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ON TRIANGLES IN THE UNIVERSAL TEICHMÜLLER SPACE
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Abstract

Let TðDÞ be the universal Teichmüller space, viewed as the set of all Teichmüller

equivalent classes ½ f � of quasiconformal mappings f of D onto itself. The notion of

completing triangles was introduced by F. P. Gardiner. Three points ½ f �, ½g� and ½h� are
called to form a completing triangle if each pair of them has a unique geodesic segment

joining them. Otherwise, they form a non-completing triangle. In this paper, we

construct two Strebel points ½ f � and ½g� such that ½ f �, ½g� and ½id � form a non-completing

triangle. A su‰cient condition for points ½ f �, ½g� and ½id � to form a completing triangle

is also given.

§1. Introduction

Let D be the unit disc on the complex plane C. By QCðDÞ we denote the set
of all quasiconformal mappings of D onto itself that keep 1, �1 and i fixed.
Two elements f and ~ff of QCðDÞ are said to be Teichmüller equivalent, denoted
by f @ ~ff or m@ ~mm, if and only if ([1], [7], [9], [10])

f jqD ¼ ~ff jqD;

where m and ~mm are the complex dilatations of f and ~ff respectively.
We denote by BelðDÞ the Banach space of Beltrami coe‰cients mðzÞ on D

with finite Ly-norm and denote by MðDÞ the open unit ball in BelðDÞ. For any
m A MðDÞ, there exists a quasiconformal mapping f from D onto itself with
Beltrami coe‰cient m as its complex dilatation and keeps 1, �1 and i fixed.

The Teichmüller equivalent class of a quasiconformal mapping f A QCðDÞ
with m as its complex dilatation is denoted by ½ f � or ½m�. Then the universal
Teichmüller space of D is defined as

TðDÞ :¼ f½ f � : f A QCðDÞg ¼ f½m�; m is the complex dilatation of f A QCðDÞg;
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or equivalently,

TðDÞ :¼ QCðDÞ=@:

Let id : D ! D be the identity map. We call ½id � the base-point of TðDÞ.
A quasiconformal mapping f A QCðDÞ or m is said to be extremal, if

Kð f ÞaKð ~ff Þ : for each ~ff A ½ f �;

where Kð ~ff Þ is the maximal dilatation of the quasiconformal mapping ~ff and m is
the complex dilatation of f . f is said to be uniquely extremal if it is extremal
and if

Kð ~ff Þ > Kð f Þ

holds for any ~ff A ½ f � other than f .
For a given point ½ f � of TðDÞ, we define the quantity

K0ð½ f �Þ :¼ inffKð ~ff Þ : ~ff A ½ f �g;

which is called the extremal maximal dilatation of the point ½ f �.
We also need another quantity of ½ f �:

Hð½ f �Þ :¼ inf
~ff A ½ f �;EHD

fKð ~ff jDnEÞg;

where E ranges over all compact subsets of D. Hð½ f �Þ is called the boundary
dilatation of ½ f �.

Following [3], a point ½ f � of TðDÞ is called a Strebel point, if
Hð½ f �Þ < K0ð½ f �Þ. Otherwise, it is called a non-Strebel point.

For every point ½ f �, we have Hð½ f �ÞaK0ð½ f �Þ. So ½ f � is a non-Strebel
point, if and only if Hð½ f �Þ ¼ K0ð½ f �Þ.

Let z be a point in the boundary qD of D and let m A MðDÞ. Denote

h�
z ðmÞ ¼ inffkmjUkyjU is an open disk in C containing zg;

where m is equal to 0 outside of D.
Let

hzð½m�Þ ¼ inffh�
z ðnÞ j n A ½m�g:

Then the local boundary dilatations at z of m A MðDÞ and t ¼ ½m� A TðDÞ are
defined as

H �
z ðmÞ ¼

1þ h�
z ðmÞ

1� h�
z ðmÞ

and

Hzð½m�Þ ¼
1þ hzð½m�Þ
1� hzð½m�Þ

;

respectively [15].
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If there exists a point z A qD such that

Hzð½m�Þ ¼ K0ð½ f m�Þ;
then we call z a essential boundary point.

Let ½ f � and ½g� be any two points of TðDÞ. The Teichmüller distance
between them is defined as

dTð½ f �; ½g�Þ :¼
1

2
infflog KðhÞ : h@ f � g�1g

1
1

2
log K0ð½ f � g�1�Þ:

It is well-known that for any Beltrami coe‰cient m in MðDÞ which is
extremal, the image of the map from hyperbolic disc to TðDÞ,

Gm : D ! TðDÞ; t ! t

kmky
m

� �

is a holomorphic isometry [2]. We call this image a Teichmüller disc in TðDÞ.
A curve g in TðDÞ with initial point t1 and terminal point t2 is called a

geodesic segment joining t1 and t2, if g is the isometric image of ½a; b� into TðDÞ
with respect to the Euclidian metric of ½a; b� and the Teichmüller metric of TðDÞ,
respectively.

It is a well-known fact that, if t ðt0 ½id �Þ is a Strebel point, then the
geodesic segment joining ½id � and t is unique. While if t is a non-Strebel point
that contains an extremal mapping of landslide type ([11], [21]),1 then there are
infinitely many geodesic segments joining ½id � and t ([3] or [2], [12], [13], [20]).

Let t0, t1 and t2 be three distinct points in TðDÞ. According to Frederick
P. Gardiner ([6]), they form a ‘‘completing triangle’’, if for each pair of them,
there is only one geodesic segment joining them. Otherwise, they form a ‘‘non-
completing triangle’’.

Now we introduce some background and motivation of our study. We first
give some definitions. By definition, a geodesic disc in a metric space M is the
image of an isometric embedding I : D ! M of D into M with respect to the
Poincaré metric and the metric of M, respectively. And a totally geodesic set S
of a metric space M is the set such that for any two points p and q in S, all the
geodesic segments connecting p and q are contained in S. For a geodesic disc, if
it is also a totally geodesic set, then it is called a totally geodesic disk.

An unresolved problem is to describe geodesic discs and totally geodesic
discs in Teichmüller space. It is well-known that all Teichmüller discs are
totally geodesics. But we do not know much about the geodesic discs and
totally geodesic discs in Teichmüller spaces. For example, many people believe a

1An extremal quasiconformal mapping f : D ! D is called of landslide type if there is a constant

d > 0 and an open set U HU HD such that jmf ðzÞjU a kmf ky � d, where mf is the Beltrami coe‰cient

of f .
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geodesic disc in finite dimensional Teichmüller space should be a Teichmüller
disc. This is an open problem for a long time. The referee told the authors
that a graduate student of McMullen recently solves this problem a‰rmatively.
And we don’t know any details for this result. It is proved [14] that, in infinite
dimensional Teichmüller spaces, there exist infinite many geodesic discs such that
the intersection set of these geodesic discs is a closed set. And a geodesic disc
should not be a holomorphic disc in infinite dimensional Teichmüller spaces.

But there are still many questions relating to this. For example, can we find
a totally geodesic disc in Teichmüller space which is not a Teichmüller disc?
And if all the points in a geodesic disc are Strebel points, is this geodesic disk
a totally geodesic disk? Here a related question is, for two Strebel points p and
q, is the geodesic segment connecting them unique? Actually this question is
equivalent to whether the three points ½id �, p, q form a completing triangle.

Then it is natural to ask the following questions:

Question A. For arbitrarily given two Strebel points t1 and t2, do the
three points t1, t2 and ½id � always form a completing triangle?

If the answer of this question is negative, then we may consider:

Question B. Suppose both t1 and t2 are two Strebel points. What are the
conditions for the three points t1, t2 and ½id � to form a completing triangle?

In this paper, it is shown that the answer to Question A is negative, and a
su‰cient condition for t1, t2 and ½id � to form a completing triangle is provided.

Theorem 1. There are two Strebel points t1 and t2 with t1 0 t2 such that
t1, t2 and ½id � do not form a completing triangle.

Theorem 2. Suppose both ½ f � and ½gK � are Strebel points. Moreover, gK is
a Teichmüller mapping whose Beltrami coe‰cient is

mK ¼ K � 1

K þ 1

f

jfj ðK > 1Þ;

where f is an integrable holomorphic quadratic di¤erential on D. If K is
su‰ciently closed to 1, then the three points t ¼ ½ f �, tK ¼ ½gK � f � and ½id �
form a completing triangle.

We will prove Theorem 1 and Theorem 2 in §2.

§2. Proof of Theorems

Now we are going to prove Theorem 1, that is to construct a counter
example for Question A.
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Proof of Theorem 1. Take a strip:

Q :¼ fxþ iy : 0 < x < þy; 0 < y < 1g:

With the Caratheodory prime-endpoint topology, Q is conformally equivalent
to D. In what follows, by þy we denote the prime endpoint of qQ, which is
the limit of the points xþ iy A Q as x tends to þy, with respect to the prime-
endpoint topology.

Let QCðQÞ be the set of all quasiconformal mappings of Q onto itself that
keep 0, i and þy fixed. Similarly as before, we can define the Teichmüller
equivalent class ½ f � of f A QCðQÞ and the Teichmüller space

TðQÞ :¼ f½ f � : f A QCðQÞg:

All of other terminologies and notations in §1, such as K0½ f �, H½ f � and the
concepts of Strebel points or non-Strebel points, can be established for the space
TðQÞ.

We will construct our counter examples with TðQÞ instead of TðDÞ for
convenience.

Let K be a real number with K > 1. We define a function xKðxÞ on
½0;þyÞ as following:

xKðxÞ ¼ 1; as 0a xa 1;

xKðxÞ ¼ ð2� xÞ þ ðx� 1ÞK ; as 1 < xa 2;

xKðxÞ ¼ K ; as 2 < xa 3;

xKðxÞ ¼ ð4� xÞK þ ðx� 3Þ; as 3 < xa 4;

xKðxÞ ¼ 1; as x > 4:

Let

LKðxÞ :¼
ð x

0

xKðtÞ dt:

Then we have a quasiconformal mapping FK of Q onto itself:

FK : xþ iy 7! LKðxÞ þ iy; Exþ iy A Q:

By mK we denote the Beltrami coe‰cient of the mapping FKðzÞ. A simple
computation shows

mKðzÞ ¼
xKðxÞ � 1

xKðxÞ þ 1
; Ez ¼ xþ iy A Q:

Hence FKðzÞ is a conformal mapping in ð0; 1Þ � ð0; 1Þ and ð4;yÞ � ð0; 1Þ.
Now we claim that, for any K > 1, the boundary dilatation of ½FK � must be

1, namely

Hð½FK �Þ ¼ 1:ð2:1Þ
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Indeed, since FK jð0;þyÞ is C 1-smooth at any boundary point z ¼ x with

0 < x < þy of qQ, the local boundary dilatation of FK jqQ at z ¼ x is 1 (see
[15]). The same discussion and the same conclusion hold for any boundary point
z ¼ xþ i with 0 < x < þy. On the other hand, by the definition of the local
boundary dilatation, the fact that FK jð0;1Þ�ð0;1Þ is a conformal mapping implies

that the local dilatation of FK jqQ at the boundary point z ¼ iy with 0 < y < 1 is

equal to 1, and so dose it at z ¼ 0 and z ¼ i. The local boundary dilation of
FK jqQ at z ¼ þy is also equal to 1, because FK jð4;þyÞ�ð0;1Þ is conformal. Now

we conclude that the local boundary dilatation of FK jqQ at any boundary point

is 1. By the Fehlmann’s theorem ([4], [5]), we get Hð½FK �Þ ¼ 1.
By the definition of FK , it is easy to check that K0ð½FK �Þ > 1. Combining

with (2.1) we know that ½FK � is a Strebel point.
Let t1 ¼ ½FK �, the point that we need in Theorem 1. Now we want to find

another Strebel point t2 that we need in Theorem 1.
Now we define a map 1 : Q ! Q as follows:

1ðxþ iyÞ ¼ xþ iy; as 0 < x < 1; 0 < y < 1; and

1ðxþ iyÞ ¼ 1þ K0ðx� 1Þ þ iy; as xb 1; 0 < y < 1;

where K0 > 1 is a constant.
Based on the result ([19]) of K. Strebel, we know that 1 is an extremal

quasiconformal mapping with the maximal dilatation K0 and þy is an essential
boundary point. The local boundary dilatations of 1jqQ at both points 1 and
1þ i are equal to ([15])

l0 :¼ 1þ log2 K0

2p2
þ log K0

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ log2 K0

4p2

s
:

While the local boundary dilatation of 1jqQ at any boundary point z ðz0 1;
1þ i;þyÞ is 1. Noting the fact that l0 < K0 when K0 is large enough, we see
þy is the unique essential boundary point of 1jqQ.

Let F be a conformal mapping of Q onto itself with the following boundary
correspondance:

FðþyÞ ¼ 0; Fð0Þ ¼ i; FðiÞ ¼ þy:

We define G as F � 1 �F�1. Then G belongs to QC and is an extremal mapping
with KðGÞ ¼ K0. The local boundary dilatation of GjqQ at 0 is equal to K0.

The local boundary dilatations of GjqQ at both points Fð1Þ and Fð1þ iÞ are
equal to l0. At any other point, it is equal to 1.

Recalling K0 > l0 again, we know that ½G� is a non-Strebel point of TðQÞ.
Let mG be the Beltrami coe‰cient of G. Then mGðzÞjU ¼ 0, where U :¼

fxþ iy : x > N; 0 < y < dg for some d with 0 < d < 1 and a su‰ciently large N.
By the known results (for example [13] or [20]), there are infinitely many geodesic
segments joining ½G� and ½id �.
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Now we suppose K > K0 and let fK ¼ G � FK . Recalling the properties of
the local boundary dilatation of G and FK , it is clear that

Hð½ fK �Þ ¼ K0:

Now we fix K0 and let K change. We claim that, when K is su‰ciently
large, the point ½ fK � is a Strebel point of TðQÞ.

To prove our claim, we focus on the rectangle R ¼ ½0; 3� � ½0; 1�. Since
FK j½2;3��½0;1� is an a‰ne mapping with a factor K , we know that

lim
K!y

Modð fKðRÞÞ
ModðGðRÞÞ ¼ þy;

which implies

lim
K!y

fKð3Þ ¼ þy:ð2:2Þ

For the domains Q½i;þy; 3; 0� and Q½i;þy; fKð3Þ; 0�, it follows from (2.2)
that

lim
K!þy

ModðQ½i;þy; fKð3Þ; 0�Þ
ModðQ½i;þy; 3; 0�Þ ¼ þy

Therefore, when K is su‰ciently large, we have

ModðQ½i;þy; fKð3Þ; 0�Þ
ModðQ½i;þy; 3; 0�Þ > K0:ð2:3Þ

From now on we suppose K is large enough so that (2.3) holds.
Let ~ffK be any element in ½ fK �, namely ~ffK jqQ ¼ fK jqQ. We have

ModðQ½i;þy; ~ffKð3Þ; 0�Þ
ModðQ½i;þy; 3; 0�Þ > K0;ð2:4Þ

then it follows from (2.4) that

K0½ fK � > K0:ð2:5Þ

On the other hand, Hð½FK �Þ ¼ 1 implies Hð½ fK �Þ ¼ Hð½G�Þ ¼ K0. From
(2.5) we get

K0ð½ fK �Þ > Hð½ fK �Þ;

which means that ½ fK � is a Strebel point of TðQÞ.
Let t1 ¼ ½FK � and t2 ¼ ½ fK �. Then t1 and t2 are the points we desired in

Theorem 1.
To prove this, we need to show that there are infinitely many geodesic

segments joining t1 and t2.
It is clear that fK � ðFKÞ�1 ¼ G. We have known that there are infinitely

many geodesic segments joining ½id � and ½G�.
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Suppose g : ½0; t0� ! TðQÞ is a geodesic segment with gð0Þ ¼ ½id � and
gðt0Þ ¼ ½G�. This means

dTðgðt1Þ; gðt2ÞÞ ¼ jt1 � t2j; Et1; t2 A ½0; t0�:

Suppose gðtÞ ¼ ½Gt�, where Gt A QCðQÞ. Then, by the definition of dT , we have

jt1 � t2j ¼ dTðgðt1Þ; gðt1ÞÞ ¼ dTð½Gt1 �; ½Gt2 �Þ
¼ dTð½Gt1 � FK �; ½Gt2 � FK �Þ:

This means that ½Gt � FK � : ½0; t0� ! TðQÞ is a geodesic segment, which joins
½FK � ¼ t1 and ½G � FK � ¼ ½ fK � ¼ t2. We denote this geodesic segment by Gg. It
is easy to check, if g1 and g2 are distinct geodesic segments joining ½id � and ½G�,
then Gg1 is di¤erent from Gg2 . We get infinitely many geodesic segments joining
½FK � ¼ t1 and ½ fK � ¼ t2.

This is the counter example that we need for Question A: Then the proof
of Theorem 1 is completed. r

Remark 1. By the proof of Theorem 1, we know that there are two Strebel
points t1 and t2 such that there exist infinitely many geodesic segments joining
them. Next we will prove the following proposition:

Proposition. There exist two non-Strebel points ½m1� and ½m2� such that there
is only one geodesic segment joining them.

To prove Proposition, we need a notation and a lemma as follows:
The notion of non-decreasable dilatation for quasiconformal mappings was

introduced by Edgar Reich ([16]). An element g in ½ f � has a non-decreasable
dilatation (or its Beltrami coe‰cient n is called non-decreasable), if for any h in
½ f � together with the condition

joja jnj almost everywhere in D;

then g ¼ h, where o is the Beltrami coe‰cients of h.

Lemma ([18]). Let j be a holomorphic function on D. If Beltrami coe‰cient

k
jjj
j

ð0 < k < 1Þ is uniquely extremal, then for any non-negative measurable

function kðzÞ, kkðzÞky < 1, the inverse of the mapping with complex dilatation

mðzÞ ¼ kðzÞ jjj
j

has non-decreasable dilatation.

Proof of Proposition. Let Q be defined as before and

Q1 :¼ xþ iy : 1 < x < 2;
1

4
< y <

3

4

� �
:
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We define m1ðzÞ and m2ðzÞ on Q by

m1ðzÞ :¼
2k; as z A Q�Q1;
3k

2
; as z A Q1:

8<
: ;

m2ðzÞ :¼
k; as z A Q�Q1;

0; as z A Q1:

�
;

where 0 < k <

ffiffiffi
6

p

6
:

It is easy to prove that ([17])

K0½m1� ¼ H½m1� ¼
1þ 2k

1� 2k

and

K0½m2� ¼ H½m2� ¼
1þ k

1� k
:

Hence m1 and m2 are not Strebel points.
Let f1 and f2 be two quasiconformal mappings of Q onto itself with m1ðzÞ

and m2ðzÞ as their Beltrami coe‰cients respectively and keeping 0, i and þy
fixed.

There exists a conformal mapping j from D onto Q keeping 1, �1 and i
fixed. Let

~ffj ¼ j�1 � fj � j ð j ¼ 1; 2Þ:

Then the complex dilatation ~mm of ~gg ¼ j�1 � ~ff1 � ~ff �1
2 � j is

~mmðzÞ :¼

k

1� 2k2

jj 0j2

ðj 0Þ2
; as z A j�1ðQ�Q1Þ;

3k

2

jj 0j2

ðj 0Þ2
; as z A j�1ðQ1Þ:

8>>>><
>>>>:

;

where z ¼ j�1 � ~ff2 � jðzÞ: It is well-known that k
jj 0j2

ðj 0Þ2
is uniquely extremal

([19]).
By Lemma, we obtain that ~gg�1 has a non-decreasable dilatation. If

K0½~gg�1�a 1þ k

1� 2k2

� ��
1� k

1� 2k2

� �
;

then there exists n1 A ½m~gg�1 � such that kn1ky a
k

1� 2k2
.
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It is easy to know that when 0 < k <

ffiffiffi
6

p

6
,

k

1� 2k2
<

3k

2
. Combining with

the fact jm~gg�1 j ¼
3k

2
for z A j�1ðQ1Þ, we conclude that jn1ja jm~gg�1 j for any z A D:

So ~gg�1 does not have a non-decreasable dilatation. A contradiction appears.
Then we have

K0½~gg�1� > 1þ k

1� 2k2

� ��
1� k

1� 2k2

� �
:

Since

K0½~gg� ¼ K0½~gg�1�:
We get

K0½~gg� > 1þ k

1� 2k2

� ��
1� k

1� 2k2

� �
:

Moreover, we have ([19])

H½~gg� ¼ 1þ k

1� 2k2

� ��
1� k

1� 2k2

� �
:

We obtain that ½~gg� is a Strebel point. So ½ f1 � f �1
2 � is a Strebel point. We

conclude that there is only one geodesic segment joining ½ f1� and ½ f2�:
The proof of Proposition is completed. r

Proof of Theorem 2. Suppose t ¼ ½ f � and gK are given in Theorem 2. It is
known that the set of all Strebel points in TðDÞ is an open set (see [8]). So for
any given Strebel point ½ f �, there is a d ¼ dð½ f �Þ > 0 such that any point ½ ~ff �0 ½ f �
with dTð½ f �; ½ ~ff �Þ < d must be a Strebel point. It is clear that when K is
su‰ciently closed to 1, dT ð½ f �; ½gK � f �Þ < d and hence tK ¼ ½gK � f � is a Strebel
point.

On the other hand, from the result of [3], we know that for any K > 1, ½gK �
is a Strebel point. So there is only one geodesic segment joining t ¼ ½ f � and
tK ¼ ½gK � f �.

Therefore, when K > 1 is su‰ciently closed to 1, for instance, dTðt; tKÞ < d,
the three points t, tK and ½id � form a good triangle.

The proof of Theorem 2 is completed. r

Remark 2. We have the following question:

Question C. For ½ f � and gK as in Theorem 2, whether or not for all
K > 1, ½ f � gK � is always a Strebel point?

We conjecture that the answer to this question is negative in general.
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