yÞ ¼
X
n AZ

uI
nðxÞeiny; ðx; yÞ A R� T:
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By the definition of o�, the negative eigenvalue of the operator �q2x þ o� �
pjjo� j

p�1 is only one and simple negative eigenvalue �1. Since �q2x þ o� �
jjo� j

p�1 is non-negative, if jnj > 1 then

�q2x þ n2 þ o� � pjjo� j
p�1 0

0 �q2x þ n2 þ o� � jjo� j
p�1

 !

is positive. Then the kernel of �q2x þ o� � pjjo� j
p�1 is spanned by qxjo� and

the eigenspace of �q2x þ o� � pjjo� j
p�1 corresponding to �1 is spanned by c0.

Since qokjok
2
L2 jo¼o�

> 0, by Theorem 3.3 in [12] there exists c > 0 such that for
u A H 1ðRÞ if hu; jo�iL2 ¼ hu; qxjo�iL2 ¼ 0, then

hð�q2x þ o� � pjjo� j
p�1Þu; uiH�1;H 1 b ckuk2H 1 :

Moreover, the kernel of �q2x þ o� � jjo� j
p�1 is spanned by jo� . Therefore, there

exists c > 0 such that for u A H 1ðR� TÞ if hu; jo�iL2 ¼ hu; ijo�iL2 ¼ hu; qxjo�iL2

¼ hu;c0 cos yiL2 ¼ hu;c0 sin yiL2 ¼ 0, then

hS 00
o�
ðjo� Þu; uiH�1;H 1 b ckuk2H 1 :

By a continuity argument we obtain the conclusion. r

3.1. The proof of (i) of Theorem 1.4
In this subsection, we prove the stability case. By the assumption of (i) of

Theorem 1.4, we have hða1; a2Þ � 1
2 ðrða1; a2ÞÞ

2hjo� ; qojo�iL2 @ ða1Þ4 þ ða2Þ4.
Let u A N 0

e . By the similar calculation in the proof of Theorem 2 in [18],
we have

So� ðuÞ � So� ðjo� Þ ¼ So� ðFð~aaðuÞÞ þ wðuÞ þ aðuÞjð~aaðuÞÞÞ � So� ðjo� Þ
¼ So� ðFð~aaðuÞÞÞ � So� ðjo� Þ

þ hS 0
o�
ðFð~aaðuÞÞÞ;wðuÞ þ aðuÞjð~aaðuÞÞiH�1;H 1

þ 1

2
hS 00

o�
ðFð~aaðuÞÞÞwðuÞ;wðuÞiH�1;H 1 þ oðkwðuÞk2H 1Þ

b hð~aaðuÞÞ � 1

2
ðrð~aaðuÞÞÞ2hjo� ; qojo�iL2

þ hS 0
o�
ðFð~aaðuÞÞÞ;wðuÞiH�1;H 1

þ k0

2
kwðuÞk2H 1 þ oðhð~aaðuÞÞÞ þ oðkwðuÞk2H 1Þ as disto� ðuÞ ! 0:

In the above inequality, we use ðrð~aaðuÞÞÞ2 ¼ Oða1ðuÞ4 þ a2ðuÞ4Þ ¼ Oðhð~aaðuÞÞÞ and
apply Lemma 3.3, Lemma 3.5 and Lemma 3.6. Since S 00

o�
ðjo� Þqojo� ¼ �jo� ,

hjð~aaðuÞÞ;wðuÞiL2 ¼ 0 and rð~aaðuÞÞkwðuÞkH 1 ¼ Oðhð~aaðuÞÞÞ þOðkwðuÞk2H 1Þ as
disto� ðuÞ ! 0, we have
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hS 0
o�
ðFð~aaðuÞÞÞ;wðuÞiH�1;H 1

¼ hS 0
oð~aaðuÞÞðFð~aaðuÞÞÞ þ ðo� � oð~aaðuÞÞÞFð~aaðuÞÞ;wðuÞiH�1;H 1

¼ hðS 00
oð~aaðuÞÞðjð~aaðuÞÞÞ � S 00

o�
ðjo� ÞÞrð~aaðuÞÞqojo� ;wðuÞiH�1;H 1

� rð~aaðuÞÞhjo� � jð~aaðuÞÞ;wðuÞiL2

þ hðo� � oð~aaðuÞÞÞrð~aaðuÞÞqojo� ;wðuÞiH�1;H 1 þ oðhð~aaðuÞÞÞ þ oðkwðuÞk2H 1Þ

¼ oðhð~aaðuÞÞÞ þ oðkwðuÞk2H 1Þ:

Hence, by Lemma 3.2 we obtain the following inequality. There exist e�; c > 0
such that for e� > e > 0 and u A N 0

e

So� ðuÞ � So� ðjo� Þb cðða1ðuÞÞ4 þ ða2ðuÞÞ4 þ kwðuÞk2H 1Þ:ð3:6Þ

Now we suppose there exist e0 > 0, a sequence fungn of solutions and a
sequence ftngn such that tn > 0 and unð0Þ ! jo� in H 1 and

inf
y AR;

ðx;yÞ AR�T

kunðtn; �Þ � eiyjo� ð� � ðx; yÞÞk
H 1 > e0:

Let

vn :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qðjo� Þ
QðunÞ

s
unðtnÞ:

Since QðvnÞ ¼ Qðjo� Þ, kvn � unðtnÞkH 1 ! 0 and So� ðvnÞ � So� ðjo� Þ ! 0 as
n ! y. Thus, by (3.6) a1ðvnÞ; a2ðvnÞ; aðvnÞ ! 0 and wðvnÞ ! 0 in H 1 as
n ! y. This implies

inf
y AR;

ðx;yÞ AR�T

kunðtn; �Þ � eiyjo� ð� � ðx; yÞÞk
H 1 ! 0 as n ! y:

This is a contradiction. Now we complete the proof of (i) of Theorem 1.4.

3.2. The proof of (ii) of Theorem 1.4
In this subsection, we prove the instability case. By the assumption of (ii) of

Theorem 1.4, we have hða1; a2Þ � 1
2 ðrða1; a2ÞÞ

2hjo� ; qojo�iL2 @�ðða1Þ4 þ ða2Þ4Þ.
To prove the instability result, we define the following functions. For

u A Ne

AðuÞ :¼ heiyðuÞu;�iqojo�iL2 ;

PðuÞ :¼ hS 0
oða1ðuÞ;0ÞðuÞ; iA

0ðuÞiH�1;H 1 :

Then

A 0ðuÞ ¼ �ie�iyðuÞqojo� þ ihieiyðuÞu;�iqojo�iL2y 0ðuÞ:
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Since for u A H 1ðR� TÞ

hiA 0ðuÞ;Q 0ðuÞiL2 ¼ hA 0ðuÞ; iuiL2 ¼ dAðeiyuÞ
dy

����
y¼0

¼ 0;

we have for any solution uðtÞ of (1.1)

dAðuðtÞÞ
dt

¼ hA 0ðuðtÞÞ;�iE 0ðuÞiH�1;H 1ð3:7Þ

¼ hiA 0ðuðtÞÞ;E 0ðuðtÞÞ þ oða1ðuÞ; 0ÞQ 0ðuðtÞÞiH�1;H 1

¼ PðuðtÞÞ:

In the following two lemmas, we calculate the function P.

Lemma 3.7. Let e > 0 su‰ciently small. For a1 with ja1j < e,

PðFða1; 0ÞÞ ¼ �rða1; 0Þhjo� ; qojo�iL2 þ oðrða1; 0ÞÞ:

Proof. Since aiðFða1; a2ÞÞ ¼ ai for i ¼ 1; 2,

S 0
oða1;0ÞðFða1; 0ÞÞ ¼ S 00

oða1;0Þðjða1; 0ÞÞrða1; 0Þqojo� þ oðrða1; 0ÞÞ as a1 ! 0:

Hence,

PðFða1; 0ÞÞ
¼ hS 00

oða1;0Þðjða1; 0ÞÞrða1; 0Þqojo� ; qojo�iL2

� hS 00
oða1;0Þðjða1; 0ÞÞrða1; 0Þqojo� ; y

0ðFða1; 0ÞÞiL2hiFða1; 0Þ;�iqojo�iL2

þ oðrða1; 0ÞÞ:

Since

qG

qðy; a1Þ
y 0

a 0
1

� �
¼ ieiyðuÞjða1ðuÞ; 0Þ

e�iyðuÞc0 cos y

� �
ð3:8Þ

and yðFða1; 0ÞÞ ¼ 0, y 0ðFða1; 0ÞÞ is a linear combination of ijða1; 0Þ and c0 cos y.
Thus,

PðFða1; 0ÞÞ ¼ rða1; 0ÞhS 00
oða1;0Þðjða1; 0ÞÞqojo� ; qojo�iL2 þ oðrða1; 0ÞÞ

¼ �rða1; 0Þhjo� ; qojo�iL2 þ oðrða1; 0ÞÞ: r

Lemma 3.8. Let e > 0 su‰ciently small and u A N 0
e VH 1

symðR� TÞ with
So� ðuÞ � So� ðjo� Þ < 0. Then

PðuÞ ¼ �rða1ðuÞ; 0Þhjo� ; qojo�iL2

þ oðrða1ðuÞ; 0ÞÞ þ oðkwðuÞkH 1Þ as disto� ðuÞ ! 0:
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Proof. Since u A H 1
symðR� TÞ, a2ðuÞ ¼ 0. By Lemma 3.5,

aðuÞ ¼ Oðrða1ðuÞ; 0ÞkwðuÞkH 1 þ kwðuÞk2H 1Þ

¼ oðrða1ðuÞ; 0ÞÞ þOðkwðuÞk2H 1Þ as disto� ðuÞ ! 0:

Thus,

PðuÞ ¼ PðFða1ðuÞ; 0Þ þ wðuÞ þ aðuÞjða1ðuÞ; 0ÞÞ

¼ PðFða1ðuÞ; 0Þ þ wðuÞÞ þ oðrða1ðuÞ; 0ÞÞ þOðkwðuÞk2H 1Þ
¼ �rða1ðuÞ; 0Þhjo� ; qojo�iL2

þ hS 00
oða1ðuÞ;0ÞðFða1ðuÞ; 0ÞÞðiA 0ðFða1ðuÞ; 0ÞÞÞ;wðuÞiH�1;H 1

þ hðiA 00ðFða1ðuÞ; 0ÞÞÞ�S 0
oða1ðuÞ;0ÞðFða1ðuÞ; 0ÞÞ;wðuÞiH�1;H 1

þ oðrða1ðuÞ; 0ÞÞ þOðkwðuÞk2H 1Þ;

where ðiA 00ðFða1ðuÞ; 0ÞÞÞ� is the dual operator of iA 00ðFða1ðuÞ; 0ÞÞ. Then we
have

S 0
oða1ðuÞ;0ÞðFða1ðuÞ; 0ÞÞð3:9Þ

¼ S 0
oða1ðuÞ;0Þðjða1ðuÞ; 0ÞÞ þ rða1ðuÞ; 0ÞS 00

oða1ðuÞ;0Þðjða1ðuÞ; 0ÞÞqojo� ;

iA 0ðFða1ðuÞ; 0ÞÞ ¼ qojo� þ hFða1ðuÞ; 0Þ; qojo�iL2y 0ðFða1ðuÞ; 0ÞÞ:

By (3.8) and (3.9) we have

hS 00
oða1ðuÞ;0ÞðFða1ðuÞ; 0ÞÞwðuÞ; iA 0ðFða1ðuÞ; 0ÞÞiH�1;H 1 ¼ oðkwðuÞkH 1Þ:

Therefore, we have the conclusion. r

Let fa1;ngn be a sequence with a1;n ! 0 and fungn be a sequence of solutions
with unð0Þ ¼ Fða1;n; 0Þ. Then, unðtÞ A H 1

symðR� TÞ. Since for a1 A R

So� ðFða1; 0ÞÞ � So� ðjo� Þ ¼ hða1; 0Þ �
1

2
ðrða1; 0ÞÞ2hjo� ; qo�jo�iL2 þ oððrða1; 0ÞÞ2Þ;

for su‰ciently large n > 1 we have So� ðFða1;n; 0ÞÞ < So� ðjo� Þ and

So� ðunðtÞÞ � So� ðjo� Þ

¼ hðaðn; tÞÞ � 1

2
ðrðaðn; tÞÞÞ2hjo� ; qojo�iL2 þ hS 0

o�
ðFðaðn; tÞÞÞ;wðunðtÞÞiH�1;H 1

þ 1

2
hS 00

o�
ðFðaðn; tÞÞÞwðunðtÞÞ;wðunðtÞÞiH�1;H 1

þ oðhðaðn; tÞÞÞ þ oðkwðunðtÞÞk2H 1Þ;

89nonlinear schrödinger equations



where aðn; tÞ ¼ ða1ðunðtÞÞ; 0Þ. Then

hS 0
o�
ðFðaðn; tÞÞÞ;wðunðtÞÞiH�1;H 1 ¼ oðhðaðn; tÞÞÞ þ oðkwðunðtÞÞk2H 1Þ:

Since �hðaðn; tÞÞ@ ðrðaðn; tÞÞÞ2, by Lemma 3.6 and Lemma 3.8 we obtain that
there exists c > 0 for su‰ciently large n > 1

0 < So� ðjo� Þ � So� ðFða1;n; 0ÞÞ
¼ So� ðjo� Þ � So� ðunðtÞÞ

a�hðaðn; tÞÞ þ 1

2
ðrðaðn; tÞÞÞ2hjo� ; qojo�iL2 � k0

2
kwðunðtÞÞk2H 1

þ oðhðaðn; tÞÞÞ þ oðkwðunðtÞÞk2H 1Þ
a�crðaðn; tÞÞPðunðtÞÞ:

We assume eio�tjo� is stable. Since unð0Þ ! jo� as n ! y, for e > 0 there exists
nðeÞ > 0 such that for all t > 0, unðeÞðtÞ A Ne. By (3.1), for small e > 0,
rðaðnðeÞ; tÞÞ is positive and bounded for tb 0. Therefore, there exists d < 0
such that

dAðunðeÞðtÞÞ
dt

¼ PðunðeÞðtÞÞ < d; tb 0:

This contradicts the boundedness of A on Ne. Hence, eio�tjo� is unstable.
Then, we complete the proof of Theorem 1.4.

4. The stability for a bifurcation point of a nonlinear Schrödinger
equation with a symmetric potential

In this Section, we apply the stability argument in section 3 to the stability
for the bifurcation point of the symmetry-breaking bifurcation. We consider the
following one dimensional focusing nonlinear Schrödinger equation with a
symmetric potential treated in [16]

iqtu ¼ �q2xuþ VðxÞu� jujp�1
u; ðt; xÞ A R� R;ð4:1Þ

where p > 1 and VðxÞ : R ! R is an external real-valued, symmetric potential
satisfying:

(H1) VðxÞ A LyðRÞ,
(H2) limjxj!y VðxÞ ¼ 0,
(H3) Vð�xÞ ¼ VðxÞ for all x A R,
(H4) �q2x þ VðxÞ has the lowest eigenvalue �o0 < 0.

The equation (4.1) has the following conservation lows:

ÊEðuÞ ¼ 1

2
kqxuk2L2 þ

1

2
kVð�Þuk2L2 �

1

pþ 1
kukpþ1

Lpþ1 ;

Q̂QðuÞ ¼ 1

2
kuk2L2 :
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We define a standing wave uðt; xÞ as a non-trivial solution of (4.1) with uðt; xÞ ¼
eiotjðxÞ for some o A R and j A H 1ðRÞ, where j satisfies the following equation

�q2xjþ ojþ VðxÞj� jjjp�1j ¼ 0; x A R:ð4:2Þ

The stationary equation (4.2) is written by

ŜS 0
oðuÞ ¼ 0;

where ŜSoðuÞ ¼ ÊEðuÞ þ oQ̂QðuÞ. Next, we define the stability for standing waves.

Definition 4.1. We say that the standing wave eiotj is orbitally stable in
H 1 if for any e > 0 there exists d > 0 such that for all u0 A H 1ðRÞ with
ku0 � jkH 1 < d, the solution uðtÞ of (4.1) with the initial data uð0Þ ¼ u0 exists
globally in time and satisfies

sup
t>0

inf
y AR

kuðtÞ � eiyjkH 1 < e:

Otherwise, we say the standing wave eiotj is orbitally unstable in H 1.

We define the linearized operator for (4.2)

Lþðu;oÞ ¼ �q2x þ VðxÞ þ o� pjujp�1:

In [16], Kirr, Kervrekidis and Pelinovsky proved the following result for the
bifurcation from the zero solution.

Theorem 4.2. There exist e > 0 and co : ðo0;o0 þ eÞ ! H 2ðRÞ such that co

is C 1 function with respect to o and a non-trivial symmetric positive solution of
(4.2). Moreover, the branch of solution ðco;oÞ of (4.2) can be uniquely continued
to a maximal interval ðo0;o1Þ such that the linearized operator Lþðco;oÞ has no
zero eigenvalue on o A ðo0;o1Þ and either:

(i) o1 ¼ y;
(ii) o1 < y and there exists co1

A H 2ðRÞ such that ðco1
;o1Þ is a solution of

(4.2), co ! co1
as o " o1 in H 2 and the linearized operator Lþðco1

;o1Þ
of (4.2) has simple zero eigenvalue.

We consider the second bifurcation from the bifurcation point ðco1
;o1Þ and

the stability for these branches. The following stability result for the branch of
the second bifurcation is proved in [16].

Theorem 4.3. Let pb 2, and consider the symmetric branch of solutions
ðco;oÞ. Let ðo0;o1Þ be the maximal interval define in Theorem 4.2 and f1 be a
eigenfunction of Lþðco1

;o1Þ corresponding to the eigenvalue 0 with kf1kL2 ¼ 1.
Assume o1 < y, and

l 0
2ðo1Þ :¼ lim

o"o1

dl2

do
0 0;
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where l2 is the second eigenvalue of Lþðco;oÞ. Then, the set of real valued
solutions ðf;oÞ A H 2 � R of (4.2) in a small neighborhood of ðco1

;o1Þ A H 2 � R
consists of exactly two C2 curves intersecting only at ðco1

;o1Þ:
(i) the first curve can be parameterized by o ! co, o A ðo0;o1 þ eÞ for

some small e > 0, it is C2 continuation past the bifurcation point o ¼ o1

of the symmetric branch, it has co even for all o and unstable for
o > o1.

(ii) the second curve is of the form ðfðaÞ; ôoðaÞÞ, a A R small, where the para-
meter can be chosen to be projection of fðaÞ � co1

onto KerðLþðco1
;o1ÞÞ

¼ Spanff1g i.e. be > 0 such that for jaj < e:

ôoðaÞ ¼ o1 þ
Q1

2
a2 þ oða2Þ; fðaÞ ¼ co1

þ af1 þ ĥhðaÞ;

where ĥhðaÞ ¼ Oða2Þ A ff1g
?, and along this curve f is neither even nor odd with

respect to x, and is stable if

Q1 > 0 and Q2 > 0

and unstable if

Q1 < 0; or Q1 > 0 and Q2 < 0;

where

kfðaÞk2L2 ¼ kco1
k2
L2 þ

Q1Q2

2
a2 þ oða2Þ;

and

Q2 ¼ 2
l 0
2ðo1Þ
Q1

þM1; M1 ¼
dkcok

2
L2

do

����
o¼o1

:

Remark 5. For pa 2, Lþðu;oÞ is not C1. However, if p ¼ 2, then by the
Lyapunov-Schmidt decomposition and the argument of Crandall-Rabinowitz
Transversality in [3, 7] we can show the infinite problem (4.2) is same as in
the finite problem gðo; aÞ ¼ 0 for a0 0 and g is C 1. Therefore, we can show
the C 2 regularity of fðaÞ for pb 2 and obtain the condition for the stability
(see Theorem 4 in [16]).

Next, we consider the stability of the bifurcation point ðco1
;o1Þ. The

following result denotes that the stability for the bifurcation point coincides the
stability for the branch which bifurcates from symmetric standing waves.

Theorem 4.4. Let pb 2. Assume o1 < y, and

l 0
2ðo1Þ ¼ lim

o"o1

dl2

do
0 0:
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Then, if Q1, Q2, M1 are not zero, then the stability for ðco1
;o1Þ coincides the

stability for the branch ðfðaÞ; ôoðaÞÞ. Namely, we assume M1 0 0, then we have
that

(i) if Q1 > 0 and Q2 > 0, then eio1tco1
is stable,

(ii) if Q1 < 0 or Q1 > 0 and Q2 < 0, then eio1tco1
is unstable.

We can prove Theorem 4.4 by using the same argument in the proof of
Theorem 1.4. Therefore, we show only the outline of the proof of Theorem 4.4.

The outline of the proof of Theorem 4.4. Now, we consider the case M1 < 0
which implies Q1 < 0 or Q2 < 0. Since f1 is an eigenfunction of Lþðco1

;o1Þ
corresponding to second eigenvalue 0, we have f1 is odd. Therefore, if we
regard Lþðco1

;o1Þ as an operator from H 2
evenðRÞ to L2

evenðRÞ, Lþðco1
;o1ÞjH 2

even

dose not have zero eigenvalue, where

L2
evenðRÞ ¼ fu A L2ðRÞ : uðxÞ ¼ uð�xÞ x A Rg; H 2

evenðRÞ ¼ H 2ðRÞVL2
evenðRÞ:

By applying the instability argument in Grillakis-Shatah-Strauss [12] for eio1tco1

in H 1
evenðRÞ, we can show eio1tco1

is unstable.
Next, we consider the case M1 > 0. Then we have the following lemma

which corresponds to Lemma 3.1.

Lemma 4.5. Assume M1 > 0. There exist an open interval I and
r̂rðaÞ : I ! R such that 0 A I and

Q̂QðfðaÞ þ r̂rðaÞqoco1
Þ ¼ Q̂Qðco1

Þ:

Moreover,

jr̂rðaÞj@ jQ̂Qðco1
Þ � Q̂QðfðaÞÞj@ a2 @ jo1 � ôoðaÞj;

and

M1

2
r̂rðaÞ ¼ Qðco1

Þ �QðfðaÞÞ þ oða2Þ:

We define

CðaÞ ¼ fðaÞ þ r̂rðaÞqoco1
;

ĥhðaÞ ¼ ŜSôoðaÞðCðaÞÞ þ ŜSo1
ðf1Þ þ ðo1 � ôoðaÞÞQ̂Qðf1Þ:

Here, we obtain the following expansion corresponding to Lemma 3.2.

Lemma 4.6. Assume M1 > 0. For a A I ,

ĥhðaÞ ¼ ðQ1Þ2Q2

16
a4 þ oða4Þ:
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Moreover, for a A I ,

ĥhðaÞ � 1

4
ðr̂rðaÞÞ2M1 ¼

�l 0
2ðo1ÞQ1Q2

8M1
a4 þ oða4Þ:

We define

disto1
ðuÞ ¼ inf

y AR
ku� eiyco1

k
H 1 ;

N̂Ne ¼ fu A H 1ðRÞ : disto1
ðuÞ < eg;

N̂N 0
e ¼ fu A N̂Ne : Q̂QðuÞ ¼ Q̂Qðco1

Þg:

Using the implicit function theorem, we obtain the following decomposition
lemma corresponding to Lemma 3.4.

Lemma 4.7. Let e > 0 su‰ciently small. Then, there exist C2 functions
ŷy : N̂Ne ! R, âa : N̂Ne ! R, âa : N̂Ne ! R and ŵw : N̂Ne ! H 1ðRÞ such that for u A N̂Ne,

eiŷyðuÞu ¼ CðâaðuÞÞ þ ŵwðuÞ þ âaðuÞfðâaðuÞÞ;
where hŵwðuÞ; fðâaðuÞÞiL2 ¼ hŵwðuÞ; ifðâaðuÞÞiL2 ¼ hŵwðuÞ þ âaðuÞfðâaðuÞÞ; f1iL2 ¼ 0.

Moreover, since f1 is odd, we have the following lemma corresponding to
Lemma 3.6.

Lemma 4.8. Assume M1 > 0. There exist k1 > 0 and e1 > 0 such that
for a; a A ð��1; �1Þ, if w A H 1ðRÞ satisfies hw; fðaÞiL2 ¼ hw; ifðaÞiL2 ¼
hwþ afðaÞ; f1iL2 ¼ 0, then

hŜS 00
o1
ðCðaÞÞw;wiH�1;H 1 b k1kwk2H 1 :

By Lemmas 4.5–4.8 and the similar calculation to the calculation in the
proof of subsection 3.1, we have for u A N̂N 0

e

ŜSo1
ðuÞ � ŜSo1

ðco1
Þb ĥhðâaðuÞÞ �M1

4
ðr̂rðâaðuÞÞÞ2 þ k1

2
kŵwðuÞk2H 1ð4:3Þ

þ oðkŵwðuÞk2H 1Þ þ oðĥhðaÞÞ:

Here, we consider the following three cases.
First, we consider the case Q1 < 0. Then, since Q2 < 0 implies M1 < 0,

we have Q2 > 0. By Lemma 4.6 and (4.3), we have ĥhðaÞ �M1

4
ðr̂rðaÞÞ2 @�a4.

Therefore, by the same argument as in subsection 3.2 we can show eio1tco1
is

unstable.
Second, we consider the case Q1 > 0 and Q2 < 0. By Lemma 4.6 and (4.3),

we have also ĥhðaÞ �M1

4
ðr̂rðaÞÞ2 @�a4. Thus, we can show eio1tco1

is unstable.
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Third, we consider the case Q1 > 0 and Q2 > 0. By Lemma 4.6 and (4.3),

we obtain that ĥhðaÞ �M1

4
ðr̂rðaÞÞ2 @ a4. Therefore, by the same argument as in

subsection 3.1 we can show eio1tco1
is stable.

Then, we have the conclusion. r
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