
Y. CHU
KODAI MATH. J.
35 (2012), 374–381

NONEXISTENCE OF NONTRIVIAL QUASI-EINSTEIN METRICS*

Yawei Chu

Abstract

Let ðMn; g; e�f dvolgÞ be a smooth metric measure space of dimension n. In this

note, we first prove a nonexistence result for Mn with the Bakry-Émery Ricci

tensor is bounded from below. Then we show that f A LyðMn; e�f dvolÞ and

j‘f j A LyðMn; e�f dvolÞ are equivalent for complete gradient shrinking Ricci solitons.

Furthermore, we prove that there is no non-Einstein shrinking soliton when the

normalized function ~ff is non-positive.

1. Introduction

Let ðMn; g; e�f dvolgÞ be an n-dimensional smooth metric measure space,
where Mn is a complete n-dimensional Riemannian manifold with metric g,
f A CyðMnÞ is a real valued function, and dvolg is the Riemannian volume form
on Mn. A natural extension of the Ricci tensor Ric to a smooth metric measure
space is the m-Bakry-Émery Ricci tensor

Ricmf ¼ RicþHess f � 1

m
df n df for 0 < may:ð1:1Þ

When m ¼ y, we denote Ricf ¼ Ricyf ¼ RicþHess f , the usual Bakry-Émery
Ricci tensor. For the smooth metric measure space, there is a naturally asso-
ciated Bakry-Émery Laplacian (also called f -Laplacian [17]), defined by

Df ¼ D� gð‘f ;‘Þ :¼ D� ‘f � ‘;
which is self-adjoint in L2ðMn; g; e�f dvolgÞ, where D ¼ gij‘i‘j is the Laplace-
Beltrami operator.

A smooth metric measure space ðMn; g; e�f dvolgÞ is called an m-quasi-
Einstein manifold (Correspondingly, g is called an m-quasi-Einstein metric) if it
satisfies the equation

Ricmf ¼ lgð1:2Þ
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for some constant l A R (see [6]). As a matter of fact, equation (1.2) encloses
the following three cases: when f is a constant, we take m ¼ 0 and call the
underlying Einstein manifold a trivial quasi-Einstein manifold; when m ¼ y, it is
exactly the gradient Ricci soliton (the usual quasi-Einstein) equation, namely

Ricf ¼ lg:ð1:3Þ
It is called shrinking, steady, or expanding, if l > 0, l ¼ 0, or l < 0, respectively.
Ricci solitons play an important role in the theory of Ricci flow, we refer to [2]
and the references therein for background and recent progress on Ricci solitons.
When m is a positive integer, it corresponds to Einstein warped product and has
been actively investigated (see [3], [4], [6], [9], [10], [12]).

Recently, using the approach of gradient estimate and conformal rescaling,
Case [3] studied the nonexistence of m-quasi-Einstein metrics and proved

Theorem A ([3]). Let ðMn; gÞ be a complete Riemannian manifold such that
Ricmf b 0 for some function f and 0amay, and suppose that Df f ¼ fð f Þ,
where f : R ! R satisfies

f 0ðtÞ þ 2

n
fðtÞb 0

for all t A R. Then Mn is Einstein and f is a constant.

For a complete Riemannian manifold with negative m-Bakry-Émery Ricci
curvature (i.e., Ricmf b l and l < 0), Mastrolia and Rimoldi [12] proved that the
above result still holds under the assumptions that 0am < y. Unfortunately,
the method used in the proof of Theorem A for m ¼ y is invalid in this case.
Therefore, it is of interest to know whether the conclusion of Theorem A is true
for Ricmf b l ðl < 0Þ and m ¼ y. In this paper, using the gradient estimate
method and the weak maximum principle, we first discuss the question and give
an a‰rmative answer, more precisely, we have

Theorem 1.1. Let ðMn; gÞ be an n-dimensional complete Riemannian man-
ifold with Ricf b l ðla 0Þ. Assume that Df f ¼ fð f Þ, where f : R ! R satisfies

f 0ðtÞ þ 2

n
fðtÞ þ lb 0

for all t A R. Then Mn is Einstein and f is a constant.

Remark 1.2. We thank the referee for making us aware of the extra
assumption ‘‘f is bounded’’ for Theorem 1.1 in our earlier version of this paper
is not needed and for bringing the paper [1] to our attention.

For a complete gradient expanding Ricci soliton ðMn; g; f Þ, Pigola, Rigoli,
Rimoldi, and Setti [14] proved that j‘f j A LyðMn; e�f dvolÞ implies Mn is
Einstein and f is a constant. In [11], Ma and Chen studied the minimum
point of the potential function f of expanding Ricci solitons with non-negative
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Ricci curvature. In section 3 of this paper, we are concerned with the complete
gradient shrinking Ricci solitons and obtain

Theorem 1.3. Let ðMn; g; f Þ be an n-dimensional complete gradient shrinking
Ricci soliton. Then f A LyðMn; e�f dvolÞ is equivalent to j‘f j A LyðMn; e�f dvolÞ
on Mn. In particular, when the normalized function ~ff a 0 ðsee (3.3) for ~ff Þ and
Mn has no boundary, Mn is Einstein and f is a constant.

2. Proof of Theorem 1.1

In this section, we will prove Theorem 1.1. For this purpose, we first
establish the following crucial estimate.

Proposition 2.1. Let ðMn; gÞ be an n-dimensional complete Riemannian
manifold with Ricf b l and la 0. Assume that

Df f ¼ fð f Þ;ð2:1Þ
where f : R ! R satisfies

f 0ðtÞ þ 2

n
fðtÞ þ lb 0ð2:2Þ

for all t A R. Then for all x A Mn and a > 1 such that Bðx; aÞ is geodesically
connected in Mn and the closure Bðx; aÞ is compact,

j‘f j2ðxÞa 12n

a2
þ an

a
� nl;ð2:3Þ

where a ¼ maxy A fy:dðx;yÞ¼1gfjDf rðyÞjg.

In order to prove Proposition 2.1, we need the following several known
results.

Lemma 2.2 (Bochner-Weitzenböck formula [17]). Let f ; u A CyðMnÞ. Then

1

2
Df j‘uj2 ¼ jHess uj2 þ h‘u;‘ðDf uÞiþRicf ð‘u;‘uÞ:ð2:4Þ

Remark 2.3. For gradient Ricci solitons, equation (1.3) together with (2.4)
yields (see also [13])

1

2
Df j‘f j2 ¼ jHess f j2 � lj‘f j2:ð2:5Þ

Lemma 2.4 (Laplacian Comparison [17]). Assume that ðMn; gÞ is an n-
dimensional complete Riemannian manifold with Ricf ð‘f ;‘f Þb l. Then given
any minimal geodesic segment and r0 > 0,

Df ðrÞaDf ðr0Þ � lðr� r0Þ for rb r0:ð2:6Þ
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Equality holds for some r > r0 if and only if all the radial sectional curvatures are
zero, Hess r1 0, and q2r f 1 l along the geodesic from r0 to r.

Now we are ready to prove Proposition 2.1.

Proof of Proposition 2.1. Since

jHess f j2 b 1

n
ðD f Þ2;

from the Bochner-Weitzenböck formula (2.4) we obtain

1

2
Df j‘f j2 ¼ jHess f j2 þ h‘f ;‘ðDf f ÞiþRicf ð‘f ;‘f Þð2:7Þ

b jHess f j2 þ f 0ð f Þj‘f j2 þ lj‘f j2

b
ðDf f þ j‘f j2Þ2

n
þ ðf 0ð f Þ þ lÞj‘f j2

¼ f2ð f Þ þ j‘f j4

n
þ f 0ð f Þ þ 2fð f Þ

n
þ l

� �
j‘f j2

b
j‘f j4

n
;

here we have used (2.1) in the second line and (2.2) in the last.
Let rðyÞ ¼ dðx; yÞ be the radial distance function. Now we consider the

function

FðyÞ ¼ ða2 � r2ðyÞÞ2j‘f j2ðyÞ

defined on Bðx; aÞ. Since F b 0 and F jqBðx;aÞ 1 0, there exists a point y0 A Bðx; aÞ
such that F ðyÞ achieves its maximum at y0. Using the method of support
functions (see [15]), we can assume that y0 lies outside of the cut locus of x,
then F is smooth near y0 and by the maximum principle, we have

‘Fðy0Þ ¼ 0; Df Fðy0Þa 0:ð2:8Þ

In follows, all the computations are carried out at the point y0. From (2.8),
we have

‘j‘f j2

j‘f j2
¼ 2‘ðr2Þ

a2 � r2
;ð2:9Þ

and

2j‘ðr2Þj2

ða2 � r2Þ2
� 4‘ðr2Þ � ‘j‘f j2

ða2 � r2Þj‘f j2
� 2Df ðr2Þ

a2 � r2
þ Df j‘f j2

j‘f j2
a 0:ð2:10Þ
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Substituting (2.9) into (2.10), we derive that

�6j‘ðr2Þj2

ða2 � r2Þ2
� 2Df ðr2Þ

a2 � r2
þ Df j‘f j2

j‘f j2
a 0:

Using j‘ðr2Þj ¼ 2rj‘rj ¼ 2r and (2.7), we have

�24r2

ða2 � r2Þ2
� 2Df ðr2Þ

a2 � r2
þ 2

n
j‘f j2 a 0:

From (2.6), we get

D
f
ðr2Þ ¼ 2þ 2rðDf ðr0Þ � lðr� r0ÞÞ

for some 0 < r0 < minf1; r=2g. Setting a ¼ maxy A fy:dðx;yÞ¼1gfjDf ðrðyÞÞjg, we
have

D
f
ðr2Þa 2þ 2rða� laÞ:

Thus

�24r2

ða2 � r2Þ2
þ 2

n
j‘f j2 � 4þ 4rða� laÞ

a2 � r2
a 0:ð2:11Þ

Multiplying (2.11) by ða2 � r2Þ2, we have

F

n
a 12r2 þ ða2 � r2Þð2þ 2rða� laÞÞð2:12Þ

¼ 10r2 þ 2a2 þ 2ða2r� r3Þða� laÞ

a 12a2 þ 2ða2r� r3Þða� laÞ:

Since

ra2 � r3 a
2

ffiffiffi
3

p
a3

9
for r > 0;

we conclude from (2.12) that

F

n
a 12a2 þ a� la:

Therefore

sup
Bðx;aÞ

ða2 � r2Þ2j‘f j2 a 12na2 þ nða� laÞa3:

In particular,

a4j‘f j2ðxÞa 12na2 þ nða� laÞa3:

This proves Proposition 2.1. r
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Proof of Theorem 1.1. From (2.3) in Proposition 2.1, we see that
supMn j‘f j2 < þy. By the weak maximum principle in [14], there exists a
sequence fxmg such that,

j‘f j2ðxmÞb sup
Mn

j‘f j2 � 1

m
;

and

Df j‘f j2ðxmÞa
1

m
:

It follows from (2.7) that

1

2m
b

1

2
Df j‘f j2ðxmÞb

j‘f j4

n
ðxmÞb 0:

Letting m ! þy we see that

sup
Mn

j‘f j4 ¼ 0;

which completes the proof of Theorem 1.1. r

Remark 2.5. When l ¼ 0, we obtain the Case’s result in [3] for m ¼ y by
a di¤erent method.

3. The nonexistence of gradient shrinking Ricci solitons

In this section, we are going to prove Theorem 1.3. First of all, we recall
the following useful results. Note that Lemma 3.1 is a special case of a more
general result on complete ancient solutions of the Ricci flow, due to B. L. Chen
[5] (see also [14], [18]).

Lemma 3.1. Let ðMn; g; f Þ be a complete gradient shrinking Ricci soliton
with scalar curvature R. Then Rb 0.

Lemma 3.2 ([8]). Let ðMn; g; f Þ be a complete gradient Ricci soliton with
scalar curvature R. Then

Rþ j‘f j2 ¼ 2lf þ C1;ð3:1Þ
where C1 is a constant.

Remark 3.3. For gradient shrinking Ricci solitons, (3.1) together with
Lemma 3.1 yields that f is bounded from below. In the case of steady, Wu
[16] proved that lim supy ABrðxÞ; r!yj‘f j2 ¼ C1.

Proof of Theorem 1.3. Taking the trace of (1.3), we get

Rþ Df ¼ nl:ð3:2Þ
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Taking the di¤erence of (3.2) and (3.1), we have

Df f ¼ nl� 2lf � C1ð3:3Þ

¼ �2l f þ C1

2l
� n

2

� �

:¼ �2l ~ff :

The function ~ff is called a normalized soliton potential function.
Assume that ðMn; g; f Þ is shrinking. By (3.1) and Lemma 3.1, we see that

f A LyðMn; e�f dvolÞ implies j‘f j A LyðMn; e�f dvolÞ. Conversely, supposing
j‘f j A LyðMn; e�f dvolÞ, we know from Fernández-López and Garcı́a-Rı́o’s
result (see Theorem 1 in [7]) that ðMn; gÞ must be compact, we thus get
f A LyðMn; e�f dvolÞ. In particular, if ~ff a 0, equation (3.3) gives that

2lf a nl� C1ð3:4Þ
and

Df f ¼ �2l ~ff b 0:ð3:5Þ
Therefore, ðMn; g; f Þ is compact and f is f -subharmonic, since Mn has no
boundary, we conclude that ðMn; g; f Þ is Einstein and f is a constant. r

Remark 3.4. As is shown in Theorem 1.3, the boundedness (from above)
of f and j‘f j on complete gradient shrinking Ricci solitons are equivalent.

Acknowledgement. The author would like to express his sincere thanks to the
referee for valuable suggestions to improve the paper.
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