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PRECISE LARGE DEVIATIONS FOR
ORNSTEIN-UHLENBECK PROCESSES*

XIANGFENG YANG

Abstract

For a family of Ornstein-Uhlenbeck processes having an infinitesimal size of noise,
we prove precise asymptotics for large deviations of an integral form over the con-
tinuous path space. The main ingredients in the proof are an exponential change of
measures and subtle Taylor expansions with suitable estimates. An application of these
precise integral large deviations to partial differential equations is included.

1. Introduction

In this paper, we consider Ornstein-Uhlenbeck (OU) processes {U*},.,., on
some probability space (Q,%,P) with a small size of magnitude O(4™').
Namely, for each fixed A, the process U” is determined as the unique solution
to the stochastic differential equation

(1.1) dU} = ~U}dt+ 27" dw,, Uj =0.

The main subject of this paper is to study the precise asymptotics as . — oo
for the expectation E exp{A’F(U*)} under suitable assumptions on the func-
tion F over the continuous function space C[0,1]. This is one form of large
deviations.

Large deviations in limit theorems can be formulated as follows. Let X be a
metric space with metric p, and u® be a family of probability measures on X
depending on a parameter ¢ > 0. Suppose there is a point x, € X such that
for any 0 > 0 and small &, u®{y: p(x., y) <J} have overwhelming probabilities:
lim, o #¢{y : p(xy, y) <0} = 1. Problems on large deviations are concerned with
the limiting behavior as ¢ — 0 of the small probabilities #°(4) for measurable sets
A = X that are situated at a positive distance from point x, (cf. [1]). Problems
concerning asymptotics as ¢ — 0 of integrals in the form [y fi(x)u(dx) also
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belong to large deviations if the main part of such integrals for small ¢ is due to
the values of x far away from point x, (cf. [8]).

The study on large deviations of integral forms for stochastic processes &;
defined on probability spaces (Q,Z,P?) is generally obtained in the sense of
logarithmic equivalence: In E°f,(¢°) ~ g(e, f;), where we use E® to denote the
mathematical expectation with respect to measure P? (see [2], [7] and [8]). These
results are generally called rough large deviations. 1t is natural to expect more
precise large deviations under more assumptions on the processes and the
functional. Indeed, for the family of stochastic processes {y/eW;},_,.; Wwith
W denoting the standard Wiener process, Schilder showed in [6] the following
precise large deviations

Eexp{e ' F(VeW)} = exp{e ™' [F(dy) = S(ho)]} | D Ki-&'+o0(e?)

0<i<s/2

for some positive integer s depending on the smoothness of F, where the
normalized action functional S(¢) :%J"(: ¢'(1)* dr for absolutely continuous ¢
and S(¢) = oo for other ¢, and ¢, is the unique maximizer of F — S over the
continuous path space. Then Ellis and Rosen in [3] proved similar precise large
deviations in the setting of Hilbert spaces for some Gaussian probability measures
(see also [5]). In this paper, we aim to prove the same type of precise large
deviations for E exp{A*F(U*)}.

The main result of this paper is formulated in Section 2. An exponential
change of measures for Markov processes is included in Section 3.1, which serves
as the main tool for the proof. Section 3.3 contains an application of these
precise large deviations to partial differential equations.

2. The main result

We use Cy[0,1] to denote the space of all continuous functions on [0, 1]
vanishing at zero, and CO1 [0, 1] the space of continuously differentiable functions
vanishing at zero. On these spaces, the metric p induced by the uniform norm
| - || will be used:

p(¢.9) = ll¢ — ¢l = max |¢(r) — ¢(7)].

<i<

OU process {U*},_,., defined by (1.1) is a Markov process with the gen-
erating operator

AV L) = () 457",

We introduce the cumulant GU” of U* as follows

2 1
GV (x;z) = —zx + Ei_zzz = 22Gy(x; 4 7%2)



PRECISE LARGE DEVIATIONS FOR ORNSTEIN-UHLENBECK PROCESSES 529

with Go(x;z) = —zx+ 122 The Legendre transformation Ho(x;u) of Go(x;z) in
its second argument is defined by:
1
Ho(x;u) = suplz - u — Go(x;2)] = = (x + u)*.
zeR 2

Now we define the normalized action functional S over the space Cy[0, 1] as

1

S(6) = | Hol(0:¢'0) a
for absolutely continuous function ¢, and S(¢) = co otherwise. This functional
is lower semi-continuous (cf. Section 3.1 in [8]).

THEOREM 2.1. Let F be a measurable functional on Cy[0, 1] which is bounded
above.  Suppose that the maximum of the functional F — S over the space Cy|0, 1]
is attained at a unique function ¢, C}[0,1], and that F is s times Fréchet differ-
entiable at ¢, in the uniform topology with F"(¢,)(¢,$) <0 for any ¢ € Cy[0,1].
Then as 2 — o0,

(21) Eexpl2F(UN)} =exp{2F(d) ~ S} S Kid '+ 0(702)

0<i<s—2

where the coefficients K; are determined by F and its derivatives at ¢; in particular
Ko = E exp{3F"(¢y)(U', U")}.

3. The proof and an application

3.1. Exponential change of measures

Following [8], we here define a new probability measure which is an
exponential change of the original probability measure P. To this end, we
introduce functions

(1) = Pzo(), where z0(1) = 10 (g (1) 43 (0)) = dol0) + (1)

The new family of probability measures is defined as

1 1
exp{J 24(t) dU/ — ;PJ Go(U/; 20(1)) dt} dP.
0 0

(3.1) P (4) = J

A

For each 4 > 0, under the new probability measure PZ)’, the process U” is again
a Markov process with the generating operator (cf. Section 2.2 in [8])

A7) = O ez (0) () + 2 ),
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Then it turns out that the normalized process 7} := A(U/ — ¢,(¢)) as a Markov
process has the generating operator

AT1) = () + 51",

from which it follows that #* under P? and U' under P have the same
distribution on the space G0, 1].
The proof of Theorem 2.1 will rest on the next lemma. For every s > 0, put

O(s) ={¢: pe C[0,1] and S(¢) < s}.
The set ®(s) is compact in Cy[0, 1] (cf. Section 3.1 in [8]).

Lemma 3.1, (i) For any 6 > 0, y > 0 and sy > 0, there exists Ay > 0 such that

P{p(U*, ¢) <3} = exp{~A*[S(¢) + 7]}

for any A > Ay and any ¢ € D(s));
(i) For any 6 >0, y >0 and sy > 0, there exists Ay >0 such that

P{p(U”, ®(s)) = 3} < exp{—i2(s — )}

for any A > Ay and any s < sp.

Remark 3.2. Lemma 3.1 shows that the family of U” satisfies a large
deviation principle. There are several equivalent definitions for a large deviation
principle (see Section 3.3 in [4] and the Introduction in [8]), and here we
adopt the definition in [4]. Formally speaking, the large deviation principle in
Lemma 3.1 states that as 4 — oo, the process U’ will stick around the path ¢,
such that S(¢,) =0. Away from the most probable path ¢,, the probability
tends to zero exponentially fast.

Remark 3.3. The proof of this lemma is a direct application of Theorem
5.6.3 in [2]. More precisely, large deviation principles are proved in [2] for more
general families of processes X*¢ determined by

dX/ =b(X?)dt++edW, 0<:<1,X{=0

with a uniformly Lipschitz continuous function b(-) : R — R.

3.2. Taylor’s expansions

From Lemma 3.1 and the assumption that F is bounded above, it follows
that for any ¢ > 0, there exists some y > 0 such that as 4 — oo (cf. Lemma 0.1
in [8]),

E exp{2F(U%)}
= E[l(jus_gy<e) XP{A’F(U")}] + o(exp{2°[F(¢g) — S(dy) = 7]})-
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Since the second term given by o(exp{—lzy}) goes to zero exponentially fast, our
main concern is on the first term. Keeping in mind that ;" = A(U/ — ¢,(7)), we

have

(3.2) E[1(ig,<e) XP{A°F(U*)}]
1

= EZ/. |:1{||77;-|<s/1} exp{izF(Ui) — JO Z;“(l‘> d(]tjL

+ 7 Ll Go(U/; 20(1)) dtH
1

= E[I{Ul@} exp{ﬂ»zF(qﬁo +27uth) - EJO 20(2) AU}

1
=2 [ Gol0o) = Gl + 47 Us20(0) "’H |

Now we apply Taylor’s expansions to F at the point ¢, up to order s with
Peano’s remainder

Figo + 270" = Figo) + 2~ F/(gy)(U)
o PG U o U
Thus (3.2) is equal to
— exp{2[F(4o) — ()]}
x EP“U”QH exp{i[F’((/ﬁo)(Ul) - <J01 20(1) dU} + J; U, z0(0) dz)}

FRF @)U U + £ ET ) (UL U U

AN —

Vs (s~ s
ok T FOG)(UY U 402U )H

The identity F'(¢)(U") — ([, 20(¢) dU, + [} U}z(1) d) =0 (see Appendix (a)
for the proof) implies that (3.2) is equal to

(33) = exp{#*[F(dy) — S(¢)]}
x E[I{U‘Q/l} eXp{%F”(%)(U‘, U +éﬂf1F”’(¢o)(U‘, u',uh

2~ (=2)
+ e +

T FOU o U ol PO}
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We now break the set {||U'| <&i} into two parts: {2*' < ||U'|| <ed} and
{JJU"|| < 2>'}. First we consider the first part {A*! <|U'|| <el}. For any
S >0, there is a small ¢ > 0 such that

1 1,
E|:1{/10'1£|U'|<£2} CXP{EF”(¢0)(U1,U1)+5/1 'F"(go)(UN, U U

262

N F<S><¢o><U%...7U'>+o<i“"U'””H

1
<[ cyongcon ex0{ 3P0 U 4 4107

<[P < U} - Eexp{2p] U"|1P}]"2

where in the last inequality the assumption F”(¢4,)(U',U') <0 is applied.
From Doob’s transform, it follows U! ~ e~'W, /21y In the sense of distri-
bution. Thus the expectation on the first part {A*! < ||U'|| <&i} tends to
zero exponentially fast (see Appendix (b)). So we just need to deal with the
expectation on the second part {|U!| < A%}, Set

a) = éi_]FW((’ﬁo)(Ulv u',uh)
5-(-2) © | | —(s=2)|771y$
T FOg)(U',..., U + o2 2| U").

On the set {||U'|| < /10‘1}, noticing that lim;_,,, a* =0, we then apply e% =
l4+a,+-+a2/(s—2)!+0(a;?) to see that

1 " 1 — n
E[1{|U1<)."-1}3XP{2F (¢0)(U1,U1)+6/1 ' (go) (U, U UY)

- 6-2)
+ N +

PR U ol U
— E{l{lwldo_l} exp{;F”(qﬁO)(Ul, Ul)} (1 +é/l_1F’”(¢o)(U1, u',uh
o AT (sthy) + oGO+ U |3<S‘”Dﬂ
= ¥ Ki}vi—E[l{Ul>lo,1}exp{%F”((/ﬁo)(Ul’Ul)}
0<i<(s—2)

> (1 +é/171FW(¢0)(U1,U17 Ul)++i(52>i}{>:|

1 —(5— N S—
|1y o 3 P G0 U Jold U+ U1
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From a fact in Appendix (c) that E||U'||/ < oo for any positive integer j, it
follows

1
E[1{|U1>A‘“} GXp{ZFN(¢0)(U1, Ul)}
1 o
X (1 +gz*1F”’(¢o)(U1, ul,uh) + -~-+i<52>9a)}
tends to zero exponentially fast, and

! —(s— s —
El:l{U'|</1°'1} eXp{EFU(¢0)(U17 Ul)}o(l ( 2)[HU1|| + ||U1H3( 2)]):|
= 0(/1_(5_2)).
The proof of Theorem 2.1 is complete.

3.3. An application to partial differential equations A A
Let us recall that the OU process U* defined through dU;/ = —U/ dt +
2~V dW, has a generating operator AU” given by

AVF() = —f(3) + 37,

For a bounded and uniformly continuous function ¢(x), the following Cauchy
problem

ot
u*(0,x) =1, t=0,xeR

(t,x)=4 []/"1,{’1(17 X) + /Izc(x)ui(t, x), t>0,xeR,

can be proved to have a unique solution (in the class of bounded functions) in the
form

u*(t,x) = E, exp{/lz Jt (UM ds}

0

(see Section 1.5 in [4] for more details). Then the solution u*(¢,x) of the Cauchy
problem has an asymptotic expansion at (1,0) as follows

u*(1,0) = E exp{izjl (U ds}

0
—exp{ 7 Uol c(ho(9) s~ S()| | Lz Ko+ o(/l_<s_2))]

provided the maximum of j()l c(@(s)) ds — S(¢p) over the space Cy[0,1] is reached
uniquely at ¢,.
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3.4. Appendix
In this section we give the detalls for several facts used in Section 3.2.
(a) The proof of F'(¢y)(U") = ([, zo(t) dU! + [y U}zp(z) di) = 0 is included
here. Noticing that F’ (¢0) is a bounded and linear functional on the space
Co[0, 1], we have
1

F'(4)($) = j #(1) dV (1)

0

for some right continuous function 7 (¢) of bounded variation on [0, 1]. Without
loss of generality, we impose V(1) = 0. Since the maximum of F — S is reached
uniquely at ¢, for any continuously differentiable function ¢, it is true that

F'(¢0)(¢) — S"(o)(¢) =
Thus

1 1
0= F'(4o)(#) — S'(4o)(¢) = jo H(dV (1) — L (Bo(1) + 44(0) ($(1) + /(1)) dt

1

1 1
- —j OV (1) di L [<¢o<z> + () + J (bo(s) + 44(s)) ds| ¢/ (1)

0

from which it follows
1
V() = (o) + 500 = | (8o(5) + (o) ds

The assumption V(1) =0 implies ¢y(1) + @o(1) =0. Now the proof follows
from integration by parts.

(b) Here we prove that P{A*! < ||U!||} tends to zero exponentially fast.
From the representation U, = e™"W{; 51, it follows that

P < |UY} < P{ﬂ“ < max |W,|}
0<r<(1/2)(e2-1)

which goes to zero exponentially fast as 1 — oo.
(c) For any constant o > 0, there is some f(;j) > 0 depending only on j such
that

E|U'|7 < B()E exp{a| U"||}.

Then it follows from the representation UI1 = e "W )1y that

E|U'|” < B())E exp{ <;<r(?/a2)>(<g:1>|Wf|2} < oo for small o.
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