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ON THE FIRST DIRICHLET LAPLACIAN EIGENVALUE

OF REGULAR POLYGONS

Carlo Nitsch

Abstract

The Faber-Krahn inequality in R2 states that among all open bounded sets of given

area the disk minimizes the first Dirichlet Laplacian eigenvalue. It was conjectured in

[1] that for all Nb 3 the first Dirichlet Laplacian eigenvalue of the regular N-gon is

greater than the one of the regular ðN þ 1Þ-gon of same area. This natural idea is

suggested by the fact that the shape becomes more and more ‘‘rounded’’ as N increases

and it is supported by clear numerical evidences. Aiming to settle such a conjecture, in

this work we investigate possible ways to estimate the di¤erence between eigenvalues

of regular N-gons and ðN þ 1Þ-gons.

1. Introduction

Given an open set WJR2 with finite measure, the first Dirichlet Laplacian
eigenvalue is the least positive number l such that the boundary value problem

�Du ¼ lu in W;

u ¼ 0 on qW

�
ð1:1Þ

has non trivial solutions in H 1
0 ðWÞ. The corresponding solutions are called first

Dirichlet Laplacian eigenfunctions. If W is connected then eigenfunctions have
constant sign and l is simple (eigenfunctions are unique up to a multiplicative
factor).

We recall also that, by classical arguments, l can be characterized as

l ¼ min
kDuk2L2ðWÞ

kuk2L2ðWÞ
: u A H 1

0 ðWÞ; u20

( )
ð1:2Þ

and a function minimizes (1.2) if and only if it is a first Dirichlet Laplacian
eigenfunction.
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In this paper we are mainly concerned with so-called isoperimetric inequal-
ities for l. In a broad sense, by isoperimetric inequalities we mean a-priori
bounds of l when geometric constraints (such as volume, perimeter, circumradius,
etc.) on W are prescribed. The most celebrated inequality in such a class is
certainly the Faber-Krahn inequality stating that, among all open sets of R2 of
given measure the disk achieves the least possible eigenvalue [10, 12].

In the following, when it is needed to better emphasize the domain depen-
dence of l, we will use the notation lðWÞ.

Among the most important properties of the first Dirichlet Laplacian
eigenvalue we remind that, by scaling arguments, it holds

lðWÞ ¼ t2lðtWÞ;ð1:3Þ
for all real positive t. Moreover it is worth mention that, using the variational
characterization (1.2), one can deduce the monotonicity with respect to W in the
sense that, whenever ~WWHW are two open sets of finite measure, then

lðWÞa lð~WWÞ;
and the inequality is strict if W is connected.

The last property that we remind is that, if W is connected and symmetric
with respect to a rotation or a reflection, the same is true also for the eigen-
functions in view of the simplicity of the eigenvalue.

Making use of (1.3) the Faber-Krahn inequality reads as

AreaðBÞlðBÞaAreaðWÞlðWÞ
whenever W is open with finite measure, B is a disk, and Areað�Þ denotes the
measure in R2.

In literature there are many variations on the theme Faber-Krahn, all con-
cerning similar isoperimetric inequalities for the first Dirichlet Laplacian eigen-
value with di¤erent or additional constraints. Without claiming to be exhaustive
we remind for instance that in [13, 16, 18] the author provide upper and lower
bounds for convex sets in terms of area and perimeter. The same was done
more recently also in [4, 6, 7, 14]. Di¤erent classical estimates may also include
diameter and inradius like in [17, 19] while a di¤erent approach consists in
restricting the class of sets. And indeed from now on we confine our investigation
to polygons. Fundamental tone of Dirichlet Laplacian on polygons has been
widely investigated for instance in [5, 8, 9, 20]. Nevertheless many challenging
unsolved questions [1, 10] are still unsolved. The most important is due to Pólya
and Szegö [17] who conjectured that among all N-gons of given area the regular
one achieves the least possible l. The corresponding inequality reads as follows

AreaðPNÞlðPNÞaAreaðpÞlðpÞ; p A PNð1:4Þ
where PN is the set of all N-gons and PN A PN denotes a regular one. This
conjecture is suggested by the Faber-Krahn inequality in conjunction with the
idea that, for a given number of sides, the regular polygon has the most rounded
shape. However, in spite of this simple idea, this problem is very challenging
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and the conjecture has been settled only for N ¼ 3 and N ¼ 4 where it is
possible to use the Steiner symmetrization [10, 17]. What is however known (see
[10]) is that for given Nb 3 there exists an N-gon which minimizes the product
AreaðpÞlðpÞ and it is also known that by increasing the number of sides such a
minimum decreases, namely:

minfAreaðpÞlðpÞ : p A PNgbminfAreaðpÞlðpÞ : p A PNþ1g:
This of course implies that, the conjectured inequality (1.4) can be true only

if it is also true that

AreaðPNþ1ÞlðPNþ1ÞaAreaðPNÞlðPNÞ:
Surprisingly enough, to our knowledge, even this inequality is still unproved,

as also testified by a recent paper [1] where, motivated by numerical examples,
the authors not only conjectured that along the sequence of regular polygons
fPNgN AN the product AreaðPNÞlðPNÞ is decreasing in N, but also that the ratio

AreaðPNÞlðPNÞ
AreaðPNþ1ÞlðPNþ1Þ

is decreasing in N.

From now on by PN will always denote a regular polygon with N sides and
when it is necessary to specify its circumradius r we will use the notation Pr

N .
Motivated by the lack of analytic estimates which allow to investigate the

behavior of lðPNÞ for di¤erent N in this work we present two possible approaches to
the problem. The first one is based on the so called dissections which has been
used also in [20]; it is a purely geometric technique and gives the following result.

Theorem 1. For all Nb 3 and r > 0 we have lðPr
Nþ1Þ < lðPr

NÞ.

Even if our result is weaker than (1.4), to our knowledge it is new in the
literature. For fixed inradius the reversed inequality can be found in [20], where
actually the author also proves that among N-gons of given inradius the regular
one achieves the highest eigenvalue.

In the second part of the paper, using a di¤erent approach based on the
shape derivative ([10, 11, 15, 21]) we then provide a refinement.

Theorem 2. For all Nb 3 and r > 0 we have

lðPr
Nþ1Þ < lðPr

NÞ
cos

p

N

cos
p

N þ 1

:

If by j0 we denote the first zero of J0 (J0 denotes the Bessel function of the

first kind and order zero, see [3]), then the eigenvalue of the disk of radius r is
j20
r2

,

see [12]. With such a notation, the sharpest result that we present using the
shape derivative is the following.
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Theorem 3. For all Nb 3 and r > 0 we have

lr
Nþ1r

r
Nþ1lðPr

Nþ1Þ < lr
Nr

r
NlðPr

NÞ �
2pj20

NðN þ 1Þ ;

where lr
N and rr

N are the side length of Pr
N and the inradius of Pr

N respectively.

Iterating the previous inequality (summing up over all K > N) and taking
into account that the eigenvalue of Pr

K goes to j20=r
2 as K ! y, we have the

following.

Corollary 1. For all Nb 3 we rediscover the Faber-Krahn inequality for
regular polygons,

lðPNÞ >
pj20

AreaðPNÞ
:

Such a result, although not original, emphasizes that Theorem 3 can be also
understood as a refinement of the Faber-Krahn inequality on regular polygons.

Finally we observe that Theorem 3 can be rewritten in the following way.

Corollary 2. For all Nb 3 we have

AreaðPNþ1ÞlðPNþ1Þ < AreaðPNÞlðPNÞ þ
AreaðPNÞlðPNÞ � pj20

N
:ð1:5Þ

Unfortunately we are unable to prove or disprove the conjectured inequality

(1.4), since the reminder term
AreaðPNÞlðPNÞ � pj20

N
in (1.5) is positive. However

we make a step forward to its proof, and we provide two di¤erent point of view
and possibly two useful approaches to the problem.

2. Proof of Theorem 1

The proof we propose is completely based on the geometric construction of a
particular test function. For simplicity we start by considering a square Pr

4 and
a regular pentagon Pr

5 having the same circumradius r. The square is split into
eight polygons (Figure 1(a)). Four of them, those denoted by Ti (i ¼ 1; . . . ; 4)
and represented in grey, are congruent open isosceles triangles. The other four
(Qi with i ¼ 1; . . . ; 4) are congruent open convex quadrilaterals. The four isos-
celes triangles have one vertex in common which also coincides with the center
of the square. The angle at this vertex is equal to p=10 which is exactly the
di¤erence of the central angle of the square (p=2) and the pentagon (2p=5). Here
by central angle we mean the angle made at the center of the polygon by any
two adjacent vertices of the polygon.
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Now we can rearrange this eight pieces (and the eight cutting segments),
simply by rotating them around the center (see Figure 1(b)) to form a new
irregular open polygon D having the same area as the square. The polygon D is
strictly included into a regular pentagon which, by construction, has the same
circumradius of the square. This kind of geometric construction is also some-
times called dissection.

For what concerns our purposes, such a dissection can be naturally trans-
lated into a bijection F : Pr

4 ! DHPr
5 with the only important requirement that

F must act on each Ti (i ¼ 1; . . . ; 4) and each Qi (i ¼ 1; . . . ; 4) as a rotation.
The map F has then the following interesting properties. First of all, if u is a
first eigenfunction on Pr

4, then the function

vðxÞ ¼ uðF�1ðxÞÞ if x A D

0 otherwise

"

is continuous on Pr
5. This is true because, in view of the symmetry of u with

respect to reflection across the axes of the four sides and across diagonals (the
so-called dihedral group D4), the function u takes the same value on all points
of the cutting segment having the same distance to the center of Pr

4. Moreover
v belongs to H 1

0 ðPr
5Þ since it belongs to H 1ðTiÞ and to H 1ðQiÞ (for i ¼ 1; . . . ; 4).

What more, by construction

ð
Pr
4

u2 ¼
ð
D

v2

and ð
Pr
4

jDuj2 ¼
ð
D

jDvj2:

Figure 1. Rearranging the square into a regular pentagon.
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Therefore we have that

lðPr
5Þ < lðDÞa

ð
D

jDvj2ð
D

v2
¼

ð
Pr
4

jDuj2ð
Pr
4

u2
¼ lðPr

4Þ

which completes the proof of Theorem 1 for N ¼ 4.
However, the very same construction can be applied to any couple of con-

secutive regular polygons Pr
N and Pr

Nþ1 with the same circumradius r. In this
case we can construct a dissection which splits Pr

N into 2N pieces. Again N of
them are congruent isosceles triangle sharing the center of Pr

N as one vertex.
The angle that these isosceles triangles have in the center is now equal to

2p

NðN þ 1Þ , which is exactly the di¤erence between the central angles of Pr
N

and Pr
Nþ1. Then the rest of the proof can continue exactly as above taking

advantage of the symmetry of eigenfunctions with respect to the dihedral group
of rotations and reflections DN .

3. Proof of Theorem 3 and Theorem 2

For the reader convenience we split the proof into several lemmata. First
we observe that the study of the first Dirichlet Laplacian eigenvalue problem on
a regular polygon goes along with the study of a mixed boundary eigenvalue
problem on right triangles (see also [2] for Laplacian eigenvalues with mixed
boundary conditions).

Let T ¼ Tða; rÞ be a right open triangle with hypotenuse of length r and one
of the acute angle measuring a. Let us define g1 the cathetus opposite to the
angle whose measure is a, and let g2 and g3 be the hypothenuse and the other
cathetus respectively.

We define mðTÞ to be the least positive number such that there exists a
nontrivial solution to the following problem

�Dv ¼ mðTÞv in T ;

v ¼ 0 on g1;

qv

qn
¼ 0 on g2 U g3:

8>>><
>>>:

ð3:1Þ

Here n is the unit exterior normal to qT . As for the first eigenfunctions of the
Dirichlet eigenvalue problem, using similar classical arguments, it is possible to
prove that any solution v has constant sign in T .

By classical arguments it is easy to see that the first eigenvalue mðTÞ can be
also characterized by the variational formulation

mðTÞ ¼ min
kDvk2L2ðTÞ

kvk2L2ðTÞ
: v A H 1ðTÞ; v20; v ¼ 0 on g1

( )
:ð3:2Þ
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Moreover w is a minimizer of (3.2) if and only if it is a solution to problem (3.1).
The following lemma holds.

Lemma 3. For all r > 0 and Nb 3, if a ¼ p=N, then lðPr
NÞ ¼ mðTða; rÞÞ.

Proof. The proof is elementary and based on the symmetry of regular
polygons. A regular polygon with N sides has 2N di¤erent symmetries: N
rotational symmetries and N reflection symmetries (forming the so-called dihedral
group).

In a reference frame (like the one in Figure 2) in which the origin is the
center of PN and one of the vertices is on the positive x-semiaxis, for
ðk ¼ 1; . . . ;NÞ the rotations S1

k and reflections S2
k have the following matrix

representation:

S1
k ¼

cos
2pk

N
�sin

2pk

N

sin
2pk

N
cos

2pk

N

0
BB@

1
CCA; S2

k ¼
cos

2pk

N
sin

2pk

N

sin
2pk

N
�cos

2pk

N

0
BB@

1
CCA:

Let Pr
N be a regular polygon with center O. We can draw, inside Pr

N , a
triangle which we identify with Tðp=N; rÞ by considering the following three
vertices (see Figure 2):

(i) the center O,
(ii) the midpoint of one of the sides of PN ,
(iii) one of the corners of PN adjacent to (ii).

We check that by construction the angle corresponding to the vertex in O is equal
to p=N and moreover the length of the hypothenuse is r.

Figure 2. The polygon Pr
N and the right triangle T .
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Now we consider a function u solution to (1.1) on Pr
N and a function w

solution to (3.1) on Tðp=N; rÞ. Since the function u is invariant under the action

of the symmetry group of Pr
N , we have

kDuk2L2ðTÞ

kuk2L2ðTÞ
¼

kDuk2L2ðPr
N
Þ

kuk2L2ðPr
N
Þ
, which together

with u A fv A H 1ðTÞ; v20; v ¼ 0 on g1g yields mðTÞa lðPr
NÞ.

On the other hand, every point x in Pr
N is image of a unique point y of T

through some of the elements of the group of symmetries of Pr
N , namely x ¼ S i

k y
for some ði ¼ 1; 2 and k ¼ 1; . . . ;NÞ. Then we set ~wwðxÞ ¼ wðyÞ. By construction

w ¼ ~ww on T and
kD~wwk2L2ðTÞ

k~wwk2L2ðTÞ
¼

kD~wwk2L2ðPr
N
Þ

k~wwk2L2ðPr
N
Þ
, therefore implying mðTÞb lðPr

NÞ.
r

Now that we have proved the equivalence between problem (1.1) on Pr
NðrÞ

and problem (3.1) on Tðp=N; rÞ we observe that mðTða; rÞÞ is defined as a
function of the parameter a for all a A ð0; p=2Þ, opening the possibility, in
what follows, to investigate the dependence of m with respect to a by way of
di¤erentiation.

From now on, when there is no confusion, we write for simplicity m instead
of mðTða; rÞÞ. Moreover we choose a reference frame in which (see Figure 3) the
triangle Tða; rÞ lies in the first quadrant, the corner of the angle measuring a
coincides with the origin O and the catheti g3 and g1 are parallel to x and y axis
respectively.

Lemma 4. For any given positive r, and for all a A ð0; p=2Þ, if v is a solution
to (3.1) then we have

qm

qa
¼

ð r

0

ðjDvðs cos a; s sin aÞj2 � mv2ðs cos a; s sin aÞÞs dsð
T

v2
þ 2m tan a:

Figure 3. The right triangle Tða; rÞ and its deformation with respect to t.
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Proof. For all t > 0 su‰ciently small we can consider the triangle

T aþ t; r
cos a

cosðaþ tÞ

� �
(see Figure 3 the dashed line). In such a way we define

a one parameter family of domains which are perturbations of Tða; rÞ. There
exists in particular a smooth vector field V (not uniquely defined everywhere) such

that for all positive t su‰ciently small T aþ t; r
cos a

cosðaþ tÞ

� �
¼ ðIþ tVÞTða; rÞ,

I being the identity. This is all what we need to use the Hadamard formula
(see [10]) to get

d

dt
m T aþ t; r

cos a

cosðaþ tÞ

� �� �� �����
t¼0

¼

ð
g2

ðjDvj2 � mv2ÞV � n dsð
T

v2
:ð3:3Þ

Actually such a formula has been implemented to di¤erentiate Neumann
Laplacian eigenvalues with respect to domain variations. We are not dealing
with a Neumann eigenvalue, nevertheless it is still possible to use the very same
formula in our case since we are applying a deformation a¤ecting only the
Neumann part of the boundary. Moreover it is also easy to see that if we glue
together v and the reflection of �v across the cathetus g1, we get a Neumann
eigenfunction for T U ~TT , where ~TT is the reflection of T across g1.

Then we observe that from (1.3) we have
d

dr
ðr2mðTða; rÞÞÞ ¼ 0 yielding

d

dt
m T aþ t; r

cos a

cosðaþ tÞ

� �� �� �����
t¼0

¼ qm

qa
� qm

qr
r tan a ¼ qm

qa
� 2m tan a:

Now we go back to the righthand side of (3.3) and we parametrize the
hypothenuse g2. We set

xðsÞ ¼ s cos a and yðsÞ ¼ s sin a for s A ½0; r�:
We have ds ¼ ds and we observe that n ¼ ð�sin a; cos aÞ on g2. Eventually we
conclude the proof observing that, no matter which explicit representation of V

we choose, necessarily by construction we must have VðxðsÞ; yðsÞÞ ¼ 0;
s

cos a

� �
.

r

Lemma 5. Let v be a solution to (3.1), then we have for a.e. x A ð0; r cos aÞ

v2ðx; x tan aÞ < 1

x tan a

ð x tan a

0

v2ðx; yÞ dy:

Proof. We can assume that v is positive, if not we can consider �v. The

Lemma is an immediate consequence of the fact that the function h ¼ qv

qy
is
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everywhere negative inside T . To prove that the sign of h is constant and non
positive we observe that �Dh ¼ mh in T and ha 0 on qT . If by contradiction
there exists an open set DHT such that h > 0 on D and h ¼ 0 on qD then we
would have

m ¼
kDhk2L2ðDÞ

khk2L2ðDÞ
> min

kDvk2L2ðTÞ

kvk2L2ðTÞ
: v A H 1ðTÞ; v20; v ¼ 0 on g1

( )
¼ m;

which yields a contradiction. Once we know that h is non positive in T then by
classical elliptic estimates it is strictly negative inside. r

Lemma 6. For any given positive r and for all a A ð0; p=2Þ, we have

qm

qa
b m tan a� m� j20

r2 cos2 a

� �
1

tan a
:

Proof. Let v be a solution to (3.1) and for s A ½0; r� we set gðsÞ ¼

vðs cos a; s sin aÞ. Since
qv

qn
¼ 0 on g2 then jDvðs cos a; s sin aÞj ¼ �g 0ðsÞ. As

we said before
j20
r2

is first Dirichlet Laplacian eigenvalue on the disk Br of

radius r. This means that

j20
r2

¼ min
kDuk2L2ðBrÞ

kuk2L2ðBrÞ
: u A H 1

0 ðBrÞ; u20

( )
:

Since first eigenfunctions are radial (they have the same symmetry as the domain
Br), then the minimum can be taken on radial functions

j20
r2

¼ min

Ð r

0 ju 0ðsÞj2s dsÐ r

0 u
2ðsÞs ds

: u A H 1ð0; rÞ; u20; uðrÞ ¼ 0

( )
:ð3:4Þ

Moreover, using again the radial symmetry,

j20
r2

¼ min
kDuk2L2ðCarÞ

kuk2L2ðCarÞ
: u A H 1ðCarÞ; u20; uðx; yÞ ¼ 0 if x2 þ y2 ¼ r2

( )
;ð3:5Þ

where Car is a circular sector of radius r and opening angle a, center in the origin
and containing the triangle Tða; rÞ. By standard arguments any solution to (3.1)
(extended to zero outside T) is an admissible function to be used in (3.5), and we

have
j20
r2

< m.

By Lemma 4, the characterization (3.4) and Lemma 5, we have

604 carlo nitsch



qm

qa
¼ 2m tan aþ

ð r

0

ðjg 0ðsÞj2 � mg2ðsÞÞs dsð
T

v2

b 2m tan a� m� j0

r2

� �ð r

0

g2ðsÞs dsð
T

v2

¼ 2m tan a� m� j0

r2

� �ð r cos a

0

v2ðx; x tan aÞ x

cos2 a
dxð

T

v2

b 2m tan a� m� j0

r2

� �ð r cos a

0

ð r sin a

0

v2ðx; yÞ 1

sin a cos a
dy

� �
dxð

T

v2

¼ 2m tan a� m� j0

r2

� �
1

sin a cos a

and the proof is completed. r

Now, since
j20

r2 cos2 a
¼ lðBr cos aÞ, and Br cos a HPr

N then

j20
r2 cos2 a

> m:

Therefore by Lemma 6

qm

qa
> m tan a

and integrating in a from
p

N þ 1
to

p

N
we get Theorem 2.

At this point we can prove Theorem 3. Using Lemma 6 in fact we have

q

qa
ðr2 sin a cos amðTða; rÞÞÞb j20 ;

which, integrated with respect to a, from
p

N þ 1
to

p

N
gives

r2 sin
p

N
cos

p

N
lðPr

NÞ � r2 sin
p

N þ 1
cos

p

N þ 1
lðPr

Nþ1Þb
pj20

NðN þ 1Þ :
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