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Abstract

For a family of Ornstein-Uhlenbeck processes having an infinitesimal size of noise,

we prove precise asymptotics for large deviations of an integral form over the con-

tinuous path space. The main ingredients in the proof are an exponential change of

measures and subtle Taylor expansions with suitable estimates. An application of these

precise integral large deviations to partial di¤erential equations is included.

1. Introduction

In this paper, we consider Ornstein-Uhlenbeck (OU) processes fU lg0ata1 on
some probability space ðW;F;PÞ with a small size of magnitude Oðl�1Þ.
Namely, for each fixed l, the process U l is determined as the unique solution
to the stochastic di¤erential equation

dU l
t ¼ �U l

t dtþ l�1 dWt; U l
0 ¼ 0:ð1:1Þ

The main subject of this paper is to study the precise asymptotics as l ! y
for the expectation E expfl2F ðU lÞg under suitable assumptions on the func-
tion F over the continuous function space C½0; 1�. This is one form of large
deviations.

Large deviations in limit theorems can be formulated as follows. Let X be a
metric space with metric r, and me be a family of probability measures on X
depending on a parameter e > 0. Suppose there is a point x� A X such that
for any d > 0 and small e, mefy : rðx�; yÞ < dg have overwhelming probabilities:
lime!0 m

efy : rðx�; yÞ < dg ¼ 1. Problems on large deviations are concerned with
the limiting behavior as e ! 0 of the small probabilities meðAÞ for measurable sets
AJX that are situated at a positive distance from point x� (cf. [1]). Problems
concerning asymptotics as e ! 0 of integrals in the form

Ð
X
feðxÞmeðdxÞ also
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belong to large deviations if the main part of such integrals for small e is due to
the values of x far away from point x� (cf. [8]).

The study on large deviations of integral forms for stochastic processes xe
t

defined on probability spaces ðW;F;P eÞ is generally obtained in the sense of
logarithmic equivalence: ln EefeðxeÞ@ gðe; feÞ, where we use E e to denote the
mathematical expectation with respect to measure P e (see [2], [7] and [8]). These
results are generally called rough large deviations. It is natural to expect more
precise large deviations under more assumptions on the processes and the
functional. Indeed, for the family of stochastic processes f

ffiffi
e

p
Wtg0ata1 with

W denoting the standard Wiener process, Schilder showed in [6] the following
precise large deviations

E expfe�1Fð
ffiffi
e

p
WÞg ¼ expfe�1½Fðf0Þ � Sðf0Þ�g

X
0aias=2

Ki � e i þ oðes=2Þ

2
4

3
5

for some positive integer s depending on the smoothness of F , where the
normalized action functional SðfÞ ¼ 1

2

Ð 1

0 f
0ðtÞ2 dt for absolutely continuous f

and SðfÞ ¼ y for other f, and f0 is the unique maximizer of F � S over the
continuous path space. Then Ellis and Rosen in [3] proved similar precise large
deviations in the setting of Hilbert spaces for some Gaussian probability measures
(see also [5]). In this paper, we aim to prove the same type of precise large
deviations for E expfl2FðU lÞg:

The main result of this paper is formulated in Section 2. An exponential
change of measures for Markov processes is included in Section 3.1, which serves
as the main tool for the proof. Section 3.3 contains an application of these
precise large deviations to partial di¤erential equations.

2. The main result

We use C0½0; 1� to denote the space of all continuous functions on ½0; 1�
vanishing at zero, and C1

0 ½0; 1� the space of continuously di¤erentiable functions
vanishing at zero. On these spaces, the metric r induced by the uniform norm
k � k will be used:

rðf; jÞ ¼ kf� jk ¼ max
0ata1

jfðtÞ � jðtÞj:

OU process fU lg0ata1 defined by (1.1) is a Markov process with the gen-
erating operator

AU l

f ðxÞ ¼ �xf 0ðxÞ þ 1

2
l�2f 00ðxÞ:

We introduce the cumulant GU l

of U l as follows

GU lðx; zÞ ¼ �zxþ 1

2
l�2z2 ¼ l2G0ðx; l�2zÞ
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with G0ðx; zÞ ¼ �zxþ 1
2 z

2. The Legendre transformation H0ðx; uÞ of G0ðx; zÞ in
its second argument is defined by:

H0ðx; uÞ ¼ sup
z AR

½z � u� G0ðx; zÞ� ¼
1

2
ðxþ uÞ2:

Now we define the normalized action functional S over the space C0½0; 1� as

SðfÞ ¼
ð1

0

H0ðfðtÞ; f 0ðtÞÞ dt

for absolutely continuous function f, and SðfÞ ¼ y otherwise. This functional
is lower semi-continuous (cf. Section 3.1 in [8]).

Theorem 2.1. Let F be a measurable functional on C0½0; 1� which is bounded
above. Suppose that the maximum of the functional F � S over the space C0½0; 1�
is attained at a unique function f0 A C 1

0 ½0; 1�, and that F is s times Fréchet di¤er-
entiable at f0 in the uniform topology with F 00ðf0Þðf; fÞa 0 for any f A C0½0; 1�.
Then as l ! y,

E expfl2FðU lÞg ¼ expfl2½Fðf0Þ � Sðf0Þ�g
X

0aias�2

Kil
�i þ oðl�ðs�2ÞÞ

" #
ð2:1Þ

where the coe‰cients Ki are determined by F and its derivatives at f0; in particular
K0 ¼ E exp

�
1
2F

00ðf0ÞðU 1;U 1Þ
�
.

3. The proof and an application

3.1. Exponential change of measures
Following [8], we here define a new probability measure which is an

exponential change of the original probability measure P. To this end, we
introduce functions

zlðtÞ ¼ l2z0ðtÞ; where z0ðtÞ ¼
qH0

qu
ðf0ðtÞ; f 0

0ðtÞÞ ¼ f0ðtÞ þ f 0
0ðtÞ:

The new family of probability measures is defined as

Pz lðAÞ :¼
ð
A

exp

ð1

0

zlðtÞ dU l
t � l2

ð1

0

G0ðU l
t ; z0ðtÞÞ dt

� �
dP:ð3:1Þ

For each l > 0, under the new probability measure Pz l , the process U l is again
a Markov process with the generating operator (cf. Section 2.2 in [8])

Az l

t f ðxÞ ¼ qG0

qz
ðx; z0ðtÞÞ f 0ðxÞ þ 1

2
l�2f 00ðxÞ:
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Then it turns out that the normalized process hl
t :¼ lðU l

t � f0ðtÞÞ as a Markov
process has the generating operator

Ahl

f ðxÞ ¼ �xf 0ðxÞ þ 1

2
f 00ðxÞ;

from which it follows that hl under Pz l and U 1 under P have the same
distribution on the space C0½0; 1�:

The proof of Theorem 2.1 will rest on the next lemma. For every s > 0, put

FðsÞ ¼ ff : f A C0½0; 1� and SðfÞa sg:

The set FðsÞ is compact in C0½0; 1� (cf. Section 3.1 in [8]).

Lemma 3.1. (i) For any d > 0, g > 0 and s0 > 0, there exists l0 > 0 such that

PfrðU l; fÞ < dgb expf�l2½SðfÞ þ g�g

for any l > l0 and any f A Fðs0Þ;
(ii) For any d > 0, g > 0 and s0 > 0, there exists l0 > 0 such that

PfrðU l;FðsÞÞb dga expf�l2ðs� gÞg

for any l > l0 and any sa s0:

Remark 3.2. Lemma 3.1 shows that the family of U l satisfies a large
deviation principle. There are several equivalent definitions for a large deviation
principle (see Section 3.3 in [4] and the Introduction in [8]), and here we
adopt the definition in [4]. Formally speaking, the large deviation principle in
Lemma 3.1 states that as l ! y, the process U l will stick around the path f�
such that Sðf�Þ ¼ 0. Away from the most probable path f�, the probability
tends to zero exponentially fast.

Remark 3.3. The proof of this lemma is a direct application of Theorem
5.6.3 in [2]. More precisely, large deviation principles are proved in [2] for more
general families of processes X e determined by

dX e
t ¼ bðX e

t Þ dtþ
ffiffi
e

p
dWt; 0a ta 1; X e

0 ¼ 0

with a uniformly Lipschitz continuous function bð�Þ : R ! R:

3.2. Taylor’s expansions
From Lemma 3.1 and the assumption that F is bounded above, it follows

that for any e > 0, there exists some g > 0 such that as l ! y (cf. Lemma 0.1
in [8]),

E expfl2F ðU lÞg

¼ E½1fkU l�f0k<eg expfl2F ðU lÞg� þ oðexpfl2½Fðf0Þ � Sðf0Þ � g�gÞ:
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Since the second term given by oðexpf�l2ggÞ goes to zero exponentially fast, our
main concern is on the first term. Keeping in mind that hl

t ¼ lðU l
t � f0ðtÞÞ, we

have

E½1fkU l�f0k<eg expfl2F ðU lÞg�ð3:2Þ

¼ Ez l
�
1fkhlk<elg exp

�
l2F ðU lÞ �

ð1

0

zlðtÞ dU l
t

þ l2
ð 1

0

G0ðU l
t ; z0ðtÞÞ dt

��

¼ E

�
1fkU 1k<elg exp

�
l2Fðf0 þ l�1U 1Þ � l

ð1

0

z0ðtÞ dU 1
t

� l2
ð1

0

ðz0ðtÞf 0
0ðtÞ � G0ðf0ðtÞ þ l�1U 1

t ; z0ðtÞÞÞ dt
��

:

Now we apply Taylor’s expansions to F at the point f0 up to order s with
Peano’s remainder

Fðf0 þ l�1U 1Þ ¼ F ðf0Þ þ l�1F 0ðf0ÞðU 1Þ

þ � � � þ l�s

s!
F ðsÞðf0ÞðU 1; . . . ;U 1Þ þ oðl�skU 1ksÞ:

Thus (3.2) is equal to

¼ expfl2½Fðf0Þ � Sðf0Þ�g

� E

�
1fkU 1k<elg exp

�
l F 0ðf0ÞðU 1Þ �

ð1

0

z0ðtÞ dU 1
t þ

ð 1

0

U 1
t z0ðtÞ dt

� 	� �

þ 1

2
F 00ðf0ÞðU 1;U 1Þ þ 1

6
l�1F 000ðf0ÞðU 1;U 1;U 1Þ

þ � � � þ l�ðs�2Þ

s!
F ðsÞðf0ÞðU 1; . . . ;U 1Þ þ oðl�ðs�2ÞkU 1ksÞ

��
:

The identity F 0ðf0ÞðU 1Þ � ð
Ð 1

0 z0ðtÞ dU 1
t þ

Ð 1

0 U
1
t z0ðtÞ dtÞ ¼ 0 (see Appendix (a)

for the proof ) implies that (3.2) is equal to

¼ expfl2½F ðf0Þ � Sðf0Þ�gð3:3Þ

� E

�
1fkU 1k<elg exp

�
1

2
F 00ðf0ÞðU 1;U 1Þ þ 1

6
l�1F 000ðf0ÞðU 1;U 1;U 1Þ

þ � � � þ l�ðs�2Þ

s!
F ðsÞðf0ÞðU 1; . . . ;U 1Þ þ oðl�ðs�2ÞkU 1k sÞ

��
:
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We now break the set fkU 1k < elg into two parts: fl0:1 a kU 1k < elg and
fkU 1k < l0:1g. First we consider the first part fl0:1 a kU 1k < elg. For any
b > 0, there is a small e > 0 such that

E

�
1fl0:1

akU 1k<elg exp

�
1

2
F 00ðf0ÞðU 1;U 1Þ þ 1

6
l�1F 000ðf0ÞðU 1;U 1;U 1Þ

þ � � � þ l�ðs�2Þ

s!
F ðsÞðf0ÞðU 1; . . . ;U 1Þ þ oðl�ðs�2ÞkU 1ksÞ

��

aE 1fl0:1
akU 1k<elg exp

1

2
F 00ðf0ÞðU 1;U 1Þ þ bkU 1k2

� �� �

a ½Pfl0:1 a kU 1kg � E expf2bkU 1k2g�1=2

where in the last inequality the assumption F 00ðf0ÞðU 1;U 1Þa 0 is applied.
From Doob’s transform, it follows U 1

t @ e�tW1=2ðe2t�1Þ in the sense of distri-

bution. Thus the expectation on the first part fl0:1 a kU 1k < elg tends to
zero exponentially fast (see Appendix (b)). So we just need to deal with the
expectation on the second part fkU 1k < l0:1g. Set

al ¼
1

6
l�1F 000ðf0ÞðU 1;U 1;U 1Þ

þ � � � þ l�ðs�2Þ

s!
F ðsÞðf0ÞðU 1; . . . ;U 1Þ þ oðl�ðs�2ÞkU 1ksÞ:

On the set fkU 1k < l0:1g, noticing that liml!y al ¼ 0, we then apply eal ¼
1þ al þ � � � þ as�2

l =ðs� 2Þ!þ oðas�2
l Þ to see that

E

�
1fkU 1k<l0:1g exp

�
1

2
F 00ðf0ÞðU 1;U 1Þ þ 1

6
l�1F 000ðf0ÞðU 1;U 1;U 1Þ

þ � � � þ l�ðs�2Þ

s!
F ðsÞðf0ÞðU 1; . . . ;U 1Þ þ oðl�ðs�2ÞkU 1ksÞ

��

¼ E

�
1fkU 1k<l0:1g exp

1

2
F 00ðf0ÞðU 1;U 1Þ

� ��
1þ 1

6
l�1F 000ðf0ÞðU 1;U 1;U 1Þ

þ � � � þ l�ðs�2Þðsth:Þ þ oðl�ðs�2Þ½kU 1ks þ kU 1k3ðs�2Þ�Þ
	�

¼
X

0aiaðs�2Þ
Kil

�i � E

�
1fkU 1kbl0:1g exp

1

2
F 00ðf0ÞðU 1;U 1Þ

� �

� 1þ 1

6
l�1F 000ðf0ÞðU 1;U 1;U 1Þ þ � � � þ l�ðs�2ÞR

� 	�

þ E 1fkU 1k<l0:1g exp
1

2
F 00ðf0ÞðU 1;U 1Þ

� �
oðl�ðs�2Þ½kU 1k s þ kU 1k3ðs�2Þ�Þ

�
:

�
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From a fact in Appendix (c) that EkU 1k j < y for any positive integer j, it
follows

E

�
1fkU 1kbl0:1g exp

1

2
F 00ðf0ÞðU 1;U 1Þ

� �

� 1þ 1

6
l�1F 000ðf0ÞðU 1;U 1;U 1Þ þ � � � þ l�ðs�2ÞR

� 	�

tends to zero exponentially fast, and

E 1fkU 1k<l0:1g exp
1

2
F 00ðf0ÞðU 1;U 1Þ

� �
oðl�ðs�2Þ½kU 1ks þ kU 1k3ðs�2Þ�Þ

� �

¼ oðl�ðs�2ÞÞ:

The proof of Theorem 2.1 is complete.

3.3. An application to partial di¤erential equations
Let us recall that the OU process U l defined through dU l

t ¼ �U l
t dt þ

l�1 dWt has a generating operator AU l

given by

AU l

f ðxÞ ¼ �xf 0ðxÞ þ 1

2
l�2f 00ðxÞ:

For a bounded and uniformly continuous function cðxÞ, the following Cauchy
problem

qul

qt
ðt; xÞ ¼ AU l

ulðt; xÞ þ l2cðxÞulðt; xÞ; t > 0; x A R;

ulð0; xÞ ¼ 1; t ¼ 0; x A R

8><
>:

can be proved to have a unique solution (in the class of bounded functions) in the
form

ulðt; xÞ ¼ Ex exp l2
ð t

0

cðU l
s Þ ds

� �

(see Section 1.5 in [4] for more details). Then the solution ulðt; xÞ of the Cauchy
problem has an asymptotic expansion at ð1; 0Þ as follows

ulð1; 0Þ ¼ E exp l2
ð1

0

cðU l
s Þ ds

� �

¼ exp l2
ð1

0

cðf0ðsÞÞ ds� Sðf0Þ
� �� � X

0aias�2

Ki � l�i þ oðl�ðs�2ÞÞ
" #

provided the maximum of
Ð 1
0 cðfðsÞÞ ds� SðfÞ over the space C0½0; 1� is reached

uniquely at f0:

533precise large deviations for ornstein-uhlenbeck processes



3.4. Appendix
In this section we give the details for several facts used in Section 3.2.
(a) The proof of F 0ðf0ÞðU 1Þ �


Ð 1
0 z0ðtÞ dU 1

t þ
Ð 1
0 U

1
t z0ðtÞ dt

�
¼ 0 is included

here. Noticing that F 0ðf0Þ is a bounded and linear functional on the space
C0½0; 1�, we have

F 0ðf0ÞðfÞ ¼
ð1

0

fðtÞ dVðtÞ

for some right continuous function VðtÞ of bounded variation on ½0; 1�. Without
loss of generality, we impose Vð1Þ ¼ 0. Since the maximum of F � S is reached
uniquely at f0, for any continuously di¤erentiable function f, it is true that

F 0ðf0ÞðfÞ � S 0ðf0ÞðfÞ ¼ 0:

Thus

0 ¼ F 0ðf0ÞðfÞ � S 0ðf0ÞðfÞ ¼
ð1

0

fðtÞdVðtÞ �
ð1

0

ðf0ðtÞ þ f 0
0ðtÞÞðfðtÞ þ f 0ðtÞÞ dt

¼ �
ð1

0

f 0ðtÞVðtÞ dt�
ð1

0

ðf0ðtÞ þ f 0
0ðtÞÞ þ

ð1

t

ðf0ðsÞ þ f 0
0ðsÞÞ ds

� �
f 0ðtÞ dt

from which it follows

VðtÞ ¼ �ðf0ðtÞ þ f 0
0ðtÞÞ �

ð1

t

ðf0ðsÞ þ f 0
0ðsÞÞ ds:

The assumption Vð1Þ ¼ 0 implies f0ð1Þ þ f 0
0ð1Þ ¼ 0. Now the proof follows

from integration by parts.
(b) Here we prove that Pfl0:1 a kU 1kg tends to zero exponentially fast.

From the representation U 1
t ¼ e�tWð1=2Þðe2t�1Þ, it follows that

Pfl0:1 a kU 1kgaP l0:1 a max
0atað1=2Þðe2�1Þ

jWtj
� �

which goes to zero exponentially fast as l ! y.
(c) For any constant a > 0, there is some bð jÞ > 0 depending only on j such

that

EkU 1k j
a bð jÞE expfakU 1k2g:

Then it follows from the representation U 1
t ¼ e�tWð1=2Þðe2t�1Þ that

EkU 1k j
a bð jÞE exp a max

0atað1=2Þðe2�1Þ
jWtj2

� �
< y for small a:
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