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ON BALLICO-HEFEZ CURVES AND ASSOCIATED
SUPERSINGULAR SURFACES

TaanH Hoal HOANG AND ICHIRO SHIMADA

Abstract

Let p be a prime integer, and ¢ a power of p. The Ballico-Hefez curve is a non-
reflexive nodal rational plane curve of degree ¢ + 1 in characteristic p. We investigate
its automorphism group and defining equation. We also prove that the surface
obtained as the cyclic cover of the projective plane branched along the Ballico-Hefez
curve is unirational, and hence is supersingular. As an application, we obtain a new
projective model of the supersingular K3 surface with Artin invariant 1 in characteristic
3 and 5.

1. Introduction

We work over an algebraically closed field & of positive characteristic p > 0.
Let ¢ = p¥ be a power of p.

In positive characteristics, algebraic varieties often possess interesting prop-
erties that are not observed in characteristic zero. One of those properties is the
failure of reflexivity. In [4], Ballico and Hefez classified irreducible plane curves
X of degree ¢+ 1 such that the natural morphism from the conormal variety
C(X) of X to the dual curve XV has inseparable degree g. The Ballico-
Hefez curve in the title of this note is one of the curves that appear in their
classification. It is defined in Fukasawa, Homma and Kim [8] as follows.

DeriNITION 1.1.  The Ballico-Hefez curve is the image of the morphism
¢ : P! — P? defined by
[s:8] = [s9F0 0?4 594

THEOREM 1.2 (Ballico and Hefez [4], Fukasawa, Homma and Kim [8]).
(1) Let B be the Ballico-Hefez curve. Then B is a curve of degree q+ 1 with
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(¢* — q)/2 ordinary nodes, the dual curve B is of degree 2, and the natural
morphism C(B) — BY has inseparable degree q.

(2) Let X = P? be an irreducible singular curve of degree q+ 1 such that
the dual curve XV is of degree > 1 and the natural morphism C(X) — X has
inseparable degree q. Then X is projectively isomorphic to the Ballico-Hefez
curve.

Recently, geometry and arithmetic of the Ballico-Hefez curve have been
investigated by Fukasawa, Homma and Kim [8] and Fukasawa [7] from various
points of view, including coding theory and Galois points. As is pointed out in
[8], the Ballico-Hefez curve has many properties in common with the Hermitian
curve; that is, the Fermat curve of degree ¢+ 1, which also appears in the
classification of Ballico and Hefez [4]. In fact, we can easily see that the image
of the line

Xo+x1+x2=0
in P2 by the morphism P> — P? given by
q+1 q+1 q+1

Yo :x1:x) = [x§ cx{ ix)]

is projectively isomorphic to the Ballico-Hefez curve. Hence, up to linear trans-
formation of coordinates, the Ballico-Hefez curve is defined by an equation

D) V) | Vas) g

in the style of “Coxeter curves” (see Griffith [9]).
In this note, we prove the the following:

ProproSITION 1.3. Let B be the Ballico-Hefez curve. Then the group
Aut(B) = {g € PGLs (k) | g(B) = B}
of projective automorphisms of B = P? is isomorphic to PGL,(F,).
ProposITION 1.4. The Ballico-Hefez curve is defined by the following

equations:
* When p =2,

v—1
1 i i 1—pit!
xgxr 4 xox{ + x84 gt xgt =0, where g=2".
i=0
s When p is odd,

g+l

2(xdx1 + xox{) — x3 (x2 — dxyx0) D2 = 0.



ON BALLICO-HEFEZ CURVES AND ASSOCIATED SUPERSINGULAR SURFACES 25

Remark 1.5. In fact, the defining equation for p = 2 has been obtained by
Fukasawa in an apparently different form (see Remark 3 of [6]).

Another property of algebraic varieties peculiar to positive characteristics
is the failure of Liiroth’s theorem for surfaces; a non-rational surface can be
unirational in positive characteristics. A famous example of this phenomenon is
the Fermat surface of degree ¢ + 1. Shioda [18] and Shioda-Katsura [19] showed
that the Fermat surface F of degree ¢ + 1 is unirational (see also [16] for another
proof). This surface F is obtained as the cyclic cover of P? with degree g+ 1
branched along the Fermat curve of degree ¢ + 1, and hence, for any divisor d
of ¢ + 1, the cyclic cover of P? with degree d branched along the Fermat curve of
degree ¢ + 1 is also unirational.

We prove an analogue of this result for the Ballico-Hefez curve. Let d be a
divisor of ¢ + 1 larger than 1. Note that d is prime to p.

PROPOSITION 1.4. Let y: S; — P2 be the cyclic covering of P with degree d
branched along the Ballico-Hefez curve. Then there exists a dominant rational
map P? ... — S, of degree 2q with inseparable degree q.

Note that S, is not rational except for the case (d,q+ 1) = (3,3) or (2,4).

A smooth surface X is said to be supersingular (in the sense of Shioda) if
the second /-adic cohomology group H?(X) of X is generated by the classes
of curves. Shioda [18] proved that every smooth unirational surface is super-
singular. Hence we obtain the following:

CoRrROLLARY 1.7. Let p: Sy — Sy be the minimal resolution of Sg.  Then the
surface Sy is supersingular.

We present a finite set of curves on S; whose classes span H>(S,;). For a
point P of P!, let /» = P? denote the line tangent at ¢(P) € B to the branch of
B corresponding to P. It was shown in [8] that, if P is an Fp-rational point of

, then /p and B intersect only at ¢( ), and hence the strict transform of Ip by
the composite S; — Sy — P? is a union of d rational curves ZPO >, .. l -

ProposiTION 1.8.  The cohomology group H (Sd) is generated by the classes
of the following rational curves on Sy; the irreducible componenls of the excep-
tional divisor of the resolution p : Sq — Sy and the ratzonal curves lP , Where P runs
through the set P'(F s2) of Fp-rational points of P' and i=0,...,d 1.

Note that, when (d,q + 1) = (4,4) and (2,6), the surface S, is a K3 surface.
In these cases, we can prove that the classes of rational curves given in Proposition
1.8 generate the Néron-Severi lattice NS(S,) of Sy, and that the discriminant of
NS(S,) is —p%.  Using this fact and the result of Ogus [13, 14] and Rudakov-
Shafarevich [15] on the uniqueness of a supersingular K3 surface with Artin
invariant 1, we prove the following:
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ProposITION 1.9. (1) If p=q =23, then Sy is isomorphic to the Fermat
quartic surface

wh+xt oyt 2t =0,

(2) If p=q =25, then S, is isomorphic to the Fermat sextic double plane
w? = x4+ y6 + 25,

Recently, many studies on these supersingular K3 surfaces with Artin
invariant 1 in characteristics 3 and 5 have been carried out. See [10, 12] for
characteristic 3 case, and [11, 17] for characteristic 5 case.

Thanks are due to Masaaki Homma and Satoru Fukasawa for their
comments. We also thank the referee for his/her suggestion on the first version
of this paper.

2. Basic properties of the Ballico-Hefez curve

We recall some properties of the Ballico-Hefez curve B. See Fukasawa,
Homma and Kim [8] for the proofs.

It is easy to see that the morphism ¢ : P! — P? is birational onto its image
B, and that the degree of the plane curve B is ¢+ 1. The singular locus Sing(B)
of B consists of (¢*> —¢)/2 ordinary nodes, and we have

¢~ (Sing(B)) = P'(F2)\P'(F,).

In particular, the singular locus Sing(Sy) of S; consists of (¢> — ¢)/2 ordinary
rational double points of type A;—1. Therefore, by Artin [1, 2], the surface Sy is
not rational if (d,q+ 1) # (3,3),(2,4).

Let ¢ be the affine coordinate of P! obtained from [s: 7] by putting s = 1,
and let (x,y) be the affine coordinates of P? such that [x: x; : xa] = [I : x: y].
Then the morphism ¢ : P! — P? is given by

t (171 4 f).
For a point P =[1:17] of P! the line /p is defined by
x—tly 41 =0.

Suppose that P ¢ P'(F,2). Then /p intersects B at ¢(P) = (24119 + 1) with
multiplicity ¢ and at the point (19°79,#9 + t7) # ¢(P) with multiplicity 1. In
particular, we have /p N Sing(B) = 0.

Suppose that PeP'(F,.)\P'(F,). Then /p intersects B at the node ¢(P)
of B with multiplicity ¢+ 1. More precisely, /p intersects the branch of B
corresponding to P with multiplicity ¢, and the other branch transversely.

Suppose that P e P!(F,). Then ¢(P) is a smooth point of B, and /p inter-
sects B at ¢(P) with multiplicity ¢ + 1. In particular, we have /p N Sing(B) = 0.

Combining these facts, we see that ¢(P'(F,)) coincides with the set of
smooth inflection points of B. (See [8] for the definition of inflection points.)
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3. Proof of Proposition 1.3

We denote by ¢ : P! — B the birational morphism ¢+ (¢9!,¢¢ +¢) from
P! to B. We identify Aut(P!) with PGL;,(k) by letting PGL,(k) act on P! by

[s:f]— [as+bt:cs+df] for [a b}ePGLz(k).
¢

d

Then PGL;(F,) is the subgroup of PGL;(k) consisting of elements that leave the
set Pl(Fq) invariant. Since ¢p is birational, the projective automorphism group
Aut(B) of B acts on P' via ¢, The subset ¢z(P'(F,)) of B is projectively
characterized as the set of smooth inflection points of B, and we have P'(F,) =
¢5' (¢5(P'(F,))). Hence Aut(B) is contained in the subgroup PGL,(F,) of
PGL;,(k). Thus, in order to prove Proposition 1.3, it is enough to show that
every element

a b .
g::L d] with a,b,c,d € F,

of PGL;,(F,) is coming from the action of an element of Aut(B). We put
a’> b’ ab
g=|c* d? cd ;
2ac 2bd ad + bc

and let the matrix § act on P? by the left multiplication on the column vector
f[xo : x1 : x2]. Then we have
pog=4gog,

because we have A’ =/ for A=a,b,c,d €F,. Therefore g+— g gives an iso-
morphism from PGL,(F,) to Aut(B).

4. Proof of Proposition 1.4

We put
Fla,y) w4 XT3 Y + 300 X2yt if p=2 and g =2,

U 2x 4 2x4 — petl — (32— 4x) D2 if p s odd,
that is, F is obtained from the homogeneous polynomial in Proposition 1.4
by putting xo =1, x; =x, x = y. Since the polynomial F is of degree ¢ + 1
and the plane curve B is also of degree ¢+ 1, it is enough to show that
F(t1 ¢4 +1) = 0.

Suppose that p =2 and ¢ =2". We put

i=0
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Then S(x,y) is a root of the Artin-Schreier equation

s (xY | x
S+S—F+F.

Hence S := S(t7!,¢7 + 1) is a root of the equation s>+ s = b, where

b 4+ et 200+ P30 | P g2 3+
S+ 0| (1 +0)? (19 4 1)%*2
We put
X+ xq + yq+1
S'(x, p) = G

We can verify that S, := S(#97,t7 + 1) is also a root of the equation s + s = b.
Hence we have either S| = S; or S| =S, + 1. We can easily see that both of the
rational functions S; and S, on P! have zero at t = co. Hence S; = S, holds,
from which we obtain F(¢4*! ¢4 +¢) = 0.

Suppose that p is odd. We put

S(x,y) :=2x+2x9— y™ S =S 9 +1), and
S'(x, y) = (32 —4x) T2 S = S (11 19 4 0).
Then it is easy to verify that both of S? and S7 are equal to
2O 200 | 20042 0P 43q g2 g at2 | A B+l | 242

Therefore either S| =S, or S; = —S, holds. Comparing the coefficients of the
top-degree terms of the polynomials S; and S, of 7z, we see that S} = S,, whence
F(t4%1 194+ 1) = 0 follows.

5. Proof of Propositions 1.6 and 1.8
We consider the universal family
L:={(P,0)eP!' xP*|Qeclp}
of the lines /p, which is defined by
x—tly+1=0
in P! x P2, and let
m:L—P, m:L—P?
be the projections. We see that 7 : L — P! has two sections
o1t (t,x,) = (6,147 19 + 1),

Gyt (1,x,y) = (1,179,194 19).
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For Pe P!, we have m(a1(P)) = ¢(P) and IpN B = {m(51(P)), ma(c,(P))}. Let
X; < L and X, c L denote the images of g and g, respectively. Then X; and
%, are smooth curves, and they intersect transversely. Moreover, their inter-
sectlon points are Contalned in 7y 1(PI(F 2)).

We denote by M the fiber product of y: S; — P? and 7, : L — P? over P2,
The pull-back 7;B of B by m, is equal to the divisor ¢X; +X,. Hence M is
defined by

d _(y_ 4 _pi(y_ 4 _ 4
(5.1) {Z =—t Ny —t t7),
x—tly + 12 = 0.
We denote by M — M the normalization, and by
o:M—-L n:M—S,;

the natural projections. Since d is prime to ¢, the cyclic covering o« : M — L
of degree d branches exactly along the curve X;UX,. Moreover, the singular
locus Sing( ) of M is located over X;NZX, and hence is contained in

o (m (PR p))).

Slnce 5 is dominant and p : S; — S, is birational, # induces a rational map
M- — S,.
Let 4 denote the affine open curve Pl\Pl(qu). We put
Ly:=n;"(4), My :=oa'(Ly).

Note that M is smooth. Letn 4: L4 — A and oy : M4 — L, be the restrictions
of @ and «, respectively. If P e A, then /p is disjoint from Sing(B), and hence
n(e= (= 1(P))) = y~1(Ip) is disjoint from Sing(S,). Therefore the restriction of 7’
to M, is a morphism. It follows that we have a proper birational morphism

f:M—M

from a smooth surface M to M such that f induces an isomorphism from
' (M 4) to M4 and that the rational map #’ extends to a morphism 7 : M — S,;.
Summing up, we obtain the following commutative diagram:

My, < M - Sy
| o |I»s Lr
M, — M 5L s,
(5.2) wl O e L7
L, — L = p?
mal O |m
A — P!
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Since the defining equation x — r9y + ¢ = 0 of L in P! x P? is a polynomial
in k[x, y][¢9], and its discriminant as a quadratic equation of ¢ is y? — 4x # 0, the
projection 7, is a finite morphism of degree 2¢ and its inseparable degree is
q. Hence 7 is also a finite morphism of degree 2¢g and its inseparable degree
is gq. Therefore, in order to prove Proposition 1.6, it is enough to show that M
is rational. We denote by k(M) = k(M) the function field of M. Since
x=1tly —1t* on M, the field k(M) is generated over k by y, z and . Let
¢ denote the integer (¢ + 1)/d, and put

~ z
Z:= G0 ek(M).

Then, from the defining equation (5.1) of M, we have
_ 9 e
R
y—ti—1t
Therefore we have

LB t) — (197 4 1)
B 71 ’

and hence k(M) is equal to the purely transcendental extension k(Z,t¢) of k.
Thus Proposition 1.6 is proved.
We put

2= M\My=p" o (n | (P (F2)))).

Since the cyclic covering o : M — L branches along the curve X; = g N(Pl), the

section gy : P! — L of 7 lifts to a section & : P1~—> M of myoa. Let X; denote
the strict transform of the image of 6, by f: M — M.

_ Lemma 5.1. The Picard group Pic(M ) of M is generated by the classes of
X1 and the irreducible components of E.

Proof.  Since £;NX, N L, =0, the morphism
w4004 : My — A
is a smooth P'-bundle. Let D be an irreducible curve on M, and let e be the
degree of
moaofly:D—PL
Then the divisor D — X, on M is of degree 0 on the general fiber of the smooth
P!-bundle w4 004. Therefore (D — eX)| u, 1s linearly equivalent in My to a

multiple of a fiber of m; 40a,. Hence D is linearly equivalent to a linear
combination of X; and irreducible curves in the boundary E = M\ M. OJ
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The rational curves on S, listed in Proposition 1.8 are exactly equal to the
irreducible components of

p v U
PeP‘(qu)

Let ¥V < H?(S;) denote the linear subspace spanned by the classes of these
rational curves. We will show that V = H?(S,).
Let he H*(S;) denote the class of the pull-back of a line of P> by the

morphism yop:S; — P2 Suppose that PeP!(F,). Then /p is disjoint from
Sing(B). Therefore we have
h=1op) Up) =11+ + 1 eV

Let B denote the strict transform of B by yop. Then B is written as d - R, where
R is a reduced curve on S; whose support is equal to 7(X;). On the other hand,
the class of the total transform (y o p)*B of B by y o p is equal to (¢ + 1)h. Since
the difference of the divisors d- R and (yop)"B is a linear combination of
exceptional curves of p, we have

(5.3) A(E])ev.
By the commutativity of the diagram (5.2), we have

iEep 'y U b
PeP!(F )

Hence, for any irreducible component I" of Z, we have
(5.4) 7.([[]) e V.
Let C be an arbitrary irreducible curve on S;. Then we have
7.1"([C]) = 24[C].
By Lemma 5.1, there exist integers «, by,...,b, and irreducible components

I'y,...,T,, of E such that the divisor #*C of M is linearly equivalent to
aZy + b1+ -+ b,
By (5.3) and (5.4), we obtain
1.
= 2_q”*
Therefore V <« H 2(34) is equal to the linear subspace spanned by the classes of
all curves. Combining this fact with Corollary 1.7, we obtain V = H?(S,).

€] n([C)eV.

6. Supersingular K3 surfaces

In this section, we prove Proposition 1.9. First, we recall some facts on
supersingular K3 surfaces. Let Y be a supersingular K3 surface in characteristic
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p, and let NS(Y) denote its Néron-Severi lattice, which is an even hyperbolic
lattice of rank 22. Artin [3] showed that the discriminant of NS(Y) is written
as —p??, where ¢ is a positive integer < 10. This integer o is called the Artin
invariant of Y. Ogus [13, 14] and Rudakov-Shafarevich [15] proved that, for
each p, a supersingular K3 surface with Artin invariant 1 is unique up to
isomorphism. Let X, denote the supersingular K3 surface with Artin invariant 1
in characteristic p. It is known that X3 is isomorphic to the Fermat quartic
surface, and that X5 is isomorphic to the Fermat sextic double plane. (See, for
example, [12] and [17], respectively.) Therefore, in order to prove Proposition
1.9, it is enough to prove the following:

ProOPOSITION 6.1.  Suppose that (d,q + 1) = (4,4) or (2,6). Then, among the
curves on Sy listed in Proposition 1.8, there exist 22 curves whose classes together
with the intersection pairing form a lattice of rank 22 with discriminant —p?.

Proof. Suppose that p =¢ =3 and d =4. We put « := v/—1 € Fy, so that
Fy := F3(c). Consider the projective space P? with homogeneous coordinates
[w:Xo:x]:xz]. By Proposition 1.4, the surface S, is defined in P> by an
equation

w* = 2(x3x1 + xox7) — xF — (x2 — x1x0) 7.

Hence the singular locus Sing(Ss) of Sy consists of the three points

Qo:=[0:1:1:0] (located over ¢([1: a]) = ¢([1: —a]) € B),
Q1:=[0:1:2:1] (located over ¢([1:1+4a]) =¢([1:1—0a]) € B),
0,:=[0:1:2:2] (located over ¢([1:2+a]) =¢([1:2—0a]) € B),

and they are rational double points of type A3. The minimal resolution
p: Sy — Sy is obtained by blowmg up twice over each singular point Q,
(a € F3). The rational curves lp) on S, given in Proposmon 1.8 are the strict
transforms of the following 40 lines L ( in P? contained in Sy, where v=0,...,3:

Zév) ={x1 =w—0a"x; =0},

ng) = {x0 +x1 —x2=w—a"(x2 + x0) = 0},

Zg’) ={xo+x1+x2=w—0a"(x2 — x0) =0},

Zg) = {xo=w—0a"x, =0},

iZz ={—xo+x1 £ ax;=w—o"xy =0},

Ly), = {#axo + x1 + (—1 + @)xy = w — o’ (x + x0) = 0},

Z;‘L = {Foaxg+x; + (I £a)xs =w—a"(x; — x9) = 0}.
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We denote by L\ the strict transform of ZEV) by p. Note that the image of Z@
by the covering morphism S; — P? is the line lynz))- Note also that, if

7eF3U {0}, then Ziv) is disjoint from Sing(Sy), whereas if T = a+ bo € Fo\F;3
with a € F3 and b € F5\{0} = {1}, then n Sing(S4) consists of a single point

Q.. Looking at the minimal resolution p over Q, explicitly, we see that the
three exceptional (—2)-curves in Sy over Q, can be labeled as E,_,, E,, E,i, in
such a way that the following hold:

* (EBuas Ea) = {Ea, Eqyo) = 1, {Ey—s, Eara) = 0.

* Suppose that b e {+1}. Then Lflﬁbx intersects E, 5y, and is disjoint from

the other two irreducible components E, and E, ,.

+ The four intersection points of Lgﬁba (v=0,...,3) and E,, are distinct.
Using these, we can calculate the intersection numbers among the 9 + 40 curves
E. and LSY) (teFy, 7' €FgU{0}, v=0,...,3). From among them, we choose
the following 22 curves:

E—o:v EO; Eom El—m Elv El+0€a EZ—OU EZa E2+0(a
L, i, ) ), L, L L, L, L),

o0

LO ) 1@

—o) =) -

LY

Their intersection numbers are calculated as in Table 6.1. We can easily check
that this matrix is of determinant —9. Therefore the Artin invariant of S4 is 1.

-21 60 0 0 0 0 O O o0 o O O O o o O OO 1 1 0 O
1 -21r 0 0 0 0O O O o o 0O o0 o0 o O O O O o0 0 O
o 1 -20 0 0 0 0O O 0 0 o0 o0 o0 O O o0 o o0 o0 o0 o
o o0 0 -21 0 0 0 O 0O 0 O O o0 o o0 o0 o0 o0 o0 1 O
o o0 o0 1 -21 0 0 0 00 0O OO0 O O O O O O o0 o0
o o0 o0 o0 1 -20 0 0 00 0 0 0 O O O O0O O O o0 O
o o0 o0 o0 o0 0O -21 0 0 0 O 0O o0 0 O O 0 o0 0 o0 1
o o0 o0 o0 o0 01 -21 0 0 O O O O O O O O O o0 o0
o o0 o0 o0 o0 0 0 1 -20 0 0 0 0 0 O O O 0 0 0 O
o o0 o0 o0 o0 0 0 0 0O -21T 1 1 0 0 O O O 1 O O0 O
o o0 o0 o0 o0 0 0 0 0 1 -21 1 0 0 0O 0 1 0 1 0 O
o o0 o0 o0 o0 0 0 0 o0 1 1 -21 1 01 0 0O 0 0 0 O
o o0 o0 o0 o0 0 o0 0 o0 1 1 1 -=290 1 01 0 0 0 1 1
o o0 o0 o0 o0 0 0 0 0 o0 01 0 -21 0 0 0 0 1 0 O
o o0 o0 o0 o0 0 0 0 0 o0 0 01 1 -20 0 1 0 0 0 1
o o0 o0 o0 o0 0 0 0 0 o0 O0O1T O 0 0 -=21 0 0 0 0 1
o o0 o0 o0 o0 0 o0 0 o0 o0 o0 01T 0 o0 1 -21 1 0 1 O
o o0 o o0 o0 o0 o0 o0 o0 o0 1 0 0 o0 1 O 1 -20 1 0 0
1 o 0 0 0 0000 1 0 0 OO OTOT1T O0O-=-=220 00
$1 0 0 0 0000 0601 0 0 1 0 O0O o0 1 0 -21 1
o o0 o0 1 o0 0 0 0O O o0 O o0 1 0 o0 O 1 0 o0 1 =20
)0 0 0 0 0 061 060 0 0 01 01T 1 0 0 0 1 0 -2

Table 6.1. Gram matrix of NS(S,) for ¢ =3
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The proof for the case p=¢ =35 and d =2 is similar. We put o := /2
so that Fys = Fs(«). In the weighted projective space P(3,1,1,1) with homo-
geneous coordinates [w: xg : x| : x3], the surface S, for p =¢ =75 is defined by

w? = 2(x3x1 + xox7) — x5 — (x2 + x0x1)°.
The singular locus Sing(S;) consists of ten ordinary nodes

Q{a+ba¢,a7ba} ((l € F57 be {1, 2})

located over the nodes ¢([1:a+ bo]) = ¢([1:a— bou]) of the branch curve B.

Let E{yip0,a—byy denote the exceptional (—2)-curve in Sy over Qquipy,a—bsy DY the
minimal resolution. As the 22 curves, we choose the following eight exceptional
(—2)-curves

E oy Efey, Ep-aive), Ep-osiiogg,
Eo urvayy, Epoisioey,  Eu-waray, Eaoadi2a),
and the strict transforms of the following 14 curves on S»:
{x1 = w—20x3 =0},
{x1 = w+20x3 =0},
{x0 + x1 +4x2 = w+20(3x0 + xz)3 =0},
{3x0 + x1 + 3ox, = w — 2ocx23 =0},
{2x0 + x1 +4dox, = w+ 2ocx§ =0},
{3x0 + x1 +20xp + 3xg = w — Zaxg’ =0},
{3+ 3a)x0 4+ x1 + (4 + 0)x2 = w+ 20(3x0 + x2)° = 01,
{(4 + o0)x0 + x1 + (4 + 20)x2 = w+ 20(3x0 + x2)° = 01,
{2+ 30)x0 + x1 + (3 + 30)x2 = w — 20(x0 4 x2)° = 0},
{

(

(

(14 )Xo + x1 4+ (3 + o0)x2 = w — 20(xp + x2)° = 0},
{(

(

(

(

+ )Xo 4 X1 + (2 + 4a)xy = w — 2u(x2 + 4xp)° = 0},

{24 30)x0 + X1 + (2 + 20)x3 = w + 20(x; + 4xp)° = 0},
{3+ 3a)x0 4+ x1 + (1 +4a)x; = w — 2a(x2 + 2x0)° = 0},
{(4 4 4a)xo + x1 + (1 4 20)x2 = w — 2a(x2 + 2x0)° = 0}.

Their intersection matrix is given in Table 6.2. It is of determinant —25.
Therefore the Artin invariant of S, is 1. O
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-2 0 0 0 0 0 000 OO0 O 1T OO0 0 O O O 0 0 O
o -20 0 0 0 0 0 0O o0 01T 01 0 O O O 0 O 0 O
o 0 -20 0 0 0 0 0 O 0O 0 o0 o0 1 O O 0 o0 0 o0 O
o o0 0 -2 0 0 0 0O 0 0 0 0 0 0 01 0 0 0 0 o0 o0
o o0 o0 0 20 0 0O 0O 0 0 0 0 0 0 0 01T 0 0 o0 o0
o 0 o0 o0 0 -20 0 0O 0 O O 0O 0O o0 O 0 o0 o0 1 0 O
o o0 o o0 o0 0 -20 0 0 0 0 0O 0O 0 O 0 0 o0 o0 1 o0
o o0 o0 o0 o0 0O 0O -20 0 0 0O O O 0O 0 O 0 0 0 0 1
o o0 o0 o0 o0 o0 o0 0O -23 1 1 0 1 1 O O 1 1 1 0 1
o o0 o0 o0 o0 0 0 0 3 -20 01 o0 o0 1 1 0 0 O 1 O
o o0 o0 o0 o0 0 0 0 1 0 -20 0 0 1 1 0 1 0 0 0 1
o 1 o0 o0 o0 0 0 o0 1 0 0 -20 01 1 1 1 0 1 1 0
! 0 0 0 00 06 00 1 0 0 -20 001 1 1 1 0 1
o 1 o0 o0 o0 0 0 0 1 0 0O 0O 0O -20 1 0 01 0 0 O
o o0 1 0 o0 o0 o0 0 1 o0 1 1 0O O -21T 1 0 1 0 1 1
o o0 o0 1 o0 0 0 o0 01 1 1 0 1 1 -21 0 01 0 O
o o0 o o0 o0 0 0 o0 01 01 1 o0 1 1 -21T 1 1 0 O
o o0 o0 o0 1 0 0 0 1 o0 1 1 1 0 O O 1 -20 0 O O
o o0 o0 o0 o0 0 o0 o0 1 0 0 o0 1 1 1 O 1 O -20 1 0
o o0 o o0 o0 1 o0 o0 1 0 o0 1T 1 o0 o0 1 1 0 0 =21 1
o o0 o0 o0 o0 o0 1 o0 o0 1 01 0 o0 1 0 O O 1 1 =21
)0 60 0 0 0 001 1.0 1 01 01 0 0 0 0 1 -2

Table 6.2. Gram matrix of NS(S) for ¢ =5

Remark 6.2. 1In the case ¢ =5, the Ballico-Hefez curve B is one of the
sextic plane curves studied classically by Coble [5].
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