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dð2Þ-IDEAL NULL 2-TYPE HYPERSURFACES OF EUCLIDEAN

SPACE ARE SPHERICAL CYLINDERS

Bang-Yen Chen and Oscar J. Garay

Abstract

We prove that a null 2-type hypersurface in the Euclidean ðnþ 1Þ-space is an open

portion of a spherical cylinder Sn�1 � R if and only if it is dð2Þ-ideal.

1. Introduction

Let M be a Riemannian n-manifold isometrically immersed in the Euclidean
m-space Em. Denote by D the Laplacian of M. Then the position vector x and
the mean curvature vector H of M in Em are related by Beltrami’s formula:

Dx ¼ �nH;ð1:1Þ
which implies the well-known result: A submanifold M in Em is minimal if and
only if all coordinate functions of Em, restricted to M, are harmonic functions,
i.e.,

Dx ¼ 0:ð1:2Þ
In other words, minimal submanifolds of Em are constructed by eigenfunctions of
the Laplacian D with eigenvalue zero. It is well-known that there are many
minimal submanifolds in Em. In particular, according to the famous Douglas
and Rado’s solutions to the Plateau problem, there are ample examples of
minimal surfaces in E3 (see for instance [14, 15]).

On the other hand, it is easy to verify that circular cylinders in E3 are
constructed from both harmonic functions and eigenfunctions of D with a single
nonzero eigenvalue, say l. Thus the position vector x of such a surface admits
the following simple spectral resolution:

x ¼ x0 þ xq; Dx0 ¼ 0; Dxq ¼ lxq;ð1:3Þ
for some non-constant maps x0 and xq.
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In terms of finite type theory, a Euclidean submanifold is said to be of null
2-type if its position vector admits the spectral decomposition (1.3). Similarly,
a Euclidean submanifold is said to be of 1-type if its position vector satisfies
x ¼ xq with Dxq ¼ lxq for some non-constant vector function xq (cf. [1, 2, 4,
7, 9]). According to a well-known result of Takahashi, a 1-type submanifold
of a Euclidean space Em is either a minimal submanifold of Em or a minimal
submanifold of a hypersphere of Em (see [17]).

The study of finite type submanifolds treats an interesting question:

To what extent is the geometric structure of a submanifold determined by a
simple analytic information, that is, by the spectral resolution of the immersion?

In particular, due to the simplicity of null 2-type submanifolds, it is very
natural and interesting to ask the following geometric question (cf. [4, Problem
12]):

‘‘Determine all submanifolds of Euclidean spaces which are of null 2-type. In
particular, classify null 2-type hypersurfaces in Euclidean spaces.’’

So far, very few results are known concerning this problem. The first result
was obtained in [2], in which the first author proved that a surface in E3 is of null
2-type if and only if it is an open portion of a circular cylinder S1 � R. By
applying the method in [2], it was shown in [12] that a null 2-type Euclidean
hypersurface in Enþ1 with at most two distinct principal curvatures is a spherical
cylinder Sp � En�p in Enþ1. Moreover, it was proved in [13] that every null
2-type hypersurface in E4 has nonzero constant mean curvature and constant
scalar curvature. Also, there exist several results on null 2-type surfaces of high
codimension in Euclidean spaces under additional assumptions obtained by U.
Dursun, S. J. Li, Y. H. Kim, H. S. Lue, A. Ferrández, and P. Lucas among
others (cf. [4, 11] for details).

Let M be a Riemannian n-manifold. Denote by KðpÞ the sectional curva-
ture of M associated with a plane section pHTpM, p A M. For any ortho-
normal basis e1; . . . ; en of the tangent space TpM, the scalar curvature t at p is
defined to be

tðpÞ ¼
X
i< j

Kðei5ejÞ:

Let L be a subspace of TpM of dimension rb 2 and fe1; . . . ; erg an ortho-
normal basis of L. We define the scalar curvature tðLÞ of the r-plane section
L by

tðLÞ ¼
X
a<b

Kðea5ebÞ; 1a a; ba r:

For an integer kb 1, we denote by Sðn; kÞ the finite set consisting
of unordered k-tuples ðn1; . . . ; nkÞ of integersb 2 satisfying n1 < n and
n1 þ � � � þ nk a n. For each integer nb 3, we put SðnÞ ¼ 6

kb1
Sðn; kÞ.
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For each k-tuple ðn1; . . . ; nkÞ A SðnÞ, the Riemannian d-invariant dðn1; . . . ; nkÞ
was introduced by the first author as (cf. [5, 7, 9])

dðn1; . . . ; nkÞðpÞ ¼ tðpÞ � infftðL1Þ þ � � � þ tðLkÞg;

where L1; . . . ;Lk run over all k mutually orthogonal subspaces of TpM such that
dim Lj ¼ nj , j ¼ 1; . . . ; k.

The d-curvatures are very di¤erent in nature from the ‘‘classical’’ scalar and
Ricci curvatures; simply due to the fact that both scalar and Ricci curvatures are
the ‘‘total sum’’ of sectional curvatures on a Riemannian manifold. In contrast,
the d-curvature invariants are obtained from the scalar curvature by throwing
away a certain amount of sectional curvatures.

In [5, 6] the author proved that, for any n-dimensional submanifold of Em

and any k-tuple ðn1; . . . ; nkÞ A SðnÞ, the d-invariants dðn1; . . . ; nkÞ are related to

the squared mean curvature kHk2 of the submanifold by the following general
optimal inequality:

dðn1; . . . ; nkÞa
n2ðnþ k � 1�

Pk
j¼1 njÞ

2ðnþ k �
Pk

j¼1 njÞ
kHk2:ð1:4Þ

A submanifold of Em is called dðn1; . . . ; nkÞ-ideal if it satisfies the equality
case of (1.4) identically. Roughly speaking, an ideal immersion is an immersion
which produces the least possible amount of tension from the ambient space.
Such submanifolds have many interesting properties and have been studied by
many geometers in recent years (see [8, 9] for details).

In this paper we determine all null 2-type hypersurfaces in Enþ1 which are
dð2Þ-ideal. More precisely, we prove the following theorem which provides a
connection between the dð2Þ-invariant and finite type submanifolds.

Theorem 1. A null 2-type hypersurface in the Euclidean ðnþ 1Þ-space Enþ1

is an open portion of a spherical cylinder Sn�1 � RHEnþ1 if and only if it is
dð2Þ-ideal.

2. Preliminaries

Let x : M ! Em be an isometric immersion of a Riemannian n-manifold M
into the Euclidean m-space Em. Denote by h ; i the inner product associated
with the standard metric on Em.

Let ‘ and ~‘‘ be the Levi-Civita connection on M and Em, respectively.
Then the formulas of Gauss and Weingarten are given respectively by

~‘‘XY ¼ ‘XY þ hðX ;Y Þ;ð2:1Þ
~‘‘Xx ¼ �AxX þDXxð2:2Þ

for vector fields X , Y tangent to M and x normal to M, where h, A and D are
the second fundamental form, the shape operator and the normal connection.
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The shape operator and the second fundamental form are related by

hhðX ;YÞ; xi ¼ hAxX ;Yi:ð2:3Þ

The mean curvature vector is given by

H ¼ 1

n

� �
trace h:ð2:4Þ

The equations of Gauss and Codazzi are given respectively by

hRðX ;Y ÞZ;Wi ¼ hhðX ;WÞ; hðY ;ZÞi� hhðX ;ZÞ; hðY ;WÞi;ð2:5Þ

ð‘XhÞðY ;ZÞ ¼ ð‘YhÞðX ;ZÞ;ð2:6Þ

for X , Y , Z, W tangent to M, where R is the Riemann curvature tensor of M
and ‘h is defined by

ð‘XhÞðY ;ZÞ ¼ DXhðY ;ZÞ � hð‘XY ;ZÞ � hðY ;‘XZÞ:ð2:7Þ

3. Basics on null 2-type hypersurfaces

For an isometric immersion x : M ! Em of a Riemannian n-manifold M
into Em, we have (cf. [1, 9])

DH ¼ DDH þ
Xn

i¼1

hðAHei; eiÞ þ ðDHÞT ;ð3:1Þ

where fe1; . . . ; eng is an orthonormal tangent frame,

ðDHÞT ¼ n

2

� �
‘hH;Hiþ 2 trace ADHð3:2Þ

is the tangential component of DH and DD denotes the Laplacian associated with
the normal connection D, i.e.

DDH ¼
Xn

i¼1

D‘ei
eiH �

Xn

i¼1

DeiDeiH:

In particular, if m ¼ nþ 1, then (3.1) and (3.2) reduce respectively to

DH ¼ ðDaþ akAk2Þenþ1 þ ðDHÞT ;ð3:3Þ

ðDHÞT ¼ na‘aþ 2Að‘aÞ;ð3:4Þ

where enþ1 is a unit normal vector field, H ¼ aenþ1 and A ¼ Aenþ1
.

If M is a null 2-type hypersurface of Enþ1, it follows from (1.1) and (1.2)
that

DH ¼ lH:ð3:5Þ
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By combining (3.3), (3.4) and (3.5) we obtain

Daþ akAk2 ¼ la;ð3:6Þ

Að‘aÞ ¼ � na

2

� �
‘a:ð3:7Þ

Consequently, ‘a is an eigenvector of A whenever ‘a0 0.
We have the following.

Lemma 3.1. Let M be a submanifold of a Euclidean space. Then the mean
curvature vector H of M satisfies DH ¼ lH for some real number l if and only if
M is one of the following submanifolds:

(1) a biharmonic submanifold, i.e., DH ¼ 0;
(2) a 1-type submanifold;
(3) a null 2-type submanifold.

This lemma can be found in [4, page 216] and in [9, page 140].

Lemma 3.2. A non-spherical hypersurface of the Euclidean 4-space E4 is of
null 2-type if and only if it has nonzero constant mean curvature and constant
scalar curvature.

Proof. Follows immediately from Lemma 4.1 and the main result of [13].
r

We also have the following result from [10, Theorem 1].

Proposition 1. Every 2-type hypersurface of a Euclidean space is of null
2-type if it has constant mean curvature.

The proof of this proposition was based on (3.6) and (3.7).

4. Proof of Theorem 1

First we prove the following lemma which extends Lemma 3.2 to hyper-
surfaces in Euclidean spaces with arbitrary dimension.

Lemma 4.1. A non-spherical hypersurface of Enþ1 with nonzero constant
mean curvature is of null 2-type if and only if it has constant scalar curvature.

Proof. Let M be a non-spherical hypersurface of Enþ1 with nonzero
constant mean curvature a. Then we find from (3.4) that ðDHÞT ¼ 0. Thus
it follows from (3.3) that

DH ¼ kAk2H:
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On the other hand, from the following well-known relation:

n2a2 ¼ kAk2 þ 2t;

we know that the squared norm kAk2 of A is constant if and only if the scalar
curvature t is also constant. In this case, DH ¼ lH holds with l ¼ kAk2 0 0.
Since a0 0 and M is non-spherical and non-biharmonic, M is of null 2-type
according to Lemma 3.1. r

Now, we return to the proof of Theorem 1. Let us assume that M is a null
2-type hypersurface of Enþ1ðnb 2Þ which is dð2Þ-ideal. If n ¼ 2, Theorem 1
follows from the main result of [2]. Thus, we may assume that nb 3. Since M
is assumed to be dð2Þ-ideal, Lemma 3.2 of [3] implies that there exists a local
orthonormal frame field fe1; . . . ; en; enþ1g such that the shape operator with
respect to this frame field takes the form:

A ¼

h 0 0 � � � 0

0 m 0 � � � 0

0 0 hþ m � � � 0

..

. ..
. ..

. . .
. ..

.

0 0 0 � � � hþ m

0
BBBBBB@

1
CCCCCCA

ð4:1Þ

for some functions h and m.

Case (1): M has constant mean curvature a. Since M is non-minimal,
a0 0. Thus, by Lemma 4.1, M has constant scalar curvature. Hence, it follows
from (4.1) that h and m are both constant. Therefore, M is an open portion of a
spherical cylinder Sk � En�k for some k A f0; . . . ; ng according to [16]. Conse-
quently, the principal curvatures of M are given by a nonzero real number r
(repeated k times) and 0 (repeated n� k times). After comparing these with
(4.1), we conclude that the only possibilities are either h ¼ 0 or m ¼ 0. Con-
sequently, M is an open portion of Sn�1 � R.

Case (2): M has non-constant mean curvature a. It follows from (3.7) that

‘a is an eigenvector of A with eigenvalue � na

2
. Thus, one of the following

three cases must occur:

(a) h ¼ � na

2
and e2a ¼ � � � ¼ ena ¼ 0;

(b) m ¼ � na

2
and e1a ¼ e3a ¼ � � � ¼ ena ¼ 0; or

(c) hþ m ¼ � na

2
and e1a ¼ � � � ¼ en�1a ¼ 0.

387on null 2-type hypersurfaces



Case (2.a): h ¼ � na

2
and e2a ¼ � � � ¼ ena ¼ 0. Since na ¼ ðn� 1Þðhþ mÞ

holds, we find

h ¼ � na

2
; m ¼ nðnþ 1Þa

2ðn� 1Þ ; hþ m ¼ na

n� 1
:ð4:2Þ

Thus the second fundamental form h satisfies

hðe1; e1Þ ¼ � na

2
enþ1;

hðe2; e2Þ ¼
nðnþ 1Þa
2ðn� 1Þ enþ1;

hðej; ejÞ ¼
na

n� 1
enþ1; j ¼ 3; . . . ; n;

hðei; ekÞ ¼ 0; 1a i0 ka n:

ð4:3Þ

Let ok
i ði; k ¼ 1; . . . ; nÞ be the connection forms of M defined by

‘Xei ¼
Xn

k¼1

ok
i ðXÞek; i ¼ 1; . . . ; n:ð4:4Þ

Then we have

ok
i ¼ �o i

k; i; k ¼ 1; . . . ; n:

It follows from (4.3), (4.4) and Codazzi’s equation that

‘e1e1 ¼ 0;ð4:5Þ

o
j
2ðe1Þ ¼

nþ 1

1� n

� �
o

j
1ðe2Þ ¼

2n

n� 1

� �
o1

2ðejÞ; j ¼ 3; . . . ; n;ð4:6Þ

e1a ¼ nþ 1

2

� �
ao1

j ðejÞ; j ¼ 3; . . . ; n;ð4:7Þ

e1a ¼ 2n

nþ 1

� �
ao1

2ðe2Þ;ð4:8Þ

o2
j ðekÞ ¼ 0; 2a j; ka n;ð4:9Þ

o1
j ðekÞ ¼ 0; 3a j0 ka n:ð4:10Þ

Now, after applying (4.4)–(4.10) we conclude that the Levi-Civita connection ‘
of M satisfies

‘e1e1 ¼ 0;ð4:11Þ

‘e1e2 ¼
Xn

k¼3

ok
2 ðe1Þek;ð4:12Þ
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‘e1ej ¼ o2
j ðe1Þe2 þ

Xn

k¼3

ok
j ðe1Þek;ð4:13Þ

‘e2e1 ¼ � nþ 1

2n

� �
e1a

a
e2 þ

Xn

k¼3

ok
1 ðe2Þek;ð4:14Þ

‘e2e2 ¼
nþ 1

2n

� �
e1a

a
e1;ð4:15Þ

‘e2ej ¼ o1
j ðe2Þe1 þ

Xn

k¼3

ok
j ðe2Þek;ð4:16Þ

‘ej e1 ¼ o2
1ðejÞe2 �

2

nþ 1

� �
e1a

a
ej;ð4:17Þ

‘ej e2 ¼ o1
2ðejÞe1;ð4:18Þ

‘ej ej ¼
2

nþ 1

� �
e1a

a
e1 þ

Xn

k¼3

ok
j ðejÞek;ð4:19Þ

for j ¼ 3; . . . ; n.
By using (4.3), (4.11)–(4.18) and Gauss’ equation, we find from Rðej ; e1; e1; ejÞ

for j A f2; . . . ; ng that

e1
e1a

a

� �
¼ 2

nþ 1

� �
ðe1aÞ2

a2
� a2n2ðnþ 1Þ

4ðn� 1Þð4:20Þ

þ 2nðnþ 1Þ
1� n

ðo1
2ðejÞÞ

2:

Similarly, we derive from Rðej; e2; e2; ejÞ that

ðo1
2ðejÞÞ

2 ¼ ðe1aÞ2ðnþ 1Þ
4a2n2

þ a2nðnþ 1Þ2

8ðn� 1Þ2
:ð4:21Þ

Combining (4.20) and (4.21) gives

e1
e1a

a

� �
¼ ðe1aÞ2ð1þ 7n� n2 þ n3Þ

2a2nð1� n2Þð4:22Þ

þ a2n2ðnþ 1Þðn2 þ 1Þ
2ð1� nÞ3

:

From Rðe1; e2; e2; e1Þ and (4.21) we derive that

e1
e1a

a

� �
¼ nþ 1

2n

� �
ðe1aÞ2

a2
þ a2n3

2ð1� nÞð4:23Þ

þ 16n3

ðn� 1Þðnþ 1Þ2
Xn

j¼3

ðo1
2ðejÞÞ

2:
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After combining (4.21) and (4.23), we find

e1
e1a

a

� �
¼ ðe1aÞ2ð9n3 � 15n2 � n� 1Þ

2a2nðn2 � 1Þð4:24Þ

þ a2n3ð1þ 6n� 3n2Þ
2ð1� nÞ3

:

By combining (4.22) and (4.24), we obtain

ðe1aÞ2 ¼ � n2ð4n3 þ 3n2 � 2n� 1Þ
2ðn� 1Þ2ð5n� 3Þ

a4;ð4:25Þ

which cannot happen for nb 3 unless a ¼ 0. Consequently, this case cannot
happen.

Case (2.b): m ¼ � na

2
and e1a ¼ e3a ¼ � � � ¼ ena ¼ 0. By applying the same

argument as case (2.a), we conclude that this case is impossible.

Case (2.c): hþ m ¼ � na

2
and e1a ¼ � � � ¼ en�1a ¼ 0. In this case, the second

fundamental form h satisfies

hðe1; e1Þ ¼ � na

2
þ m

� �
enþ1;

hðe2; e2Þ ¼ menþ1;

hðej ; ejÞ ¼ � na

2
enþ1; j ¼ 3; . . . ; n;

hðei; ekÞ ¼ 0; 1a i0 ka n:

ð4:26Þ

Since trace h ¼ naenþ1, it follows from (4.26) that n ¼ �1. Consequently, this
case is also impossible.

Conversely, suppose that M is a spherical cylinder Sn�1 � R in Enþ1. Let
us choose an orthonormal frame e1; . . . ; en such that e1 is tangent to the second
factor R and e2; . . . ; en tangent to the first factor Sn�1. Then the shape operator
A satisfies (4.1) with h ¼ 0 and m0 0. Hence, M is a dð2Þ-ideal hypersurface
according to Lemma 3.2 of [3]. Obviously, M is of null 2-type by Lemma 4.1.
This completes the proof of the theorem.
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