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A NOTE ON COUNTABLY BI-QUOTIENT MAPPINGS
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Abstract

In this paper some properties of weakly first countable spaces and sequence-
covering images of metric spaces are studied. Strictly Fréchet spaces are characterized
as the spaces in which every sequence-covering mapping onto them is strictly countably
bi-quotient. Strict accessibility spaces are introduced, in which a Tj-space X is strict
accessibility if and only if every quotient mapping onto X is strictly countably bi-
quotient. For a T, k-space X every quotient mapping onto X is strictly countably
bi-quotient or bi-quotient if and only if X is discrete. They partially answer some
questions posed by F. Siwiec in [16, 17].

1. Introduction

Topologists obtained many interesting characterizations of spaces by map-
pings, in particular some images of metric spaces. Fréchet spaces, and sequential
spaces belong to the class of weakly first countable spaces. The class of weakly
first countable spaces plays an important role in generalized metric spaces and
metrization, which has become a striking research subject in general topology.
For example,

THeOREM 1.1 [4, 16]. The following are equivalent for a space X:
(1) X is a Fréchet space;

(2) Every sequence-covering mapping onto X is pseudo-open;

(3) X is a pseudo-open image of a metric space.

THEOREM 1.2 [18]. A T)-space X is an accessibility space if and only if every
quotient mapping onto X is pseudo-open.

THEOREM 1.3 [13]. Every RN-space is preserved by a closed and countably
bi-quotient mapping.
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In this paper we study some properties of weakly first countable spaces and
sequence-covering images of metric spaces. Every strongly Fréchet space can be
characterized as a countably bi-quotient image of a metric space [16]. In 1982,
Gerlits and Nagy [5] defined the strictly Fréchet spaces, which are also known as
w-spaces in the early [6, 14]. Every first countable space is strictly Fréchet, and
every strictly Fréchet space is strongly Fréchet. In the sections 2 and 3, we
discuss the strictly Fréchet spaces by the above theorems’ inspiring. In 1987,
Jianping Zhu [21] defined the w-mappings, and proved that a space X is a
w-space if and only if it is a w-image of a metric space. Whether a strictly
Fréchet space X can be characterized as every sequence-covering mapping onto
X is a w-mapping? On the other hand, how to characterize a space X such
that every quotient mapping onto X is a w-mapping? In this paper w-mappings
are renamed to “strictly countably bi-quotient mappings”. We obtain a new
characterization of strictly Fréchet spaces by sequence-covering mappings, and
introduce the concept of strictly accessibility spaces, which satisfies the condition
that every quotient mapping onto this space is strictly countably bi-quotient.

In 1975, Siwiec [17, Table 22, p. 32] posed the following question: give an
intrinsic characterization of the class of spaces Y such that every quotient
mapping onto Y is bi-quotient. In the section 4, we discuss some relations of
mappings about almost-open mappings, bi-quotient mappings, strictly countably
bi-quotient mappings and sequence-covering mappings, and give a positive answer
to Sewiec’s question.

In this paper all mappings are continuous and onto.

2. Strictly Fréchet spaces

In this section, we discuss the relations among strictly Fréchet spaces, and
sequence-covering mappings, strictly countably bi-quotient mappings.

DEerFINITION 2.1 [5]. A space X is called strictly Fréchet if whenever {4,}, is
a sequence of subsets in X and a point x € ﬂneNA,,, there exists an x, € 4, for
each n e N such that the sequence x,, — x.

A Fréchet space [4], by definition, is a space satisfying Definition 2.1 but
with all the sets 4, being equal. A strongly Fréchet space [16], by definition, is
a space satisfying Definition 2.1 but with the sequence {A4,}, being decreasing
in X.

It is obvious that, first countable spaces = strictly Fréchet spaces = strongly
Fréchet spaces = Fréchet spaces.

In 1987, Jianping Zhu [21] defined w-mappings. In this paper w-mappings
are renamed to “‘strictly countably bi-quotient mappings”.

DEerFINITION 2.2. A mapping f: X — Y is called strictly countably bi-
quotient if for each y e Y and for each countable cover {U, :ne N} of f~!(y)
by open subsets of X there exists an m € N such that y € int(f(Uy)).
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A countably bi-quotient mapping [16], by definition, is a mapping satisfying
Definition 2.2 but y € int(f(| J#)) for some finite family # < {U, : n e N}.

It is obvious that, almost-open mappings' = strictly countably bi-quotient
mappings = countably bi-quotient mappings = pseudo-open mappings?.

Lemma 2.3 [11].  Let X be a strictly Fréchet space and {A,}, be a sequence
of subsets in X. If xe ﬂ”ENA,,, there exists a sequence {b,,},, in X such that
bu — x and {meN: b, € A,} is infinite for each neN.

A mapping f: X — Y is called sequence-covering [16] if whenever {y,}, is
a sequence in Y converging to a point y € Y, there exists a sequence of points
X, € fY(y,) for neN, and xe f~!(y) such that x, — x.

Lemma 2.4. Let f: X — Y be a sequence-covering mapping. If Y is strictly
Fréchet, then f is strictly countably bi-quotient.

Proof. Assume that ye Y and f~'(y) = |, _n Un, Where U, is open in X
for each neN. Suppose y¢int(f(U,)) for each neN, then ye Y — f(U,).
By Lemma 2.3, there exists a sequence {y;} in Y converging to y such that
{ieN:y;eY— f(U,)} is an infinite set for each n e N. Since f is sequence-
covering, there is a sequence {x;} in X and a point x e f~'(») such that each
x;€ f~'(») and x; — x. Then there exists k € N such that x e Uy, thus there
is iy € N such that x; € Uy, for each i > iy, so y; € f(Ux), a contradiction. So f is
strictly countably bi-quotient. O

LemMa 2.5 [21].  Strictly Fréchet spaces are preserved by strictly countably
bi-quotient mappings.

DErINITION 2.6 [20]. A mapping f : X — Y is called set-sequence-covering if
whenever {4,}, is a decreasing sequence of subsets in Y converging to a point
y e Y, there exists xe f~!(p) and a decreasing sequence {B,}, of subsets in X
such that B, — x* and f(B,) = 4,, VneN.

LemmA 2.7 [20].  Every set-sequence-covering mapping is a sequence-covering
mapping.

LemMMa 2.8 [9, 20]. Every space is a set-sequence-covering image of a metric
space.

LA mapping f: X — Y is almost-open if there is x € f~!(y) for every y e Y such that f(U) is
a neighborhood at y in Y when U is a neighborhood at x in X.

2A mapping f: X — Y is pseudo-open if f(U) is a neighborhood at y in Y for every ye Y
when f~!(y) = U with U open in X.

3B, — x in X means that the set-sequence {B,}, converges to x in X, i.e., if whenever U is a
neighborhood of x in X there exists m € N such that B, = U for each n > m.
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Proof. This lemma was proved for a Tj-space in [20]. We show the lemma
without any properties of separations.

In [9, Theorem 4.4] Michael proved the following theorem. Let Y be a
space. There are a metric space X and a mapping f : X — Y such that if {C,},
is a decreasing sequence of subsets of Y which is a network at a point y
in Y*, there is xe f~!(y) and a decreasing local base {D,}, at x in X such
that f(D,) =C,, Yne N. We will show that the mapping f: X — Y is set-
sequence-covering. Let {4,}, be a decreasing sequence of subsets in Y con-
verging to a point ye Y. Then {4,U{y}}, is a decreasing network at y in
Y. By Michael’s theorem above, there is xe€ f~'(y) and a decreasing local
base {D,}, at x in X such that f(D,) = 4,U{y}, Vn e N. We may assume that
y¢ Ay, and put B, =D, — f~!(y). Then {B,}, is a decreasing sequence of
subsets in X, B, — x and f(B,) = A,, VneN. O

THEOREM 2.9. The following are equivalent for a space X:

(1) X is a strictly Fréchet space;

(2) Every sequence-covering mapping onto X is strictly countably bi-quotient;

(3) Every set-sequence-covering mapping onto X is strictly countably bi-
quotient;

(4) X is a strictly countably bi-quotient image of a metric space.

Proof. (4) = (1) = (2) = (3). It is obvious by Lemmas 2.4, 2.5 and 2.7.

(3) = (4). Suppose that a space X satisfies the condition (3). There is a
metric space M and a set-sequence-covering mapping f : M — X by Lemma 2.8.
Then f is strictly countably bi-quotient by the condition (3).

(1) & (4) in Theorem 2.9 is proved by Zhu [21]. O

QuEesTION 2.10. Is a strictly countably bi-quotient mapping on a metric
space sequence-covering?

QuEsTION 2.11. Is an almost-open mapping on a strictly Fréchet space
sequence-covering?

3. Strict accessibility spaces

By Theorem 1.2 we are interesting in the following question: under what
condition for a space X in which every quotient mapping onto X is strictly
countably bi-quotient? The following concept is introduced.

DerFmNITION 3.1. A space X is called a strict accessibility space if whenever
{4,}, is a sequence of subsets in X and x is an accumulation point of A4, for
each n € N, there exists a closed set C in X such that x is an accumulation point
of C, but not of C — 4, for each ne N.

“A family 2 of subsets of a space Y is a network at ye Y if U is a neighborhood of y in Y
then P = U for some Pe 2, and ye () 2.
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A strong accessibility space [16], by definition, is a space satisfying Definition
3.1 but with the sequence {4,}, being decreasing in X.
Obviously, every strict accessibility space is strong accessibility.

THEOREM 3.2. A Ti-space Y is a strict accessibility space if and only if every
quotient mapping onto Y is strictly countably bi-quotient.

Proof. Necessity. Let Y be a strict accessibility space. If there is a
quotient mapping f from a space X onto the space Y such that f is not a
strictly countably bi-quotient mapping, then there exists a point ye Y and
a sequence {U,}, of open subsets in X such that {U,}, covers f~!(y) and
ye f(U,) —int(f(U,)) for each neN. Let 4,=Y — f(U,) for each neN.
Then y is an accumulation point of 4,. By the strict accessibility of Y, there
exists a closed set C in Y such that y is an accumulation point of C, but not of
C—A4,=CNf(U,) for each neN. There exists an open neighborhood V,, of
y in Y such that V,NCN f(U,) = {y}, thus CNf(U,) —{y} = CNf(U,) — Va
is closed. Put D= C —{y}. Then D is a non-closed set in Y, thus f~!(D) is
a non-closed set in X because f is quotient. Take a point x € f~1(D) — f~(D),
then f(x)eD—D={y}, so xe f~'(y)=J,.x Ur. Hence xe U, for some

meN. Set G= U, — f~Y(D). Then xe GN f~1(D), and

G= Um —fil(D) = Um _fil(Cﬂf(Um) - {y})

is open in X, thus GNf~'(D)#0, a contradiction. Hence, every quotient
mapping onto Y is strictly countably bi-quotient.

Sufficiency. Let Y be a Tj-space which is not strict accessibility. Then there
exists a sequence {A,}, of subsets in ¥ and a point y e Y such that y is an
accumulation point of A4, for each n e N, and if C is a closed set in Y and y is
an accumulation point of C, then y is an accumulation point of C — A4, for
some 1 € N.

Assume that y¢ 4, and let B, =Y — (4,U{y}) for each neN. Then
Y =A4,UB,U{y}. Put X =) X, where each

Xy = ((Y = {»}) x {0} x {n)) U((B,U{y}) x {1} x {n}).
And X is endowed with the subspace topology of the product space ¥ x {0,1} x
N. Define a mapping f: X — Y by f(x,t,n) =x, Y(x,t,n) e X. Then f is
continuous and onto. For each neN, put U, = (B,U{y}) x {1} x {n}, then U,
is open in X, and f(U,) = B,U{y} is not a neighborhood of y in Y. Since

[0 ={r1n:neN} UN Un,

f is not strictly countably bi-quotient. Next, we will show that f is quotient.

Let Ec Y and f~!(E) be a closed subset of X. Since (¥ —{y}) x {0} x {0}
is a homeomorphic to ¥ — {y} = Y, assume that y ¢ E, thus we have left only
to show that y¢ E. Since f~'(E)N((Y —{y}) x {0} x {0}) is closed in X,
E—{y}=E is closed in Y — {y}, thus E=FE —{y}, i.e, E< EU{y}. Since
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f~YE) is closed in X and (y,1,n) ¢ f~!(E) for each n e N, then there exists an
open neighborhood V, of y in Y such that V,NB,NE =0, so ENV, c A,.
Put C=EN(J,_xVs. Then C is closed in Y and for each neN, CNV, =
ENV, < A,U{y}, so y is not an accumulation point of C — 4,. Then y is not
an accumulation point of C, thus y ¢ E. Therefore, E is closed in Y, so f is
quotient. O

Let X be a space. Denote A*={x e X : x is an accumulation point of A4}.
A point x € X is an accumulation point of a family & of subsets of X if x € F*
for each F e 7.

THEOREM 3.3.  The following are equivalent for a strong accessibility space X:

(1) X is a strict accessibility space;

(2) If a sequence {A,}, of subsets of X has an accumulation point x, then x
is also an accumulation point of the sequence { ﬂn e Ant

(3) (ANB)* = A*N B* for each A,B < X. B

Proof. (1) = (2). Suppose that a sequence {4,}, of subsets of X has an
accumulation point x. Since X is strict accessibility, there exists a closed subset
C such that x is an accumulation point of C, but not of C — 4, for each
neN. For each m e N and an open neighborhood U at x in X, if n < m, there
exists an open neighborhood ¥, at x in X such that V,N(C— 4,) = {x},
ie, V,NCcA,U{x}. PutV=[),_, Ve Then VNC <), _, A,U{x}, thus
UNVNC—{x} cUN((),_, An)- Since x is an accumulation of C, x is an
accumulation point of ﬂ A,

(2) = (3) is obvious.

(3) = (1). If a sequence {4,}, of subsets of X has an accumulation point
xe X, then x is also an accumulation point of the sequence {(),_, 4u}, by
(3). By the strong accessibility of X, there is a closed subset C of X such that x
is an accumulation of C, but not of C — ﬂn ~m An for each m e N, thus x not of
C — A, for each ne N. Hence, X is strict accessibility. O

n<m

COROLLARY 3.4. Strict accessibility is a hereditary property.

Proof. Since strong accessibility is hereditary [16], and the condition (3) in
Theorem 3.3 is also hereditary, strict accessibility is hereditary by Theorem 3.3.

O

A space X is a k-space [3] if U is open in X whenever UNK is open in K
for every compact subset K of X. Every sequential space is a k-space.

LemMa 3.5 [1].  Let X be a Tr-space. Then X is a Fréchet space if and only
if X is a k-space and every quotient mapping onto X is pseudo-open.

COROLLARY 3.6. Every compact subset is finite in a strict accessibility T»-
space.
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Proof. Let X be a strict accessibility 75-space. If X contains an infinite
compact subset K, then K is Fréchet by Corollary 3.4, Lemma 3.5, and Theorem
3.2, thus there exists a non-trivial convergent sequence {x;} in K. Put 4 =
{xok :keN}, B={xy,1:keN}, then (ANB)* # A*N B* a contradiction by
Theorem 3.3. Hence, every compact subset is finite in X. O

COROLLARY 3.7. There are no non-trivial convergent sequences in a strict
accessibility space.

Every strongly Fréchet 7,-space is a strong accessibility space [16]. Is a
strictly Fréchet T,-space a strict accessibility space? The answer is negative.
The real line R is not a strict accessibility space by Corollary 3.7.

4. Related mappings

A mapping f : X — Y is bi-quotient [8] if for each y € Y and for each cover
U of f~'(y) by open subsets of X, yeint(f(| J#')) for some finite family
U < U.

Zhu [22] proved that an almost-open mapping is equivalent to a mapping
satisfying the definition of bi-quotient mappings but with y € int(f(U)) for some
Ue. 1t is easy to see that, almost-open mappings = bi-quotient mappings
and strictly countably bi-quotient mappings.

A space X is bi-sequential [10] if whenever Z is a filter base in X with a
cluster point x € X7, there exists a decreasing sequence {A,}, of subsets in X
such that each A, intersects each element of %, and A4, — x.

Zhu [22] proved that a first countable space is equivalent to a space
satisfying the definition of bi-sequential spaces but with the family # of sub-
sets of X having a cluster point x € X. It is easy to see that, first countable
spaces = bi-sequential spaces and strictly Fréchet spaces.

F. Siwiec [17, Table 22, p. 32] posed the following question in 1975: give
an intrinsic characterization of the class of spaces Y such that every quotient
mapping onto Y is bi-quotient. In this section the question is answered and
some related mappings are discussed.

A space X is determined by a cover 2 of X, or 2 determines X, if U = X is
open (closed) in X if and only if UN P is relatively open (relatively closed) in P
for every Pe 2 [7].

THEOREM 4.1. The following are equivalent for a T;-space X:
(1) Every quotient mapping onto X is almost-open;
(2) If X is determined by a cover 2, then {int(P): Pe P} is a cover of X.

Proof. (1) = (2). Assume that every quotient mapping onto X is almost-
open. If X is determined by a cover 2, let Z = @9’, and f be the natural
mapping from Z onto X. Then f is quotient by [7, Lemma 1.8], thus f is

SA point x € X is a cluster point of a family # of subsets of a space X if x € F for each F € 7.
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almost-open. For each x € X, there is a z, € f~!(x) such that f(U) is a neigh-
borhood at x in X if U is a neighborhood at z, in Z. Take P e # with z, € P,
then P is open in Z, thus x €int(f(P)) =int(P). Hence {int(P): Pe 2} is a
cover of X.

(2) = (1). Let f: Z — X be quotient, where X satisfies the condition (2).
If f is not almost-open, then there is xy € X satisfying that there is an open
neighborhood U, of z in Z such that f(U.) is not a neighborhood of x; in X for
each ze f~(xp). Put % ={U.:ze f~'(x0)}U{Z— f(x0)}. Then % is an
open cover of Z, Z is determined by %, thus X is determined by f (%) because f
is quotient [7, Lemma 1.7]. Hence {int(P): Pe f(%)} is a cover of X by the
condition (2). There is z € f~!(xp) such that xq €int(f(U.)), a contradiction.

z

So f is almost-open. O

By the similar method in Theorem 4.1 Siwiec’s question above has an answer
as follow.

THEOREM 4.2. Let X be a T\-space. Then every quotient mapping onto X
is bi-quotient if and only if whenever X is determined by a cover P then
{int(| ) 2') : a finite ' = P} is a cover of X.

Lemma 4.3. Every space is a sequence-covering image of a metric space
which is the topological sum of some convergent sequences.

Proof. Let X be a space. Denote the family of all convergent sequences
containing its limit in X by {S,:ae€ A}. For every ae A4, set S, ={x,}U
{X4,n : n € N}, where x,, — x,. Denote S, endowed with the following new
topology by S.: the neighborhoods of the point x, in S are the finite complement
subsets of S,, the other points are isolated. Then S} is a compact metric space,
the topology on S is finer than the subspace topology on S, of X. Let M be
the disjoint topological sum of the family {S, :a€ A} [3], and define a function
f:M—X by flg : S, — S, is homeomorphic for each «€ 4. Then M is a
metric space which is the topological sum of some convergent sequences, and f
is continuous and onto. It is easy to see that f is sequence-covering. O

THEOREM 4.4. The following are equivalent for a T,, k-space X:
(1) X is a discrete space;
(2) Every mapping onto X is open;
(3) Every quotient mapping onto X is almost-open;
(4) Every quotient mapping onto X is bi-quotient,
(5) Every quotient mapping onto X is strictly countably bi-quotient.

Proof. 1t is clear that (1) = (2) = (3) = (4) and (5). And (5) = (1) by
Theorem 3.2 and Corollary 3.6.

(4) = (1). Assume that every quotient mapping onto X is bi-quotient.
Then X is Fréchet by Lemma 3.5. There is a metric space M =¥ and a
sequence-covering mapping f : M — X such that each Se.% is a convergent
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sequence containing its a limit by Lemma 4.3. Then f is quotient because X is
a sequence space [16], so f is bi-quotient. For each xe X, f~'(x) is covered
by the family % of open subsets of M, there is a subset C in X which is the
union of finite convergent sequences in X such that C is a neighborhood of x
in X because f is bi-quotient. If x is not an isolated point in X, assume that
C = {x}U{x, :neN} is an open subset of X, where the sequence {x,}, is non-
trivial and converges to x. So X =C® (X — C). Let ¥(N) =/ UN be the
Isbell-Mrowka space [2, Example 4.4], and let Y =¥Y(N) ® (X — C). A map-
ping f:Y — X is defined by

x, yed
f(y)=<x,, y=neN
vy, yeX-C.

Then £ is quotient, but not bi-quotient [15, Theorem 2.2], a contradiction. Thus
X is a discrete space. U

LemMA 4.5. Let f:X — Y be strictly countably bi-quotient. If f is a
boundary Lindelof mapping with a T\-space Y, then f is almost-open.

Proof. If f is not almost-open, there exists ye Y such that for each
xe f7!(y) there exists an open neighborhood U, at x in X satisfying
y¢int(f(U,)). Then y is not an isolated point in Y. Since df~!(y) is
Lindeldf, there is a countable subset {x;:ie N} < f~!(y) such that of ()
(J{Uy, :ieN}, thus f~1(p) cint(f ' (»)) U (|J{Uy, : i e N}). Since [ is strictly
countably bi-quotient, y € int(f(Uy,)) for some i€ N, a contradiction. O

THEOREM 4.6. Let f:X — Y be a closed mapping. The following are
equivalent for a metric space X:

(1) f is an almost-open mapping;

(2) f is a set-sequence-covering mapping;

(3) f is a sequence-covering mapping;

(4) f is a strictly countably bi-quotient mapping.

Proof. (1) = (2) by [20, Proposition 2.4], and (2) = (3) is obvious.

(3) = (4). Suppose that f is sequence-covering. Since metric spaces are
preserved by sequence-covering and closed mappings [12, 19], Y is metric, thus f
is strictly countably bi-quotient by Lemma 2.4.

(4) = (1). Suppose that f is strictly countably bi-quotient. Since f is
countably bi-quotient, f is boundary-compact by [10, Corollary 9.10]. Thus
f is almost-open by Lemma 4.5. O

Remark 4.7. (1) There exists a perfect mapping® which is not sequence-
covering with compact metric domain and range [16, Example 2.6]. Thus a

®A mapping f: X — Y is perfect if f is closed and each f~!(y) is compact for each ye Y.
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perfect mapping on a metric space can not be strictly countably bi-quotient
because it can not be sequence-covering.

(2) A closed and almost-open mapping on a metric space can not be open.
For example, let ¥ ={y}U{y,:neN}, where {y,} is a non-trivial sequence
converging to y. Let X ={y} @ Y, and f be the natural mapping from X onto
Y. Then X is a metric space, f is closed and almost-open, but not open.

QUESTION 4.8. @Give an intrinsic characterization of the class of spaces X
satisfying the condition that every sequence-covering mapping onto X is set-
sequence-covering.
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