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STABILITY OF LINE STANDING WAVES NEAR THE BIFURCATION
POINT FOR NONLINEAR SCHRODINGER EQUATIONS

YOHEI YAMAZAKI

Abstract

In this paper we consider the transverse instability for a nonlinear Schrédinger
equation with power nonlinearity on R x T, where 2zL is the period of the torus
T.. There exists a critical period 27L,, , such that the line standing wave is stable for
L < L, , and the line standing wave is unstable for L > L, ,. Here we farther study
the bifurcation from the boundary L = L,, , between the stability and the instability for
line standing waves of the nonlinear Schrodinger equation. We show the stability for
the branch bifurcating from the line standing waves by applying the argument in Kirr,
Kevrekidis and Pelinovsky [16] and the method in Grillakis, Shatah and Strauss [12].
However, at the bifurcation point, the linearized operator around the bifurcation point
is degenerate. To prove the stability for the bifurcation point, we apply the argument
in Maeda [18].

1. Introduction

We consider the stability for standing waves of the nonlinear Schrédinger
equation with power nonlinearity

(1.1) o = —Au—|[ul”'u, (1,x,y) eRx R x Ty,

where p>1 and u=u(t,x,y) is an unknown complex-valued function for
teR, xeR and yeT;. Here, T, =R/27LZ and L >0. In [24], Takaoka
and Tzvetkov showed by the Strichartz estimate that the Cauchy problem of
(1.1) is locally well-posed in H' (see [10, 14, 25]). The equation (1.1) has the
following conservation laws:

1 1
(12) E) =5 IVl gy = g I eryys Q) =5 Il o, -

p+1
where ue H'(R x Ty).
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By a standing wave, we mean a non-trivial solution of (1.1) with the form
u(t,x,y) = e™p(x, y), where @ >0 and pe H'(R x T.) is a solution of

(1.3) —Ap+owp—pl"'p=0, (x,y)eRxTL.
Then, ¢ is a solution of (1.3) if and only if S/ (¢) = 0, where for u e H'(R x Ty)
(1.4) S (1) = E(u) + wQ(u),

and S/ is the Fréchet derivative of S,. The equation (1.3) has a positive
solution ¢, which is symmetric in x and independent of y. Namely, ¢, is the

positive symmetric solution of
(1.5) —%p+wp—|pl" 'p=0, xeR,

and we regard ¢, as a function on R x T;. Then, we call ¢“’¢p, a line standing
wave.
The stability of standing waves is defined as follows.

DerINITION 1.1.  We say that the standing wave e®'¢ is orbitally stable in
H' if for any &> 0 there exists J > 0 such that for all upe H'(R x Tz) with
luo — @l <0, the solution u(zr) of (1.1) with the initial data u(0) = uy exists
globally in time and satisfies

sup inf  Jlu(t,-,) — (- — X, — )| < e
>0 0O€R,
(x,y)eRXTL

Otherwise, we say the standing wave e¢’¢ is orbitally unstable in H'.

In [5], Cazenave and Lions showed that the standing wave e™p, of the
nonlinear Schrodinger equation with power nonlinearity on R is stable for
1 < p < 5. However, in some case the standing wave e¢®'g, of (1.1) is unstable
for 1 < p < 5. The following transverse instability results for the line standing
wave was proved in Rousset-Tzvetkov [22] for p =3 and the author [26] for
I <p<5. Let

2

Vie-Dp+3w

THEOREM 1.2. Let w >0 and 1 < p < 5. A

i < L <L, then the line standing wave e' ¢, is stable.
i) If 0 <L <L,,, then the li di ve 'y, i bl
(i) If L> L, p, then the line standing wave e, is unstable.

(1.6) Ly, =

Remark 1. 1t is known that for p > 5 the standing wave ey, is unstable
on R (see [23, 27]). Therefore, it is obvious that ¢'”'¢, is also unstable on
R x TL.
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Remark 2. In [21], Rousset and Tzvetkov proved the transverse instability
for the line standing wave e'®¢p, of the cubic nonlinear Schrédinger equation
on RZ.

In this paper, we show the stability for the standing wave e*'g, at L = L,, ,.
To prove Theorem 1.2 (ii), in [22] and [26], they used the linear instability for the
linearized equation around the standing wave ¢’gp, and showed some nonlinear
estimates. On the other hand, under the conditions of Theorem 1.2 (i), it is easily
verified that inf{1 > 0:74€ea(S/(¢,))} >0, Ker(S/(¢,)) = Span{ip,, 0.p,} and
the negative eigenvalue of S/ (¢,,) is only one and simple. Moreover, the func-
tion d”(w) > 0, where

(1.7) d(w) = Su(,)-

Therefore, we can show the stability in Theorem 1.2 (i) by applying the method
in Grillakis, Shatah and Strauss [12, 13]. However, at L = L, , the operator
S”(p,,) has an extra eigenfunction corresponding to the eigenvalue 0. Thus, we
can not construct a Lyapunov functional by the argument in [12, 13]. Moreover,
since the linearized operator of (1.1) around the line standing wave does not have
unstable eigenvalues, we can not show the instability by the spectrum analysis in
[9, 13, 22, 26] and the variational analysis in [12, 17].

There are not many papers treating the stability results in degenerate cases
[6, 19, 18]. These papers mainly treat abstract Hamiltonian systems in the case
of d"(wp) = 0 and the linearized operator of the stationary equation do not has
extra eigenfunctions corresponding to 0. Comech-Pelinovsky [6] showed that
if d”(wp) =0 and d”(w) <0 in a one-sided open neighborhood of w,, then the
standing wave is unstable. In this case the linearized operator of the evolution
equation has a degenerate zero eigenvalue, so they showed that the degeneracy
of zero eigenvalue lead to a polynomial growth of perturbations. In Ohta [19],
observing the high order term of the action S, corresponding to the abstract
Hamiltonian system, the author showed the instability of a standing wave ¢, if
the following conditions is satisfied. There exist a function  and ux € R such

that <@,,, > = {J,,, ¥> =0, S (9,)¥ = 1Q'(9,,) and (S, ¥),¥) # 3u, where
J is a suitable skew-symmetric operator and Q is a conservation law. His proof
is based on [12, 17] which uses a Lypunov functional to “push out” the unstable
solution from the neighborhood of the standing wave. Maeda [18] showed that
if d"(wo) =0 and d(w) is strictly convex in an open neighborhood a standing
wave @, is stable, and that if d”(wo) =0 and d(wp + ) — d(wo) — wd'(w) < 0
in a one-sided open neighborhood of wy a standing wave ¢, is unstable. To
capture the degeneracy of d”(w), Maeda considered a curve ¥(w) = ¢, ., +
p(a))Q’(gﬁwo +w)- Using the Taylor expansion around ¥(w) instead of ¢, and
identity S{,{)O-‘r(l) = Swo + w0, Maeda calculated Swo(‘l’(w)) very precisely to analyze
the degeneracy of d”(w).

In our case, since the linearized operator S”(¢,,) of the stationary equation
(1.3) has an extra eigenfunction corresponding to 0, we can not show the stability
only in the analysis of d(w) and the modulation for the symmetries of (1.1).
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Moreover, our case does not satisfies the assumption in [19]. Therefore, we can
not directly apply these results to prove the stability for the line standing wave
ey, at L= L. ,. However, the observations of these results which are the
analysis of the linearized operator and the degeneracy of d”(w) are very useful.
In this paper, we follow the work of [18].

We change the equation (1.1) on R x T, to the equation (1.1) on R x T by
the map

(1.8) u(t,x, y) — L¥P=Vu(L%t, Lx, Ly),

where u is a solution of (1.1) on R x T, and T=R/27Z. By (1.8), the line
standing wave g, is changed to eLp ;. Therefore, the line standing wave
e g, for (1.1) on R x Ty, is stable if and only if the line standing wave ep,,
for (1.1) on R x T is stable, where

4
(P—D(p+3)

In this case, (¢, ,.) is a bifurcation point on the solutions (¢,,®) of the
equation (1.3) at L =1 (see Proposition 1 in Section 2 and also [15, 16]). More-
over, the bifurcation from the line standing waves is similar to the symmetry-
breaking bifurcation from symmetric standing waves of a nonlinear Schrodinger
equation with a symmetric potential.

There are many papers studying the bifurcation of the standing wave and
the stability for the bifurcation branch [8, 15, 16, 20]. These papers treat the
bifurcation of the standing wave for a nonlinear Schrédinger equation with a
linear potential. Using variational arguments, Rose-Weinstein [20] showed the
existence and the stability for a non-trivial standing wave bifurcating from the
zero solution at w > Ay, where —4¢ is the lowest eigenvalue for the linear part
of the equation. In [8, 15, 16], these authors studied the symmetry-breaking
bifurcation of standing waves and the stability for bifurcation branches. Kirr,
Kevrekidis, Shlizerman and Weinstein [15] treated a three dimensional nonlinear
Schrodinger/Gross-Pitaevskii equation with cubic nonlinearity and a symmetric
double well linear potential which has large barrier between the two wells.
Fukuizumi and Sacchetti [8] studied a nonlinear Schrédinger equation with power
nonlinearity and a symmetric double well linear potential in the semi-classical
setting. In [8, 15], these authors proved that asymmetric standing waves bifur-
cates from symmetric standing waves, and showed the stability for these stand-
ing waves by using the Lyapunov-Schmidt reduction method to the two-level
approximation equation for the standing waves. Kirr, Kevrekidis and Pelinov-
sky [16] considered the following one dimensional nonlinear Schrédinger equation
with a symmetric potential:

(1.9) W, =

(1.10) 0 = —0%u+ V(xX)u+ ulul”u,

where V' is a bounded symmetric potential, p > 1 and geR. In [16], Kirr,
Kevrekidis and Pelinovsky showed that if u <0 and —A+ V' has the lowest
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eigenvalue —/y, a branch of symmetric standing waves uniquely continues for all
w > Ay or bifurcates to two branches which are a branch of symmetric standing
waves and a branch of asymmetric standing waves. Moreover, they obtained the
stability condition for asymmetric standing waves for p > 2 by applying Crandall-
Rabinowitz Transversality [3, 7].

In our paper, we prove that the set of solutions of (1.3) near (g, ,w.)
consists of two curves which are a branch of the line standing waves (¢,,®) and
a branch of standing waves (¢(a),w(a)) which depends of the transverse direc-
tion y e T (see Proposition 1 in Section 2). To analyze the stability for the line
standing wave e™'p, , we show the following stability result for the standing
waves depending of the transverse direction.

THEOREM 1.3. There exist 2 < py < p» <3 with the following properties.

(i) If 2<p < pi1, then the standing wave e 9'g(a) is stable for small
la] > 0.

(ii) If p» < p <5, then the standing wave e “'p(a) is unstable for small
la] > 0.

Remark 3. In Theorem 1.3, we assume p > 2 because we need the regularity
of p(a) with respect to a. In the case p; < p < p», we can not obtain the sign
of 0yllp(a(®))]|;» by the estimate in this paper (see the proof of Theorem 1.3 in
Section 2). Therefore, we can not show the stability for p; < p < p, in this

paper.

The proof of Theorem 1.3 follows the proof of the stability for the branch
of asymmetric standing waves which bifurcates from symmetric standing waves in
[16]. In [16], to prove the secondary pitchfork bifurcation, Kirr, Kevrekidis and
Pelinovsky applied a Lyapunov-Schmidt decomposition and the Morse Lemma.
For 2 < p <3, this argument dose not guarantee that the two branches of
standing waves are C? which turns out to be necessary for determining their
stability. Thus, the authors recovered the C? regularity of the branches and
showed their stability by using Crandall-Rabinowitz Transversality and certain
upper and lower exponential decay rates of standing waves. Their proof of the
stability is based on [11, 12], which investigates the linearized operator around
asymmetric standing waves and the dependence of L?-norm on parameter a for
these standing waves.

In our case, the line standing wave e'¢p,, is the bifurcation point, which
implies the linearized operator of (1.3) is more degenerate. In fact, in [16] since
the kernel of the linearized operator of the stationary equation around the
bifurcation point has an extra function, they did not show the stability for the
bifurcation point. To prove the following result of the stability for the bifur-
cation point, we combine the argument of the stability in [18] and the information
of the stability for the bifurcation branch of standing waves e @ p(a). In the
following main result, we prove the stability for the bifurcation point coincides the
stability for the branch (¢(a),w(a)) which bifurcates from line standing waves.
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THeoREM 1.4.  Let py, p> be as in Theorem 1.3.
(i) If 2<p < p1, then the standing wave e"'¢p,, is stable.
(ii) If p > ps, then the standing wave g, is unstable.

Remark 4. We can show the stability of the bifurcation point for other
equations by applying the same argument as in the proof of Theorem 1.4. In
this paper, we only treat the transverse instability case in Sections 2, 3 and a
symmetry-breaking case in Section 4.

The kernel of the linearized operator around ¢, is spanned by ig, , 0.9, ,
(ﬂffjﬂ)/ % cos y and goi,‘" D72 gin y. By the modulation for the gauge symmetry
and the translation symmetries, we can eliminate the degeneracy for ip, and
0x¢,,. To capture the degeneracy for oLV cos y and 9V sin y, we
consider a curve ®(d) = ¢(d) + p(d)f which satisfies Q(®(d)) = O(¢,, ), where
f is a suitable function and d = (a;,a,) is a parameter which is introduced to
modulate the translation for the direction y €T (see Section 3). Then, we
decompose the solution u as ®(d(u)) +w(u) and we calculate the Taylor
expansion of the action. This idea follows [18, 19]. Moreover, in [18], Maeda
used equality S,y 10 = Su, +©Q to analyze the linearized operator S’(ZO v (Pry)
of (1.3). To investigate the “graph” of the action S, which means d(wy+ o)
—d(wg) — wd'(wy), Maeda combined the curve W(w) and the Taylor expan-
sion of the action around @, ... We also use S, = Sy, + (0(a) — )0
to investigate the non-degenerate information about S, (¢(d)) — So. (9, ) —
(w(a) — w.)0(p,.). In [18], since d”(wp) is degenerate, the correction term
p(w) = o(w). However, in our case d”(w,) = aiSw(gow)\w:w* is not degenerate
and positive, so p(d) and w(a) — w. are the same order. Therefore, we can
not regard p(d) as an error term and have to consider the effect of p(a) for
Soa)(9(@)) — Sw, (9,,) — (w(a) — ®.)Q(w,). By choosing f = ¢, , we see that
S! (04.)000,. = —¢,, is orthogonal to a error term w. Accordingly, we can
neglect the effect of p.

The rest of this paper consists of the following three sections. In Section 2,
by applying the argument in [16] we show the bifurcation for the line standing
waves and the stability for a branch of standing waves which depend of the
transverse direction. In Section 3, we prove the stability of the line standing
wave e, which is a bifurcation point. In Section 4, we show the stability of
the bifurcation point on symmetric standing waves of the nonlinear Schrédinger
equation with a symmetric potential. In Sections 3 and 4, our proof is based on
the argument in [18].

Notations
1. For functions f and g, f(a) ~ g(a) if and only if f and g satisfy
f(a) f(a)

0 < liminf ——= < limsup
al=0" g(a) = g0 g(a)

< o0
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2. For f,ge L*(X), {f,g9>1> :=Re [, f§.

3. For feH'(X) and ge H'(X), {f,g>y 1 i denotes the coupling be-
tween H~! and H'. '

4. For a operator A, the vector space Ker(4) means the kernel of A.

5. For vectors fi, ..., fu, the vector space Span{fj,..., f,} means the vector
space which is spanned by fi,..., f,.

2. Bifurcation of line sanding waves

In this Section, we consider the bifurcation from the line standing waves.
Let

(2.1) F(p,0) = —Agp +wp — o] 'p,
where p € H'(R x T,R) and weR. Then,
(2.2) DyF(p,0) = —A+ o — plg’™,

where D,F means the Fréchet derivative of F with respect to ¢ € H'(R x T, R).
Let ¢, be the positive symmetric solution of (1.5) and w. be the constant defined
by (1.9). Moreover, we regard ¢, as a function on R x T;. Then, D,F(p,w) is
a bounded operator from H' to H~! or from H? to L? and satisfies the following

property.

Lemma 2.1. For w > 0,

(2.3) F(p,,®) =0.

Moreover,

(2.4) Ker(DyF (¢, ,w:)) = Span{0xp,, , Y €08 y, ¥, sin y},
where

Vo = (0,) "
" :

Proof. Since the function ¢, is a solution of (1.3), by (2.1) we have (2.3).
Since

(25) DWF(gow*aw*)l//O Cos y = (_63 + 1 + 0 — p‘(pw* p71)¢0 Cos ),

and Y, is an eigenfunction of —di + w, — plo, | = corresponding to the
lowest eigenvalue —1, W, cos ye Ker(D,F(p, ,,)). Similarly, we obtain
0x9,,., W sin y € Ker(D,F(gp,, ,®,)). On the other hand, if n is an integer
with n > 1, then the operator —0? + n®> + w, — plg,, |’ is positive. Moreover,

the kernels of —02 + . — plg, """ and —0? + 1+, — plg, "~ are simple.
Since we have the equality

(26) DwF((ﬂw*;w*)u(X, y) = Z(_a% + nz +w, — p|¢w¥|])71)un(x)einy’
neZ
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for

(2.7) u(x, ) = u(x)e™,
nel

we get (2.4).

In the following lemma, we calculate an integral of ¢Z.

Lemma 2.2. For w >0, a>1

a+1
dx.
2a+p+ 1 J;(¢w) Y

Proof.  Since ¢, is a solution of
(2.8) ~03p +wp gl =0,

we have
[ o dx == | (o) ep, dx v o] (o) ax
R R R

By an integral by parts

j (00) 02,y dx = [(9) Orp) ", — j (90) " (0rp)? dx
R R

—a (1) (00.)" ax
R

Multiplying (2.8) by d,¢p, and integrating this, we obtain

2
—wwu2+w¢—;;7ww“‘=o

By combing the above three equations, we get the conclusion.

O

To show the bifurcation of the line standing waves for 2 < p < 3, we use the
lower and upper decay rates of standing waves. If a C' function u on R x T is
symmetric in y € [-x, ] =T, then u satisfies 0,u(x, —n) = dyu(x,n) =0 in x e R.
Therefore, the proof of the following the proof of lemma follows Lemma 4.1 in

Berestycki-Nirenberg [2] (see the proof of Lemma 4.1 in [2]).

LemMmA 2.3, Let @ >0, p > 1 and ¢ is a positive solution of (1.3) satisfying

o(x,y) = p(x,—y), for (x,y)eRx[-m,7a]=RxT.
Then, for ¢ >0, there exist A,, B, >0 such that for (x,y) e Rx T,
A~ Vot < () < Be~ Vool
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In the following lemma, we calculate the derivative of the second eigenvalue
of D,F(p,,®).

LeMMA 2.4. Let AMw) is the second eigenvalue of D,F(¢,,w). Then,

(2.9) wmg:npzﬁ@:_gigglﬁ.

Proof. Let ¢(w) is the eigenvector of D,F(¢,,w) corresponding to A(w)
with ¢(w.) = cos , ||p(w)]l;2 = ||y cos y|;» and ¢(w) is C! with respect to

w. Then,

(2.10) DyF (¢, 0)p(®) = A(w)d(w).

By differentiating (2.10) with respect to w, we have for o < w,,
(2.11) $(@) = p(p = 1)(9,)" " 00Pub(@) + DyF (9, ®)d0p(c)

= (w)p(w) + Mw)d,d(w).
Multiplying ¢(w) by (2.11), we obtain

613~ p(p = 1) | (0,)720(0)00p,, dsdy = [0)}-4' (@),

RxT
(p+1)/2

5

Moreover, since o = (¢, )

I cos i3 fim (@)= | (p,)" cos” y dudy
wlw. RxT -

-plp—1) JR T(ww*)z”’lawww* cos® y dxdy

1 -1
=§(J e N dxdy).
RxT RxT

Using ¢, (x) = 0'/(?~Vyp, (/ox), we have

J 5w(¢3)p)|w:% dx = 0, <J COZIYJ/(zFl)(%( a)x))z” dx>
R R

- 3p+1 2p
e R
By Lemma 2.2, we obtain
o 1 3p+1
iy cos i3 lim 2w) =5 ([ (o) asty = L2 g, )7 axay
ale. 2 \Jrxt 4. JRxt
(p+3)(p-1)

=- —J (¢,,,)"*" dxdy.
8 RxT
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Since 2|y c08 ¥|72 = [pup(@w,)” " dxdy, we have
. 3)(p-—1
o, 4
By Lyapunov-Schmidt decomposition and Crandall-Rabinowitz Transver-
sality in [16], we can show the following bifurcation result. In this paper, we
only give the sketch of the proof of Proposition 1 (see the proof of Theorem 4 in
[16] for the detail of the proof of Proposition 1).

PropPoSITION 1. Let p>2. Then there exist an open interval I and
p(a) e C*(I,H2, (R xT)) such that 0 eI, ¢p(a) >0,

sym

(2.12) —Ap(a) + w(a)p(a) — (@) pla) =0,
(2.13) p(a) = ¢, +ap cos y +y(a),
where (a) € C*(I, H{,,(R x T)), [[(a)| > = O(a®),
(2.14) wla) = o, + @cﬂ + o(a?).
Moreover,

Pp—1)7°

(2.15)  @"(0)= +—(9,,)" (W cos p)7,

7 (@) cos 12
(Ll o)~ ((00,) 20 €05 1)),

pip—1(p-2) 2 =3 2
31,((,0*)”1#0 cos yHiz <(lp0 €Os y) 7((pw*) (lrbO Cos y) >L-7
(2.16) Ja(a) = =1 (w,)0"(0)a* + o(a?),
[
(217) lp@)lZ: = 190,117 + 5 (24 (@.) | cos ¥

2
+0"(0)00190 172 lo-0. )a* + 0(a?),

where L. = D,F(¢p,, ,.), the function J(a) is the second eigenvalue of the
linearized operator of (1.3) around ¢(a).

The sketch of the proof for Proposition 1. Since Ker(D,F(¢p, ,,.)) has
extra directions Y, cos y and y,sin y by Lemma 2.1, the line standing
wave e®!p ~ bifurcates in directions , cos y and Y, sin y. Indeed, if we
regard F(p,w) as a function from H2 xR to L2 xR, then the kernel of

sym sym

Dy,F(¢,, ,@.)|p> _;> is spanned by i, cos y where L (Rx T) ={ue L*(RxT):

sym

u(x, y) = u(=x,y) = u(x,~y), (x, y) € R x [-m, 7]} and HE, (R xT) =
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H?(R xT) ﬂL‘fym(R x T). Therefore, by Lyapunov-Schmidt decomposition we
reduced the infinite dimensional problem F(p,w) =0 to the finite dimensional

problem
Fj(a, ) := <F (@, +apy cos y + Y(w,a),w), g cos yyr2 =0,
where /(w,a) € H2, (R x T) which is the function defined by Lyapunov-Schmidt

sym
decomposition. To apply Crandall-Rabinowitz Transversality, we consider the
problem g(a,w) =0, where

Alao) ~ Fj0@) o

gla.o) =S op

if a =0.
P (0, w) ifa=0

Then for a # 0, Fjj(a,w) = 0 if and only if g(a,w) =0. If p > 2, then F is a C?
function and ¢ is a C' function. In the case p = 2, using the positivity of Py,
and the Lebesgue dominant converge theorem, we can prove g is C'. Since

a9 2 09

%(0760*) :l,(w*)”l//O cos yHLZa %(Oaw*) :07

we can define w(a) with g(a,w(a)) = 0 by applying the implicit function theorem.
Therefore, p(a) := ¢, + a cos y + (w(a),a) is a solution of F(p(a),w(a)) =0
and

w'(0) = —g—g(o,w*) —0.

ow

Using certain upper and lower exponential decay rates in Lemma 2.3, the
positivity of ¢(a) and the Lebesgue dominant converge theorem, we can obtain
. QU -1 . 190

a)"(O):hmw():” lim - Y

a—0 a 2 (wy) a=0 a da

(a,w(a)),

and (2.15).

Let 5(a) be the second eigenvalue of L(a) := —A + w(a) — p(p(a))””" and
$,(a) be a eigenfunction of L(a) corresponding to A,(a) with ||¢,(a)||,» =1 and
$,(0) = || cos y||;2 ¥ cos y. By the continuity of L(a) with respect to a, we
can assume that ¢,(a) is C' with respect to a. If p > 2, then F| is C?. There-
fore, p(a) is C>. If p =2, then L(a) = —A + w(a) — 2p(a) is C* with respect
to a. Since

d -
(@) = g c0s ¥ = (PLL(@)] iy, con ) P (L@ cO5 y

+'(a) (g cos y + Y (w(a),a))),
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we have ¢(a) is C?, where

(Y cos ) ={ue Lfym s uy g cos yy. =0}

2
sym

Jo(a) = {L(a)py(a), $:(a)> 2,

and P, is the orthogonal projection form L;  onto (¥, cos y)L. Since

we can show

@ =@ =200~ 1) (p(@) 2P0 G (@) ta))
~plp- 1>< <<p 20 (%10
+ w(a))”% <a>> #(a), §o(a) >L27
and (2.16). Moreover, calculating 5722||¢(a)||§2|a:0, we obtain (2.17). O

Next, we consider the stability for the bifurcation branch ¢(a). To prove
Theorem 1.3, we apply Proposition 1 and the method in Grillakis-Shatah-Strauss
[12, 13].

The proof of Theorem 1.3. By (2.16) in Proposition 1, we have

Ja(a) = =2 (00" (0)a* + o(d?).

First, we calculate the sign of 4;(a). Let ¢y, =y, cos y and the linearize operator
of (1.3) around ¢(a) from H'(Rx T) to H '(R x T) be L(a). Here,

L(a) = —A+ o(a) - plp(a)"™".
By (2.15) in Proposition 1, we have

(@) IWlIE0"(0) = p*(p = 1) 00 ) W) (Ll )2,) ™ ((90,)" 2 () )1

=D =2) 4 12, (9, )0

_l’_
Since for u e L*(R)

L. (u cos(ny)) = (=03 +n* + . = p(p,,)"™")(u cos(ny)),
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we obtain

<(¢w*)p_2(¢*)27 (L*l(\/xx);z ) B (((pw*)p_z(l/j*)z)>L2
= <0 )20 A (0,2 W)

2 <00 2 (0) AT (90,)" 2 (W) D12,

CO| =—

where for neZ
A, = —0)2( +n+w, — p((pw*)[}_l.

By the definition of ,, we have

) 2(p—1)° o B
Q1) Hol 0" =L )7 A (007 e
20— 1)2
+%<(¢w*)2p71;A£1(¢w*)2p71>L2
—1 -2 N
+p(1)2g)(lI))J.R T(%’*)% 1dxdy.
Since
afgow* = w*%;* - (gaw*)pa
and
(0s00.)? = (P = —— (9 )"
xPaw, *\Pw, p+1 0, )

we have that for a € R,

AO(W{U*)H = —a(a - 1)(¢(u*)a_2(ax¢w*)2 - a(gow*)a_l(a)zcgom*)

at+p—1
+ 0.(0,)" = P9, )"

2a(a —1) -
— *1_ 2 a e S _ a+p )
0.1 =)0, + (T = )0
Therefore,
_ +1
2.19 A o, )P ==L () — (p+ D, ).
(2.19) 0 (90,) 29(p = 1)((90 )= (p+w.wg,)

By Lemma 2.2 and (2.19) we obtain that

Bp-D(p+1)

1 -1 2p—1 _
(220) (@) Ag (90,,)" D=~ 4p*(p—1)

J (00) ¥ dxdy.
RxT
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On the other hand, since ||A;'|,. ;. =1 and w. =4/(p+3)(p—1),

4(p+1)(3p-1)
(Tp=3)(p+3)(p—1)

(0)? ™ AT (00) " e < J (0,7 ddy.
3 RxT

Therefore,

2 (@.)[.]|7:0"(0)
< (p— 1)(3p* — 164p> — 284p? + 216p — 27)
- 48(7p — 3)(p + 3)

J (0,,,) """ dxdy.
RxT
Since

M) ,]720"(0) <0

for 2 < p < 5, the negative eigenvalue of the linearized operator L(a) is only one
and simple for ¢ in a neighborhood of 0 for 2 < p < 5. By Proposition 1 we

1 .
have ||0p(a) — 0x9,, ||;» — 0 and ‘; Oyp(a) + g sin y

— 0 as a — 0. Since
LZ

.1 -
12 lelg(l) EH@W(Q)HU = [[yo sin yll 2,

lim [[0xp(a)| 1> = [10x0,,
a—0

and
.1
lim —<0xp(a), ,p(a)> = 0,

we obtain that for small |a| > 0,

1 1
_[<0xp(a), 0yp(a)3] # —[|0:xp(@)| |0y p(a)ll 2,

and 0.p(a) and 0,p(a) are linearly independent.

Since dy¢(a) and 0,¢(a) are linear independent for sufficiently small |a| > 0,
the kernel of L(a) is two dimension and is spanned by 0«p(a) and 0,¢(a)
for sufficiently small |a| > 0. Therefore, the result in Grillakis-Shatah-Strauss

o o d 7 . N ,
(12, 13] 21mphes that if % > 0 then e™@p(a) is orbitally stable, and if
% < 0 then e™®@p(a) is unstable. We define

202/ (@.) .17
F @I | 510 07(0).
8(4} H(ﬂw ||L2 |w:w*

By (2.17), we have that if R(p) <0 then e @ip(a) is orbitally stable, and if
R(p) > 0 then ¢ @p(a) is unstable. Next we calculate R(p). By Lemma 2.2
and the identity ¢, (x) = 0" ? Vg, (y/ox) we have

R(p) =
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(2.21) OollollZ2 0. = 0o <w2/("_”_1/2 JR T(¢1)2 dxdy)

_ (5 _p)(p+ 3) p+1
_4(p—|— D(p— l)a’foT(%*) * dxdy.

W=y

Since
1
.7 = EJR T((/)wk)”l dxdy,

by Proposition 1 and (2.21) we have

(222) 20 (@)l _ 4+ Dp - 1)

lU”QwHiZ‘w:w* (571))(1)4»3) .
By Lemma 2.2, (2.18) and (2.19), we obtain that

2p(p+ 1) (p2+6p—1
F(@W o) =~ LLELPEP D [ e gy
Gp=1)CBp+1)(p+3)"(p—1)Jrxt
2(p—1)? o .
+p (pg ) <(¢w*)2p 17A21((pw*)21 1>L3'
Therefore,

dp(p+1)* (P +6p—1)
Gp—=1Cp+1)(p+3)°(p—1)
pZ(p - 1)2<(¢w*)2p_17A271((ow*)2p—1>L2
4JR><T((pw*)p+1 dxdy .

(2.23) 2 (w.)0"(0) = —

+

Combing (2.22) and (2.23), we have
4(p+ 1)(p° +18p> — 11p* — 130p> + 13p2 + 16p — 3)
5-p)p+3)’Gp— G+ )(p—1)
PA(p = 1) (0,)" " A (0,)" D1
4foT(§”w*)p+l dxdy .

R(p) =

+

Since A, is positive,
4(p+1)(p®+18p> — 11p* —130p3 + 13p% + 16p — 3)
5=p)p+3)°(p-DBp+D(p-1)
For 1 < p <5, the sign of the right hand side of (2.24) is same as the sign of
Pol(p) := p® +18p° — 11p* — 130p° + 13p* + 16p — 3.

(2.24)  R(p) =
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Then, for p € [3,0), Pol(p) > 48p>. Therefore, there exists 2 < py < 3 such that
R(p) >0 for p» < p<5. By (2.20) we have

<(¢w*)2p_l ) Agl ((pw*)zp_l >L2

128p(p+ 1)*(3p — 1)
T3 -3 - DG+ D(p+3)’(p—1)°

j (p)"*! ddy.
RxT

Hence,
4(p+1)(p® 4 18p° — 11p* — 130p> + 13p2 + 16p — 3)
5=p)p+3)°(5p-DBp+D(p-1)
N 32p3(p+1)*Gp— 1)
37p=3)(5p = DB+ D(p+3)°(p—1)

and the right hand side of (2.25) is negative at p = 2. By the continuity of the
right hand side of (2.25) at p = 2, there exists 2 < p; < p, such that R(p) < 0 for
2< p<pr. (|

(225  R(p) <

3. The stability for the line standing wave at w = w,

In this Section, we show the stability for the line standing wave at o = w,.
To prove the stability for the line standing wave at w = w,, we use the result of
the stability for the branch e¢™®@p(a) and apply the argument in [18].

To modulate the translation for the direction y € T we introduce a polar
coordinate (a1,a;) = (a cos @, —a sin a) for a;,a; € R and we define for a;,a; € R,

plar, @) (x, y) := p(a)(x, y + a) = ¢, (x) + a1y (x) cos y
+ axyo(x) sin y + y(a)(x, y + a),
o(ay,ar) == w(a).
Then, ¢(aj,ay) is a solution of
—Ap + o(ar,a2)p — g ' =0,
and ¢(0,0) = ¢, . Let
R(p) = 2/ (w.)[g cos ¥l|7: + 0" (0)2]| 0,

In the following lemma, we construct a curve to capture the degeneracy of the
linearized operator of the stationary equation (1.3).

2
12

w=w,"

LemMA 3.1.  There exist a neighborhood U of (0,0) in R* and a C" function
p: U — R such that p(0,0) =0 and for (a1,a;) e U

O(p(ar,az) + plar, a2)0u9,, ) = O(p,,).
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Moreover, if R(p) #0, then

Ip(ar, )| ~ [0(p,,,) — Qplar, @))| ~ a* ~ |w, — (a1, ),

and
(3.1) plar, @)<p,,  0upy, i = Op,,) — Qlp(ar, a2)) + o(a’).
Proof.  Since

aPQ((p(alv‘Q) + paw(pwk)|p:0,(a1,a2):(0,0) = <¢w*7 awgpwk o2 # 0,

by the implicit function theorem we have that there exist U of (0,0) and a C'!
function p: U — R such that p(0,0) = (0,0) and for (aj,a;) e U

O(p(ar, a2) + plar,a2)009,,) = O(9,,)-

By Proposition 1 we have

20(p(a, ) =20(0,.) + L a? 1 o(a?).

Therefore,
10(9.,,) = Qlp(ar,@))| ~ a* ~ |w. — (a1, a)|.
Then <¢, , 00,0, >r2 >0 and
0(p,,) = Qp(ar,a2) + plar, a2)0p,, )
= Q(p(a1, @) + plar, a){p(a1,a), dupy, 12 + (plar, @)’ Q(0ug., ).
By the continuity of p(a;,a2) and ¢(a;,a;) we have
plar,a2)| ~ 10(9,,) — Qp(ar, a2))|. O
We define curves ®(a;,a;) and n(a;,a;) as the following equations.

O(ar,az) := p(ar, @) + plar, a2)0up,, , (a1,a2) € U,
'7(”17612) = Sw(al,az)(w(alﬁaz)) - Sw* (gow*) + (CO* - w(alaaz))Q(ww*) ((11,612) eU.
The following lemma shows that the positivity of the curve 5(a;,as) —

%(p(al,az))zqow*,&wgow* >r2 coincides the positivity of R(p).

LemMa 3.2. For (a),a2) € U,

w"(0)R(p)

(3.2) n(ar,az) = T
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Moreover, for (aj,ay) € U,

(plar,a2)) <@, O 12

/ 2 R
_ = (@)l C(2)S y||L2R(p) ((a1)2 + (a2)2)2 + 0((611)4 + (02)4)~
8aw||¢w”L2|w:w*

| =

n(a, az) —

—

Proof. For (ay,a;) € U, we define

n(a) =n(ar, az),

where (a1,a;) = (acosa,—asind) and a > 0. Then #(a) is well-defined by the
definition of #(a;,a;). To prove (3.2) with respect to #(a;,az), we show (3.2)
with respect to #(a). Since »”(0) >0 and
"
0
w(a) = o, —|—wT()a2 + o(a?),

w(a) is increasing on a small interval (0,0). Thus, there exists the inverse
function a™ () of w(a) from (w.,w(d)) to (0,5). Moreover, a* is differentiable
with respect to w > w,. For w, wy with wy # w.

Su(p(a” (®))) = S (p(a (0)))

w — W
_ S5, (pla” (@) (pla” (@) — gla™ (@), pla” (@) — p(a”(@0))) 12
w — o
o((p(a* (@) — p(a*(@)))?)
+ p— + 0lpla* (@)))

— Qp(a” (@) as @ — .

Here we used that ¢(a™) is differentiable with respect to . On the other hand,
since dqp(a)|,_q = Yo cos y, for w > w,

Su(pa’ (@) = Su.(¢n,) _ Swa)(9(@")) = Su.(9,,)

W — . Lw"(0)(at)* +o((a*)?)

_ <86, (00)(0(@?) — 9,,), 0(a") — 00, 012
Lw"(0)(at)’ +o((a")?)
(

+ 0(9,,)
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Therefore, S, (p(a*(w))) is a C' function with respect to @ on (w.,»(d)) and
+
Bolpla 10) _ gp(a* (o))
Moreover, Q(p(at(w))) is also C' with respect to @ on (w,,w(d)) and

. O(p(a* (@) — Op,,)  R(p)
(3:3) ilir(f;l ®— w, - 20"(0) 70

Since S, (p(a*(w))) is C? with respect to @ on (w.,w(d)) and

@) = Sulola* (©)) — Su.(p,.) ~ (0 —w) DAL
by (3.3) we have |
ﬂ(a+(w)) = 45)&’2())) (CO — a)*)z + 0(((0 — a)*)z) — W (a+)4 + 0((a+)4).
Similarly, we can show (3.2) for a < 0. By the relation a2 = (a;)* + (a2)* we
have (3.2).

On the other hand, by Lemma 3.1, we have

2
(Q((pw*) - Q(q)(ahaZ))) + 0((611)4 + (612)4)

2
plar, @) <@y, s 00Po, 1> =
( ( )) L <(pwuaw(p(m oL

~ 2
—_RODT (47 4 (@) +ol(an) + (@),
85w||%||L2 |w:w*

Combing (3.2) and the above equality, we obtain the conclusion. O
In the following lemma, we investigate the “graph” of S, (®(ai,a2)).
Lemma 3.3, For (aj,ay) € U,

(3.4) So. (®(ar, @) — So. (9.,

= (e, @) — 3 (plar,@)) <Py G iz + ol (plar,2))?)

Proof. For (aj,a;) € U,
So. (@(a1,a2)) = Su(a.a) (Plar, @) + (0. — (a1, a2)) 0(9,,)
= So(a,a)(p(ar1, @) + (0. — w(a1,a2))0(9,,,)

1
+3 (plar, @) S0 010 (9(@1,2)) 000, By, D12

+o((plar,a2))?).
Since S, (¢, )00y, = =@, We obtain (3.4). O
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We define the distance and tubular neighborhoods of ¢, as follows. Set
disty, () = inf [lu(-,) — ey, (- =% =)l
(x,y)elixT
N,={ue H'(R x T) : dist,, (u) < ¢},
Ny ={ueN,: Q@) = 0v,,)}.
In the following lemma, to eliminate the symmetry, we decompose functions in

the tubular neighborhood N,.

Lemma 3.4. Let ¢ > 0 sufficiently small.  Then, there exist C? functions 0 :
N,—R,a:N,—R, b:N, =R, d=(aj,a2) : N, — U and w: N, — H' (R x T)
such that for ue N,

(- — b)) = D@(W)) - )+ wla)(-, ) + 2{u)pl@w)) (-, ).
where — {w(u), p(d(u)) 2 = (w(u), ip(d(u)y 2 = <w(u), dxp(d(u)y > = wlu) +
() p(@(u)), o €08 y) 2 = w(u) + () p(@(u)), o sin yy 2 = 0.
Proof.  Let W, (x,y) = Yo(x) cos y and ,,(x, y) = ¥o(x) sin y. We define

eu(-—b,-) — D(ay,a),ip(ar,ar) 2
<ei0u(' - b, ) - (D(ala a2)7 ax(p(al’a2)>L2

<€i9u(' - ba ) - (D(alv a2)7 lp*1>L2

<ei6’u(_ - ba ) - (I)(al7a2)7 lp*2>L2
Then, G(¢,, ,0,0,0,0)=0. Since

G(u7 07 b7 a, a2) =

[T 0 0 0

64G _ O _”ax(pwx'liz 0 0

0(6,b, a1, a2) |0=boar=a=0, 0 0 W ll7- 0
0 0 0 ~¥.al172

by the implicit function theorem for sufficiently small &> 0 there exist C?
functions 6,b: N, — R and d = (a;,a,) : N, — U such that for ue N,

G(u,0(u),b(u),d(u)) =0.
We define
(- — b(u), ) — ®(@u)), p(du)) >,

0 = ()| %

)

and
w(u)(x, y) = e “u(x — b(u), y) — ©(@(u)) — a(u)p(du)).

Then w satisfies the orthogonal conditions. O
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Next we estimate o(u) on N?.

LemMma 3.5. Let ¢ > 0 sufficiently small. There exists C > 0 such that for
ue N,

(3:5) ()] < Cllw(u)| 2 (p(a()) + [[w(w)]]2)-
Proof. For ue N?,
0(¢,,) = Q(®(a(u)) + w(u) + a(u)p(@(w)))

0(9,,,) + 2()llgp(@w))l|z: + p(@(u)) <o, w(u)) 2
+ pla(u)) ()0, (@(u)) > 12 + QOw(u)) + (2())* Qp(d(u))).

Thus,

(1) = ~p(@0) | 2 [P(@){<Purp ()12 + H(u)<Purp  9(@(10)) 12}
+ Q(w(w)) + (2(u)* Qp(@(u)))],
and we obtain (3.5). ]
In the following lemma, we investigate linearized operators of (1.3).
LEMMA 3.6.  There exist ko > 0 and gy > 0 such that for ay,as,0 € (=&, &), if
we H'(R x T) satisfies <w,p(ay,ay)y2 = <w,ip(ar,ar)dp> = {w, 0cp(ay, a)y > =
w+ap(ar, az), Yo cos yyp2 = <w+apay, az), Yo sin yy2 =0, then

(S (@(ar, an))w, Wy g = ko]l i-

Proof. For ue H'(R x T), we have

-1
S (g yu [ AT PN 0 (Reu>
o 0 A+, —|p, P )\ Imu

2 —1
:Z —6X+n2+w*—p|¢w*|p 0 (%f)
neZ 0 _6)2: + n2 + CO* - |¢w*|[)—l unI

where
Re u(x,y) = Zu e (x,y)eRxT,
neZ
Im u(x, y) = Zu e™, (x,y)eRxT.

neZ
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By the definition of w,, the negative eigenvalue of the operator —&3 + w, —
a2 |" s only one and simple negative eigenvalue —1. Since —6§+w*—
29 P! is non-negative, if |n| > 1 then

—0t+n?+ . — ple, " 0
0 3+ o, —|p, 7!

is positive. Then the kernel of _5,3 + . — plo, |’ s spanned by J.¢,, and
the elgenspace of (’J + w, — p|(pw*|p_] corresponding to —1 is spanned by .
Since 0, ||%>||L2|w o S 0, by Theorem 3.3 in [12] there exists ¢ > 0 such that for
ueHl( ) if <u @, Y2 = <u, 09, >r> =0, then

2 -1 2
=05 + @s = ploy, "), uy g1 g = cllullg

Moreover, the kernel of —d2 + a)* [P |7~ is spanned by ¢, Therefore, there
exists ¢ > 0 such that for ue H'(R x T) if u, ¢, »r> = {u,ip, >r> = {u,0xp,, >
= {u, Yo cos yyr» = u, Y sin yy;. =0, then

(8o (@0, U, ud g1 g1 = C||”Hi/l

By a continuity argument we obtain the conclusion. O

3.1. The proof of (i) of Theorem 1.4

In this subsection, we prove the stability case. By the assumption of (i) of
Theorem 1.4, we have #5(a;,a,) —%(p(al,ag))zqo(u*,6wg0w*>Lz ~ (a1)4 + (a2)4.

Let ue N2. By the similar calculation in the proof of Theorem 2 in [18],
we have

Sor. () = Sw, (90,,) = Sw, (©(@(w)) + w(u) + a(u)p(@(w))) = So.(90,)

+5 S0, (@@w))w(u), wu) g1, a0+ ol[lw(w)l171)

2 @) ~ 3 (p@w)* P 2otp 1
+ (S, (@), W) -1

) 1+ oln@) + o(w(@ln) s dist, () — 0.

In the above inequality, we use (p(d(u)))> = O(a)(u)* + ax(u)*) = O(y(@(u))) and
apply Lemma 3.3, Lemma 3.5 and Lemma 3.6. Since S/ (¢, )0u0, = =0,

(
(p(@u). W) =0 and (@) w(l; = On(@w)) + O{lw(wl3)  as

dist,,, (u) — 0, we have
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(S5, (@(@(w))), w(w) -1 g
= St (PEW))) + (@, — (@w)))®(@w)), wu)) -1, m
= {(Saay (2(@W))) = Sg, (00, ))p(@(1))00py, , W)y 1 1
= pa(u))<p,, — p(du)), wu)>r:
+ (o — o(@()))p(@() 00y W) -1 g1 + 0(n(@(u))) + o(||w(a) | 77:)
= o(n(@u))) + o(|[w(w)llzn)-

Hence, by Lemma 3.2 we obtain the following inequality. There exist &,,¢ > 0
such that for & >¢>0 and ue N

(3.6) S, (1) = S0, (05,) = e((ar ()" + (a2())* + [w(w)70)-

Now we suppose there exist ¢ > 0, a sequence {u,}, of solutions and a
sequence {t,}, such that #, >0 and u,(0) — ¢, in H' and

i i0
(}glg, Hun(t”’ ) —¢ (pw*(' - (X, y))HHI > &.

(x,») eRxT

Let

Since  Q(vn) = O(¢s,)s v — un(tn)|lp — 0 and S, (v5) = Se. (9,,) — 0 as
n— . Thus, by (3.6) ai(v,),az(v,),x(v,) =0 and w(v,) -0 in H' as
n — oo. This implies

inf (i) = €%y, (- = (5, 7))l — 0 as n— .
(x,y)e]ixT

This is a contradiction. Now we complete the proof of (i) of Theorem 1.4.

3.2. The proof of (ii) of Theorem 1.4
In this subsection, we prove the 1nstab111ty case. By the assumption of (ii) of

Theorem 1.4, we have n(a;,ay) —%(/J(m,az)) Py 1 0Py D2 ~ —((a)* + (@)h).
To prove the instability result, we define the following functions. For
ueN,

A(u) = <e™u, —i0up,, Y12,
P(u) = <S/ w(a (u), ( ), iA" (u )>H*1,H1-
Then
A'(u) = —ie 3,0, + iie"u, —id,p, >0 (u).
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Since for ue H'(R x T)

z@u
A W), Q') = A"y, = ] g
0=0
we have for any solution u(f) of (1.1)
6 AU g w), )
= id' (u(1), E'(u(1)) + (a1 (1), 0)Q" (1)) > -1

= P(u(1)).

In the following two lemmas, we calculate the function P.

LemMa 3.7. Let ¢ > 0 sufficiently small. For a; with |a1| <&,
P(®(a1,0)) = —p(a1,0){p,,: 0oy, 12 + 0(p(ar, 0)).
Proof.  Since a;(®(ay,a2)) =a; for i=1,2,
Stoiar.0)(@(a1,0)) = Sy, ) (@(a1,0))p(ar,0)000,, +o(p(ar,0)) as a — 0.
Hence,
P(®(ay,0))
= (Spa,0)(2(a1,0))p(a1,0) 000,  0upu, D12

— {Saa.0)(9(a1,0))p(a1,0)00,, ,0'(®(a1,0)))2i®(ar,0), —i0up,, )12
+o(p(ar,0)).

Since

oG [0 e p(ay(u),0)
(3.8) — | , ]= .
0(0,a1) \ a] e Wy cos y
and 0(®(a;,0)) =0, 0'(®(a;,0)) is a linear combination of ip(a;,0) and v, cos y.
Thus,
P(®(ar,0)) = p(ar,0)<Sy 0 (#(a1,0))000,, . 0uty, Y12 + 0(p(ar,0))
= _p(ala )<(pw*7 w(ﬂw* >L2 + O(p(al ) O)) O

LEMMA 3.8. Let ¢>0 sufficiently small and ue N°NH!
So. () = Se.(9,,) <0. Then

P(u) = —p(ai(u),0){P0,, Oopu, D12
+o(p(ai(u),0)) + o(||w(u)|| 1) as disty, (1) — 0.

(RxT) with

sym
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Proof. Since ue H! (R xT), ay(u) =0. By Lemma 3.5,

a(u) = O(p(ar (), 0)[[w(w)|| ;1 + Iw ()| 771)
= o(p(a1(u),0)) + O(|w(w)||71) as dist,, (u) — 0.
Thus,
P(u) = P(®(ay (1), 0) + w(u) + o(u)p(ar (1), 0))

= P(®(a1(1),0) + w(u)) + o(plai (1), 0)) + O(||w() | 71)
= —p(ai(u),0)<p,.; 00y, 1>

+ LS ),0) (@1 (), 0)) (id" (D(a1 (1), 0))), w(t) 1 g1

+ (A" (@ (ar (1), 0))) " Sty ,0) (@1 (), 0)), w(w) > g1 g

+o(p(a(u),0)) + O(|[w(u)| 7).

where (iA”(®(a;(u),0)))" is the dual operator of iAd”(®(a;(u),0)). Then we
have

(39 Soww,0) (@@ (u),0))
= Septar(w,0) (9@ (1), 0)) + plai (u),0)S7 4w, 0) (@(a1 (1), 0)) 0,
id" (@ (ai(u),0)) = 0up,, +<{P(a1(u),0), 000, »20'(®(a1(u),0)).
By (3.8) and (3.9) we have
(S a0y (D 1), 0)w(w), A" (@1 (1), 0)) -1 g = o [[w(a0)| ).
Therefore, we have the conclusion. O

Let {ai .}, be a sequence with a; , — 0 and {u,}, be a sequence of solutions
with u,(0) = ®(aj ,,0). Then, u,()e H! (R xT). Since for a; e R

0. (®(a1,0)) — S (9,) = 1(a1,0) 3 (p(a1, 0Py 6000 12 + 0((pla 0))°),
for sufficiently large n > 1 we have S, (®(a1.4,0)) < S, (9, ) and
o (1)) — S, (9,)
= 1(aln, 1) = 3 (P, )0 o >0+ < (DLalm, ), wlan(0) -1
43¢0 (@(am, ) (1), w(an ()11

+o(n(a(n, 1))) + o(|lw(ua(0)l 7)),
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where a(n,t) = (a)(u,(1)),0). Then

(S, (D(a(n, 1)), w(un(1) 11,1 = o((a(n, 1)) + o(w(un(1))lI7p1)-

Since —n(a(n, 1)) ~ (p(a(n,7)))?, by Lemma 3.6 and Lemma 3.8 we obtain that
there exists ¢ > 0 for sufficiently large n > 1

0< Sw*((ﬂw) — Sw* (q)(al,nao))
= So, (%,‘) - So, (”n(t))

(p(a(n,1)))*<P0. QP D12 — % (26 () 71

+o(n(a(n,1))) + o(||w(ua () 71)
< —cp(a(n, 1)) P(un(1)).
We assume e, is stable. Since u,(0) — ¢, as n — o, for ¢ > 0 there exists
n(e) >0 such that for all >0, w,,(1)eN,. By (3.1), for small ¢>0,

pla(n(e),t)) is positive and bounded for 7> 0. Therefore, there exists 0 <0
such that

< —n(a(n,1)) +

— =

dA (un(s) (Z))
dt

This contradicts the boundedness of A on N,. Hence, e, is unstable.
Then, we complete the proof of Theorem 1.4.

= P(un(e>(t)) <d, t=0.

4. The stability for a bifurcation point of a nonlinear Schrodinger
equation with a symmetric potential

In this Section, we apply the stability argument in section 3 to the stability
for the bifurcation point of the symmetry-breaking bifurcation. We consider the
following one dimensional focusing nonlinear Schrédinger equation with a
symmetric potential treated in [16]

(4.1) o = —02u+ V(x)u— |ul’'u, (1,x)eR xR,

where p > 1 and V(x): R — R is an external real-valued, symmetric potential
satisfying:

(HI) ¥(x) e L*(R),

(H2) llmMHOC V(x) = 0,

(H3) V(=x) = V(x) for all xeR,

(H4) —02 4+ V(x) has the lowest eigenvalue —wy < 0.
The equation (4.1) has the following conservation lows:

p+l1
L+l

) 1 , 1 . 1
EG) = 5 0l + 5 1V Ol —

- 1
Q) = 5 [lullz:.
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We define a standing wave u(t,x) as a non-trivial solution of (4.1) with u(t, x) =
e gp(x) for some w e R and ¢ € H'(R), where ¢ satisfies the following equation

(4.2) —Pp+wp+V(x)p—p 'p=0, xeR.
The stationary equation (4.2) is written by
S, (u) =0,
where S,,(u) = E(u) + ©Q(u). Next, we define the stability for standing waves.

DEFINITION 4.1.  We say that the standing wave e®'¢p is orbitally stable in
H' if for any &> 0 there exists 6 >0 such that for all upe H'(R) with
luo — @||y1 <0, the solution u(zr) of (4.1) with the initial data u(0) = uy exists
globally in time and satisfies

sup inf |[u(t) — e“p||,;; < e.
~0 0eR

Otherwise, we say the standing wave e’ is orbitally unstable in H'.

We define the linearized operator for (4.2)
Li(u,0) = -0+ V(x)+ o — plu”".

In [16], Kirr, Kervrekidis and Pelinovsky proved the following result for the
bifurcation from the zero solution.

THEOREM 4.2.  There exist ¢ > 0 and Y, : (wg,wo + &) — H?(R) such that ,,
is C' function with respect to w and a non-trivial symmetric positive solution of
(4.2).  Moreover, the branch of solution (,,,®) of (4.2) can be uniquely continued
to a maximal interval (wy, w1) such that the linearized operator L, (,,®) has no
zero eigenvalue on w € (wy, 1) and either:

(i) = ow0;

(il) w1 < oo and there exists \,, € H*(R) such that (\f,, ,w1) is a solution of

(4.2), Y, > ¥, as o T wy in H* and the linearized operator L. (), ,w;)
of (4.2) has simple zero eigenvalue.

We consider the second bifurcation from the bifurcation point (i, ,;) and
the stability for these branches. The following stability result for the branch of
the second bifurcation is proved in [16].

THEOREM 4.3. Let p > 2, and consider the symmetric branch of solutions
(Y, ). Let (wg,w1) be the maximal interval define in Theorem 4.2 and ¢, be a
eigenfunction of L, (\,, 1) corresponding to the eigenvalue 0 with ||¢||,>» = 1.
Assume wy < oo, and

diy

Falen) = lim 5 0 #0,
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where Ay is the second eigenvalue of L. (Y, w). Then, the set of real valued
solutions (p,w) € H> x R of (4.2) in a small neighborhood of (\,, ,w1) € H* x R
consists of exactly two C? curves intersecting only at (V> 01):

(i) the first curve can be parameterized by w — V,, € (wy,w +¢) for
some small ¢ > 0, it is C? continuation past the bifurcation point @ = w;
of the symmetric branch, it has , even for all w and unstable for
w > .

(ii) the second curve is of the form (¢(a),d(a)), a € R small, where the para-
meter can be chosen to be projection of ¢(a) —,, onto Ker(L(y,, 1))
= Span{¢,} ie. e >0 such that for |a| < &

w(a) = w +%a2 +o0(a®), ¢(a)= Vo, +ady + iz(a),

where h(a) = O(a?) € {¢,}*, and along this curve ¢ is neither even nor odd with
respect to x, and is stable if

Q] >0 and Q2 >0
and unstable if

01 <0, or Q>0 and 0, <0,

where
0.0
l¢@)l22 = [, 172 + 5 a + o(a?),
and
Ay(en) ||, 17>
=222 My, M, =-—"elt )
(0} o 1 1 do |0,

Remark 5. For p <2, L (u,w) is not C'. However, if p =2, then by the
Lyapunov-Schmidt decomposition and the argument of Crandall-Rabinowitz
Transversality in [3, 7] we can show the infinite problem (4.2) is same as in
the finite problem g(w,a) =0 for a #0 and g is C'!. Therefore, we can show
the C? regularity of ¢(a) for p >2 and obtain the condition for the stability
(see Theorem 4 in [16]).

Next, we consider the stability of the bifurcation point (i, ,®;). The
following result denotes that the stability for the bifurcation point coincides the
stability for the branch which bifurcates from symmetric standing waves.

THEOREM 4.4. Let p>2. Assume w; < o0, and

(1) = lim d’2

0.
oloy, dw >
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Then, if Q1, Q», My are not zero, then the stability for (y,, ,w1) coincides the
stability for the branch (¢(a),d(a)). Namely, we assume M # 0, then we have
that

(i) if Q1 >0 and Q) >0, then ey, is stable,

(i) if Q1 <0 or Q1 >0 and Qy <0, then e, is unstable.

We can prove Theorem 4.4 by using the same argument in the proof of
Theorem 1.4. Therefore, we show only the outline of the proof of Theorem 4.4.

The outline of the proof of Theorem 4.4. Now, we consider the case M| < 0
which implies Q; <0 or O, < 0. Since ¢, is an eigenfunction of L, (¥, ,w)
corresponding to second eigenvalue 0, we have ¢; is odd. Therefore, if we
regard L. (¥, ,wi) as an operator from H,,(R) to L, (R), Li(¥, 1)y
dose not have zero eigenvalue, where

L2, (R) = {ue LX(R) s u(x) = u(—x) xR}, HZ,(R) = HX(R)N L2, (R).
By applying the instability argument in Grillakis-Shatah-Strauss [12] for e’y
in H},,(R), we can show e™"), is unstable.

Next, we consider the case M; > 0. Then we have the following lemma
which corresponds to Lemma 3.1.

LemMA 4.5. Assume M; > 0. There exist an open interval I and
pla): I — R such that 0 eI and

0(p(a) + p(a)oub,,) = Oy, ).

Moreover,
H@)] ~ 10(0) — @) ~ @ ~ o1 — ()],
and
%ﬁ(a) = 0(¥,,,) — Q(¢(a)) + o(a®)
We define

¥(a) = ¢(a) + p(a)dui,,
7(a) = So@) (¥(@)) + S, (41) + (@1 — @(a)) Q(¢h)-

Here, we obtain the following expansion corresponding to Lemma 3.2.

LeEMMA 4.6. Assume M; > 0. For ael,

2
ﬁ(a) _ (Q11)6 QZ a4 +0(a4)'
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Moreover, for ac€l,
(a) 1(A(a))2M _~h a* + o(a®)
=g LT TR, '

We define

diStwl (u) = égg Hu - eml//wl ”1—[17

N, = {ue H'(R) : dist,, (1) < &},
NSO = {u eN,: Q(”) = Q(‘pwl)}

Using the implicit function theorem, we obtain the following decomposition
lemma corresponding to Lemma 3.4.

- Lemma 4.7, Let &> 0 sufficiently small. Then, there exist C? JSunctions
0:N.—R, a:N,—R, a: N, — R and w: N, — H'(R) such that for ue N,,

e =¥ (a(u)) + () + a(u)g(a(w)),
where: (v(u), §(a()) )12 = Giu), ig(a(w))) 2 = Gi(w) + a()p(aw), ¢ = 0.

Moreover, since ¢, is odd, we have the following lemma corresponding to
Lemma 3.6.

LemMa 4.8. Assume My > 0. There exist k1 >0 and ¢ >0 such that
for a,oe(—e,e), if weH'R) satisfies  <{w,d(a)d2 = w,ig(a)d . =
<w+agd(a),d 2 =0, then

(82 (P (@)W, w1 g =k ||wl.

By Lemmas 4.5-4.8 and the similar calculation to the calculation in the
proof of subsection 3.1, we have for ue N?

(@3)  S() = S ) = @) — 5 (@) + 2 il

+o(IW(w)llz) + o(i(a)).

Here, we consider the following three cases.
First, we consider the case Q; < 0. Then, since Q> <0 implies M; < 0,
M
we have 0, > 0. By Lemma 4.6 and (4.3), we have 7j(a) —Tl(ﬁ(a))2 ~ —a*.
Therefore, by the same argument as in subsection 3.2 we can show e/’ Ve, 18
unstable.
Second, we consider the case Q) > 0 and Q> < 0. By Lemma 4.6 and (4.3),

M .
we have also #j(a) — Tl(ﬁ(a))2 ~ —a*. Thus, we can show ey, is unstable.
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Third, we consider the case Q; > 0 and Q> > 0. By Lemma 4.6 and (4.3),
. . M, .
we obtain that #(a) — Tl(p(a))2 ~ a*. Therefore, by the same argument as in

subsection 3.1 we can show e™"yj,, is stable.
Then, we have the conclusion. O
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