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CHERN CLASSES AND THE ROST COHOMOLOGICAL INVARIANT
NOBUAKI YAGITA

1. Introduction

Let G be a simple simply connected Lie group G and Gy the corresponding
split linear algebraic group over a field k = C. Let p be a prime number. The
cohomological invariant Inv*(Gy;Z/p) is the ring of natural maps H!(F; Gy) —
H*(F;Z/p) for finitely generated field F over k. When the complex Lie group
G has p-torsion in H*(G), Rost constructed a nonzero invariant R(Gy) €
Inv3(Gy; Z/p) ([Ga-Me-Se]).

In this paper, we give a short proof of the existence of the Rost invariant for
k = C, by using the motivic cohomology and Chern classes of complex repre-
sentations of G.

2. Motivic cohomology

Recall that H'!(k; Gy) is the first non abelian Galois cohomology set of Gy,
which represents the set of Gi-torsors over k. The cohomological invariant is
defined by

Inv'(Gy, Z/p) = Func(H'(F; G,) — H'(F;Z/p))

where Func means the additive group of natural functions for each field F which
is finitely generated over k. (For detailed definition or properties, see the books
[Ga-Me-Se|, [Ga].)

Let BGy be the classifying space ([To]) of Gx. Totaro proved [Ga-Me-Se]
the following theorem in a letter to Serre.

Tueorem 2.1 (Totaro). Inv*(Gi;Z/p) = H(BGy; Hy,).

Here H*(X ;HZ*’/p) is the cohomology of the Zariski sheaf induced from the

presheaf H(V;Z/p) for open subsets ¥ of X. This sheaf cohomology is also
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isomorphic to the E,-term
E;" = H*(BGy; Hy),) = H"(BGy; Z/p)

of the coniveau spectral sequence by Bloch-Ogus [BIl-Og].

Next we recall the motivic cohomology. Let X be a smooth (quasi pro-
jective) variety over a field k = C. Let H**(X;Z/p) be the mod(p) motivic
cohomology defined by Voevodsky and Suslin ([Vol,2]).

Recently M. Rost and V. Voevodsky ([Vo4], [Su-Jo], [Ro]) proved the Bloch-
Kato conjecture. The Bloch-Kato conjecture implies the Beilinson-Lichtenbaum
conjecture. Hence, there holds

H"™"(X;Z[p) = H}}(X;12") for all m <n.

In this paper, we assume that k contains a primitive p-th root of unity.
Then there exists an isomorphism Hyy(X; ") =~ Hy/(X;Z/p). Let © be a gen-
erator of H%!(Spec(k);Z/p) = Z/p, so that

colim; 7' H**(X;Z/p) = H},(X;Z/p).

The Beilinson-Lichtenbaum conjecture also implies the exact sequences of coho-
mology theories below

THEOREM 2.2 ([Or-Vi-Vo), [Vo4]). There is the long exact sequence
— HN X Zp) S H(XZp)

— H"(X5HY,) — BN (G2 ) S5
In particular, we have

COROLLARY 2.3.  The cohomology H"™"(X;H} y p) is additively isomorphic to
H™"(X;Z/p)/(t) ® Ker(x) H" """ (X;Z/p)
where H™(X;Z/p)/(z) = H™(X:;Z/p)/(cH™""\(X; Z/p))

COROLLARY 2.4. The map xt:H™" (X;Z/p) — H™"(X;Z/p) is injec-
tive.

3. Lie groups

In this section, we assume that k = C the field of complex numbers. Sup-
pose that G is a simple simply connected Lie group having p-torsion in H*(G),
namely ([Mi-To], [Ka])

GZaF47E67E77E87Spinn (}’l = 7) for b= 2
(G7 p) = F4,E6,E77Eg for p= 3,
Eg for p=>5.
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It is well known ([Mi-To], [Ka]) that G is 2-connected and there is an
element x3(G) € H*(G;Z/p) = Z/p with Q1x3(G) # 0 for the Milnor operation
Q). Note that for each inclusion i: G < G’ for above groups, we know
i*(x3(G")) = x3(G). Consider the classifying space BG and its cohomology.
Denote by x4(G) the transgression of x3(G) in H*(BG;Z/p), namely, x4(G)
generates H*(BG;Z/p) ~Z/p and Q(x4(G)) #0. We write by x4(G)e
H*(BG : Z,)) the integral lift of x4(G).

LemmA 3.1.  The element pX4(G) eH4(BG)( p) 1S represented by the Chern
class c3(&) of a complex representation & : G — U(M) for some M > 0.

Proof. We only need to prove for G = Spin,, p =2 and G = Eg for odd
primes. Because when p = 2, there is an inclusion i : G = Spiny for some N so
that i*(X4(Spiny)) = X4(G). For odd prime cases, there is an inlusion i : G < Eg,
such that i*(X4(Es)) = x4(G).

The complex representation ring is known ([Ad]) for N =2n+1

R(SpinN) = Z[/h, e ,/lnfl, Ad,

where A; is the i-th elementary symmetric function in variables z? +z72,...,
22+ 2,2 in R(T) = Z[z1,27", ..., 24,2, '] for the maximal torus 7 in Spiny. Let

T' be the first factor of 7 and 7 : T' < Spiny. Then it is proved (page 1052 in
[Sc-Ya]) that

nrea(A) = 4u?,  n*xy(Spiny) = 2u?

where u is the generator of H?>(BT';Z) = Z. This implies 2%4(Spiny) = c2(41).

Let o : Eg — SO(248) be the adjoint representation of Eg. By the construc-
tion of the exceptional Lie group FEg in [Ad], there exists a homomorphism
p: Spin(16) — Eg such that the induced representation of oo f is the direct
sum of Af : Spin(16) — SO(120) and A : Spin(16) — SO(128). Let T® be the
maximal torus of Spin(16). Let T' be the first factor of 7% and #: 7! —
Spin(16) the inclusion of 7! into Spin(16). Then it is proved (Proposition 1.2,
page 372 in [Ka-Ya]) that the total Chern class of the complexification of x o oy
is

1 —120u> 4 --- € Z[u] =~ H*(BT"; 7).

Since 120 =23.3.5, the Chern class cy(a) represents ypX4(Eg) for p =3,5 in
H*(BEg; Z,)), where y is a unit in Z,). (Note px4(Eg) # c2(«) since Qy(x4(Es))
#0.) U

Let tc : H*"(X;Z/p) — H*(X(C);Z/p) be the realization map ([Vol]) for a
variety X over k = C. Voevodsky defines the Milnor operation Q; ([Vol,3]) also
in the mod p motivic cohomology

0;: H""(X;Z/p) — H* 1L (X: Z/p)
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which are compatible with the usual (topological) cohomology operations by the
realization map tc. For a smooth variety X, the operation

Qi H**(X;Z/p) = CH*(X)/p — H* > *""Y(X;Z/p) = 0
is zero since 2(x+p' —1)— (2x+2p' — 1) = -1 < 0.

THEOREM 3.2. Suppose that G is a simple simply connected Lie groups having
p-torsion in H*(G). Let k=C. Then there is a nonzero element R(Gy) e
Inv3(Gy; Z/p).

Proof.  From Corollary 2.3, we see
Ker(t)| H**(BGy; Z/p) = H(BGy; Hj ) = Inv*(Gi; Z/p).

Hence we only need to see the existence of a nonzero element ¢ € H*2(BG}; Z/p)
with ¢ = 0.

Since Q;(x4(G)) # 0, there is no element x in H*?(BGy;Z/p) such that
tc(x) = x4(G), while there exists in H**(BGy;Z/p) from the Beilinson-
Lichtenbaum conjecture.

On the other hand, c¢(¢) e CH*(BG), in fact Chow rings have Chern
classes. Since fc(c2(&)) = pxa(G), we see that ¢;(&) is an additive generator of
H**(BGy),), so is nonzero in H**(BGy;Z/p).

Consider the element

*(c2(&)) = px = 0e HY*(BGy; Z/p) =~ H*(BG;Z/p) = Z/p.

From Corollary 2.4, the map xt: H*3(BGy;Z/p) — H**(BG;Z/p) is injective.
Hence 7¢,(&) =0 in H**(BGy; Z/p). O

From the construction of the representation ¢ in Lemma 3.1, ¢;(¢) is natural
for the natural inclusion G = G’ between simple Lie groups. Hence the invariant
R(Gy) is natural for such embedding G < G.
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