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FIBERWISE GREEN FUNCTIONS OF SKEW PRODUCTS

SEMICONJUGATE TO SOME POLYNOMIAL PRODUCTS ON C2

Kohei Ueno

Abstract

We consider the dynamics of polynomial skew products that are semiconjugate to

some polynomial products on C2. We show that the fiberwise Green functions exist

outside thin sets, whose upper semicontinuous regularizations are defined, continuous

and plurisubharmonic on C2. This result is obtained from the existence of Green

functions of polynomials outside thin sets.

1. Introduction

In [8] we considered the dynamics of a polynomial skew product on C2

of the form f ðz;wÞ ¼ ðpðzÞ; qðz;wÞÞ, where p and q are polynomials such that
pðzÞ ¼ zd þOðzd�1Þ and qðz;wÞ ¼ wd þOzðwd�1Þ. Let db 2 and db 2. Then
the dynamical degree l1 of f coincides with maxfd; dg. Let f n be the n-th
iterate of f . By definition, f nðz;wÞ ¼ ðpnðzÞ;Qn

z ðwÞÞ, where Qn
z ¼ qpn�1ðzÞ � � � � �

qpðzÞ � qz and qzðwÞ ¼ qðz;wÞ. We investigated the existence of the Green func-
tion of f ,

Gf ðz;wÞ ¼ lim
n!y

1

ln
1

logþj f nðz;wÞj;

and the fiberwise Green function of f ,

GzðwÞ ¼ lim
n!y

1

d n
logþjQn

z ðwÞj;

where logþ ¼ maxflog; 0g and jðz;wÞj ¼ maxfjzj; jwjg. Besides giving an exam-
ple of polynomial skew products whose Green and fiberwise Green functions are
not defined on some curves in C2, we introduced the weighted Green function
of f ,

G a
f ðz;wÞ ¼ lim

n!y

1

ln
1

logþj f nðz;wÞja;
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where jðz;wÞja ¼ maxfjzja; jwjg and a is the rational number determined by the
map f . Our main theorem in [8] shows that G a

f is defined, continuous and
plurisubharmonic on C2, which follows from the results on the existence and
properties of Gz. Moreover, we showed that f extends to a rational map on the
weighted projective space, which is holomorphic if and only if d ¼ d, and that G a

f

determines the Fatou and Julia sets of the extension of f if da d.
However, the existence of the Green and fiberwise Green functions are still

unclear.
In this study, we consider the dynamics of a polynomial skew product of the

form f ðz;wÞ ¼ ðzd ; qðz;wÞÞ, where qðz;wÞ ¼ wd þOzðwd�1Þ, that is semiconju-
gate to a polynomial product ðzd ; hðwÞÞ by pðz;wÞ ¼ ðzr; zswÞ for some positive
integers r and s. In this case, hðwÞ is equal to qð1;wÞ ¼ wd þOðwd�1Þ. We
investigate the existence of the fiberwise Green function Gz, which implies the
existence of the Green function Gf . By the equality jQn

z ðwÞj ¼ jzad n

hnðz�awÞj,
where a ¼ s=r, we have the following theorem and corollary:

Theorem A. The limit Gz is defined, continuous and plurisubharmonic on
C2 � Ef V ðfjzj > 1g � CÞ, where

Ef ¼ 6
z AC

fzg � zaEh and Eh ¼ 7
lb0

6
nbl

h�nð0Þ:

If 0 B Eh, then Gz is defined, continuous and plurisubharmonic on C2, which
coincides with G a

f .

Corollary B. It follows that the upper semicontinuous regularization

lim sup
w 0!w

lim sup
n!y

1

d n
logþjQn

z ðw 0Þj
� �

is defined, continuous and plurisubharmonic on C2. If hðwÞ0wd , then it coincides
with G a

f .

Similar results hold for a fiberwise Green function ~GGzðwÞ ¼ limn!y

d�n logjQn
z ðwÞj. See Theorems 5.1 and 5.4 and Corollaries 5.2 and 5.5 for

details.
These results on the existence of the fiberwise Green functions of f are

obtained from an investigation of a Green function of the polynomial h,

~GGhðwÞ ¼ lim
n!y

1

d n
logjhnðwÞj:

Let Ah be the set of points whose orbits tend to infinity, and Kh be the set of
points whose orbits are bounded.

Theorem C. The limit ~GGh is defined, continuous and subharmonic on C� Eh.
More precisely, if hðwÞ ¼ wd then ~GGhðwÞ ¼ logjwj, and if hðwÞ0wd then ~GGh ¼ Gh

on C� Eh. If 0 B Eh, then ~GGh ¼ Gh on C.
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Corollary D. It follows that the upper semicontinuous regularization

lim sup
w 0!w

lim sup
n!y

1

d n
logjhnðw 0Þj

� �

is defined, continuous and subharmonic on C. If hðwÞ0wd , then it coincides with
Gh.

The organization of the paper is as follows. In Section 2 we recall the
dynamics of polynomial skew products and some results in [8]. We begin the
study of the dynamics of a skew product semiconjugate to a polynomial product
of the form ðzd ; hðwÞÞ in Section 3, which contains necessary and su‰cient con-
ditions for a polynomial skew product of the form ðzd ; qðz;wÞÞ to be semi-
conjugate to a polynomial product. In Section 4 we analyze the existence of
Green functions of polynomials, which induces the results on the existence of the
Green and fiberwise Green functions of the polynomial skew product in Section 5.

2. Dynamics of polynomial skew products

In this section we briefly recall the dynamics of a polynomial skew product
f ðz;wÞ ¼ ðpðzÞ; qðz;wÞÞ, where p and q are polynomials such that pðzÞ ¼
zd þOðzd�1Þ and qðz;wÞ ¼ wd þOzðwd�1Þ, and db 2. Here we assume that
deg p ¼ degw q, where degw q denotes the degree of q with respect to w, although
we did not impose this assumption in [8]. Roughly speaking, the dynamics of
f consists of the dynamics on the base space and the fibers. The first component
p defines the dynamics on the base space C. Note that f preserves the set of
vertical lines in C2. In this sense, we often use the notation qzðwÞ instead of
qðz;wÞ. The restriction of f n to a vertical line fzg � C can be viewed as the
composition of n polynomials on C, qpn�1ðzÞ � � � � � qpðzÞ � qz.

A useful tool in the study of the dynamics of p on the base space is the
Green function of p,

GpðzÞ ¼ lim
n!y

1

d n
logþjpnðzÞj:

It is well known that Gp is defined, continuous and subharmonic on C. More
precisely, Gp is harmonic and positive on Ap and zero on Kp, where Ap ¼
fz : pnðzÞ ! y as n ! yg and Kp ¼ fz : fpnðzÞgnb1 boundedg, and GpðzÞ ¼
logjzj þ oð1Þ as jzj ! y. By definition, GpðpðzÞÞ ¼ dGpðzÞ. Note that Ap t Kp

¼ C and Gp coincides with the Green function of Kp with a pole at infinity.
It is useful to consider the dynamics of the extension of p to a holomorphic

map on the one-dimensional projective space P1. We define the Fatou set Fp of
p as the maximal open set of P1 where the family of iterates of the extension of p
is normal. A Fatou component of p means any connected component of the
Fatou set of p. The Julia set Jp of p is defined as the complement of the Fatou
set of p. It is well known that Fp VC ¼ Ap U int Kp and Jp ¼ qAp ¼ qKp ¼
fz : Gp is not harmonicg.
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In a similar fashion, we consider the fiberwise Green function of f ,

GzðwÞ ¼ lim
n!y

1

d n
logþjQn

z ðwÞj;

where Qn
z ¼ qpn�1ðzÞ � � � � � qpðzÞ � qz. By definition, GpðzÞðqzðwÞÞ ¼ dGzðwÞ if it

exists. Roughly speaking, Gf ðz;wÞ ¼ maxfGpðzÞ;GzðwÞg. Since the limit Gp

exists on C, the existence of Gz implies that of Gf .
Known results about the existence of the limits Gf and Gz are as follows. If

f is regular then Gf is defined, continuous and plurisubharmonic on C2. Several
studies have been made on the dynamics of regular polynomial skew products
(e.g. [3], [4], [5] and [1]). However, the existence of Gz is unclear even if f is
regular. Conversely, the existence of Gz implies that of Gf . It is clear that Gz

is well-behaved on Kp � C. Favre and Guedj [2] studied the existence and
properties of Gz on Kp � C without assuming that deg p ¼ degw q and the leading
coe‰cient of qz to be a constant. Using an argument in the proof of [2,
Theorem 6.1], the existence of Gz on an open subset of K c

p � C is shown in [7,
Lemma 2.3], which was improved in [8, Theorems 3.1 and 3.2].

In [8] we defined the rational number a of f as

min l A Q

����ldb nj þ lmj for any integers nj and mj

s:t: cjz
njwmj is a term in q for some cj 0 0

� �

if degz q > 0 and as 0 if degz q ¼ 0. Since q has only finitely many terms, the
minimum can be taken. Indeed, a is equal to

max
nj

d �mj

����cjz
njwmj is a term in q

with cj 0 0 and mj < d

� �
:

This rational number a plays an important role in the study of the dynamics of f
such as the existence of the limits Gz and Gf . Define Af ¼ 6

nb0
f �nðWRÞ and

WR ¼ fjwj > Rjzja; jwj > Raþ1g for large R > 0.

Theorem 2.1 ([8, Theorem 3.1]). The fiberwise Green function Gz is defined,
continuous and pluriharmonic on Af . Moreover, GzðwÞ tends to aGpðzÞ as ðz;wÞ in
Af tends to qAf .

Hence Gf is also defined, continuous and pluriharmonic on Af . For an
optimality of the minimum a and the region Af , see [8, Remark 2] and [8,
Examples 5.2 and 5.3]. Theorem 2.1 implies the existence of G a

f .

Corollary 2.2 ([8, Theorem 4.1]). The weighted Green function G a
f is

defined, continuous and plurisubharmonic on C2. More precisely,

G a
f ðz;wÞ ¼

GzðwÞ on Af ;

aGpðzÞ on C2 � Af :

�
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In Theorem 5.4, we give a simple proof of the former statement of this
corollary for skew products semiconjugate to some polynomial products.

It is useful to consider the dynamics of the extension of f to a holomorphic
map on a weighted projective space. When we consider the extension of f , we
assume that a0 0; that is, f is not a polynomial product. Let r and s be the
denominator and numerator of a respectively. The weighted projective space
Pðr; s; 1Þ is a quotient space of C3 � fOg,

Pðr; s; 1Þ ¼ C3 � fOg=@;

where ðz;w; tÞ@ ðl rz; lsw; ltÞ for any l in C� f0g. We denote a point in
Pðr; s; 1Þ by weighted homogeneous coordinates ½z : w : t�. It follows from the

definition of a that f extends to a holomorphic map ~ff on Pðr; s; 1Þ,

~ff ½z : w : t� ¼ p
z

tr

� �
tdr : q

z

tr
;
w

ts

� �
tds : td

� �
:

We define the Fatou set of ~ff as the maximal open set of Pðr; s; 1Þ where
the family of iterates f ~ff ngnb0 is normal. The Julia set of ~ff is defined as the
complement of the Fatou set of ~ff . We showed that the Julia set of ~ff coincides
with the closure of the set where G a

f is not pluriharmonic, where the closure is
taken in Pðr; s; 1Þ. In other words, the Julia set of ~ff coincides with the closure
of

6
jzj<1

fzg � q w : G a
f

w

za

� �
¼ 0

� �� �
U 6

jzj¼1

fzg � w : G a
f

w

za

� �
¼ 0

� �� �

U 6
jzj>1

fzg � w : G a
f

w

za

� �
¼ a logjzj

� �� �
;

where the closure is taken in Pðr; s; 1Þ.

3. Skew products semiconjugate to some polynomial products

In this section we begin the study of the dynamics of a polynomial skew
product of the form f ðz;wÞ ¼ ðzd ; qðz;wÞÞ, where qðz;wÞ ¼ wd þOzðwd�1Þ, that
is semiconjugate to a polynomial product ðzd ; hðwÞÞ by pðz;wÞ ¼ ðzr; zswÞ for
some positive integers r and s:

C2 ������!ðzd ;hðwÞÞ
C2

p

???y
???ypðz;wÞ¼ðz r; z swÞ

C2 ������!ðzd ;qðz;wÞÞ
C2:

Note that hðwÞ ¼ qð1;wÞ and so the degree of h is also d; see Proposition
3.1 below. Since s is positive, f is not a polynomial product except ðzd ;wdÞ,
which occurs if and only if hðwÞ ¼ wd . The dynamics of a polynomial product
f ðz;wÞ ¼ ðpðzÞ; qðwÞÞ is relatively easy: GzðwÞ ¼ GqðwÞ coincides with G a

f for
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a ¼ 0, and f extends to a holomorphic map on the two-dimensional projective
space P2.

For any polynomial hðwÞ of degree d and positive integer s, there exists a
polynomial skew product semiconjugate to ðzd ; hðwÞÞ by pðz;wÞ ¼ ðz; zswÞ. In
fact, ðzd ; zsdhðz�swÞÞ is the required map. On the other hand, we give necessary
and su‰cient conditions for a polynomial skew product f ðz;wÞ ¼ ðzd ; qðz;wÞÞ to
be semiconjugate to a polynomial product.

Proposition 3.1. Let f ðz;wÞ ¼ ðzd ; qðz;wÞÞ be a polynomial skew product,
where qðz;wÞ ¼ wd þOzðwd�1Þ. Assume that f is not a polynomial product.
Then the following are equivalent for some mutually prime positive integers r and s:

(1) f is semiconjugate to a polynomial product ðzd ; qð1;wÞÞ by pðz;wÞ ¼
ðzr; zswÞ,

(2) qðzr; zswÞ ¼ zsdqð1;wÞ,
(3) f t ¼ td f for any tðz;wÞ ¼ ðlz; kwÞ with ls ¼ k r.

Proof. Clearly, (1) and (2) are equivalent. Let us show the equivalence of
(2) and (3). Suppose that (2) holds, and let znwm be a term of q with a nonzero
coe‰cient for m < d. Then rnþ sm ¼ sd. Since (3) is equivalent to the equality
qðlz; kwÞ ¼ kdqðz;wÞ, it is enough to show that lnkm ¼ kd . From the equality
ls ¼ k r and the mutually primeness of r and s, it follows that

ln ¼ fðk rÞ1=sgn ¼ fðk1=sÞrgn ¼ k rn=s ¼ kd�m:

In particular, the equality of sets ðk rÞ1=s and ðk1=sÞr is guaranteed by the mutually
primeness of r and s. The proof of the opposite direction from (3) to (2) is
similar to above but relatively easy; from the equalities lnkm ¼ kd and ls ¼ k r, it
follows that rnþ sm ¼ sd. r

Any pair of multiple integers of r and s with the same positive multiplier
satisfies (1) and (2) of Proposition 3.1. On the other hand, r and s in (3) of
Proposition 3.1 should be mutually prime. We can restate the necessary and
su‰cient condition (3) for a polynomial skew product to be semiconjugate to a
polynomial product as follows:

Proposition 3.2. Let f be a polynomial skew product as in Proposition 3.1.
If the equality f t ¼ tdf holds for some tðz;wÞ ¼ ðlz; kwÞ with jlj0 1 and lk0 0,
then f is semiconjugate to a polynomial product ðzd ; qð1;wÞÞ by pðz;wÞ ¼ ðzr; zswÞ
for some positive integers r and s.

Proof. Let znjwmj be a term of q with a nonzero coe‰cient for mj < d. By
assumption, l and k are related by lnjkmj ¼ kd . The equalities lnj ¼ kd�mj and
lni ¼ kd�mi imply that lniðd�mjÞ�njðd�miÞ ¼ 1. Since ln 0 1 for any nonzero
integer n, we have niðd �mjÞ � njðd �miÞ ¼ 0. Hence the ratio of d �mj

and nj are independent of j. Therefore, (2) of Proposition 3.1 holds for any
positive integers r and s whose ratio are equal to that of d �mj and nj . r
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Moreover, there are other necessary and su‰cient conditions in terms of the
weighted homogeneous part of the polynomial q, which is defined in [8], and the
symmetries of the Julia set of f , which is described in [7, Proposition 3.9].

Now, we consider the existence of the fiberwise Green function Gz for
f ðz;wÞ ¼ ðzd ; qðz;wÞÞ as above. Note that the ratio of r and s coincides with the
rational number a of f defined in Section 2 unless a ¼ 0; thus let a ¼ s=r. If a is
an integer, then we have the following equalities for any positive integer n:

qðz;wÞ ¼ zadh
w

za

� �
and Qn

z ðwÞ ¼ zad
n

hn w

za

� �
:

Even if a is not an integer, it follows that jQn
z ðwÞj ¼ jzad n

hnðz�awÞj. Hence

1

d n
logþjQn

z ðwÞj ¼
1

d n
logþ zad

n

hn w

za

� �����
����¼ max a logjzj þ 1

d n
log hn w

za

� �����
����; 0

� �
:

Therefore, the existence of Gz follows from that of the limit of d�n logjhnj,
which is investigated in the next section.

4. Existence of Green functions of polynomials

Let hðwÞ ¼ wd þOðwd�1Þ be a monic polynomial of degree db 2. As we
mentioned in Section 2, a useful tool of the study of the dynamics of h is the
Green function of h,

GhðwÞ ¼ lim
n!y

1

d n
logþjhnðwÞj:

Due to the term logþ ¼ maxflog; 0g, it follows that Gh is defined on C. We
investigate what happens if we replace logþ by log in this section. Define

~GGhðwÞ ¼ lim
n!y

1

d n
logjhnðwÞj and GhðwÞ ¼ lim sup

n!y

1

d n
logjhnðwÞj:

It follows that ~GGh ¼ Gh > 0 on Ah and Gh is defined on C. Note that Gh ¼
maxfGh; 0g, or roughly Gh ¼ maxf ~GGh; 0g. Here we define maxf ~GGh; 0g as 0 when
the limit ~GGhðwÞ is not defined. Then maxf ~GGh; 0g coincides with maxfGh; 0g
because GhðwÞa 0 if ~GGhðwÞ is not defined.

The point is that the function logjwj has singularity at w ¼ 0, and so

logjhnðwÞj has singularity on h�nð0Þ. We show that ~GGh has singularity only
when the preimages of 0 has recurrence at 0 in Theorem 4.2 below; thus we
define

Eh ¼ 7
lb0

6
nbl

h�nð0Þ:

For example, if 0 is a fixed point, then ~GGh is �y on the preimages of 0 and
discontinuous on Eh. If 0 is a periodic point, then ~GGh is not defined on the
preimages of 0, although Gh ¼ 0 on the preimages of 0. On the other hand, we
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show that the limit ~GGh is well-behaved on C� Eh in Theorem 4.2 below, using the
following fact by Sullivan and others such as Fatou and Julia.

Theorem 4.1 ([6, Theorems 16.1 and 16.4]). Every Fatou component of a
holomorphic map R on P1 is eventually periodic. If R maps the Fatou component
U onto itself, then there are just four possibilities, as follows: Either U is the
immediate basin of an attracting fixed point, or of a parabolic fixed point, or else U
is a Siegel disk or Herman ring.

A polynomial has no Herman rings. Because the dynamics of a holomor-
phic map on the periodic Fatou components is well understood, Theorem 4.1
induces the following key theorem, which includes Theorem C.

Theorem 4.2. The limit ~GGh is defined, continuous and subharmonic on
C� Eh. More precisely, if hðwÞ ¼ wd then ~GGhðwÞ ¼ logjwj, and if hðwÞ0wd

then ~GGh ¼ Gh on C� Eh. If 0 B Eh, then ~GGh ¼ Gh on C. If 0 A Eh, then there are
just three possibilities, as follows:

(1) 0 is an attracting periodic point,
(2) 0 is contained in a Siegel cycle,
(3) 0 is contained in the Julia set Jh.

Proof. If hðwÞ ¼ wd , then clearly ~GGhðwÞ ¼ logjwj. If 0 B Kh, then ~GGh ¼ Gh.
Hence we may assume that hðwÞ0wd and 0 A Kh. For the former statement, it
is enough to show that ~GGh ¼ 0 on Kh � Eh. The following proof of this equality
also shows the latter statement.

First, we consider the case 0 A Fh; thus 0 A int Kh. In this case, 0 is con-
tained in the attracting basin of an attracting periodic point, or of a parabolic
periodic point, or in the preimage of a Siegel cycle. Hereinafter we assume that
the periodic point or the Siegel cycle is the fixed point or the Siegel disk for
simplicity.

Let us assume that 0 is contained in the attracting basin. If 0 is not an
attracting fixed point, then clearly ~GGh ¼ 0 on Kh; thus ~GGh ¼ Gh on C. If 0 is an
attracting fixed point, then it is enough to show that ~GGh ¼ 0 on A0 � Eh, where
A0 denotes the attracting basin of 0. Let l ¼ h 0ð0Þ. If 0 < jlj < 1, then hðwÞ ¼
lwþOðw2Þ. Hence there exist constants c < jlj and r > 0 such that jhðwÞjb
cjwj for any jwj < r. Therefore, jhnðwÞjb cnjwj for any nb 0 and so ~GGh ¼ 0 on
f0 < jwj < rg since hnðwÞ is bounded on Kh. Consequently, ~GGh ¼ 0 on A0 � Eh.
If l ¼ 0, then hðwÞ ¼ awm þOðwmþ1Þ. Hence there exist constants c < jaj
and r > 0 such that jhðwÞjb cjwjm for any jwj < r. Therefore, jhnðwÞjb
c1þmþ���þmn�1 jwjm

n

for any nb 0 and so ~GGh ¼ 0 on f0 < jwj < rg since hnðwÞ
is bounded on Kh. Consequently, ~GGh ¼ 0 on A0 � Eh.

If 0 is contained in the attracting basin of a parabolic fixed point that is not
0, then clearly ~GGh ¼ 0 on Kh; thus ~GGh ¼ Gh on C.

Let us assume that 0 is contained in the preimage of a Siegel disk. If 0 is

not contained in the Siegel disk, then clearly ~GGh ¼ 0 on Kh; thus ~GGh ¼ Gh on C.
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If 0 is contained in the Siegel disk D, then h is conjugate to elw on D. Hence
~GGh ¼ 0 on D� Eh and so ~GGh ¼ 0 on Kh � Eh.

Next, we consider the case 0 A Jh; that is, 0 A qKh. In this case Eh ¼ Jh, and
the proof depends on whether 0 is a parabolic point or not.

Let us assume that 0 is a parabolic fixed point and that hðwÞ ¼ wþ awmþ1 þ
Oðwmþ2Þ for simplicity. Then jhnðwÞj@ ð

ffiffiffiffiffiffiffiffiffiffiffiffi
mjajnm

p
Þ�1 as n ! y and so there

exists a constant c < 1 such that jhnðwÞjb cð
ffiffiffiffiffiffiffiffiffiffiffiffi
mjajnm

p
Þ�1 on the attracting petals

of 0. See [6] for details. Therefore, ~GGh ¼ 0 on the parabolic basin of 0 since
hnðwÞ is bounded on Kh. It follows from Theorem 4.1 that, except the parabolic
basin of 0, there is no periodic Fatou component U such that 0 is contained in
qU and attracts some points in U . Consequently, ~GGh ¼ 0 on Kh � Eh ¼ Kh � Jh
¼ int Kh.

For other cases of 0 A Jh, it follows that ~GGh ¼ 0 on Kh � Eh from the fact
that there is no periodic Fatou component U such that 0 is contained in qU and
attracts some points in U . r

The following corollary of Theorem 4.2 is identical with Corollary D.

Corollary 4.3. It follows that the upper semicontinuous regularization

lim sup
w 0!w

lim sup
n!y

1

d n
logjhnðw 0Þj

� �

is defined, continuous and subharmonic on C. If hðwÞ0wd , then it coincides with
Gh.

Proof. Clearly, Gh ¼ Gh on Ah. We may assume that hðwÞ0wd . It then
follows from Theorem 4.2 that Gh ¼ 0 on Kh � Eh. We may assume that 0 A Kh;
thus hnðwÞ is bounded on Eh. Hence it is enough to show that GhðwÞ tends to
0 as w in C� Eh tends to Eh. If 0 A Fh, then this convergence holds because
Gh ¼ 0 on ðKh � EhÞU qKh and because Kh � Eh is dense in Kh. If 0 A Jh, then
the convergence above holds because GhðwÞ tends to 0 as w in Ah tends to qAh

and Gh ¼ 0 on int Kh, and because Eh ¼ Jh ¼ qAh ¼ qKh. r

Remark 4.4. We can replace lim supn!y d�n logjhnj by lim infn!y

d�n logjhnj in Corollary 4.3 besides many places in the paper, because these
functions are the same on C� Eh.

5. Existence of fiberwise Green functions

In this section we investigate the existence of the fiberwise Green function
Gz of a polynomial skew product f ðz;wÞ ¼ ðzd ; qðz;wÞÞ, where qðz;wÞ ¼
wd þOzðwd�1Þ, that is semiconjugate to a polynomial product ðzd ; hðwÞÞ by
pðz;wÞ ¼ ðzr; zswÞ for some positive integers r and s. Results in this section are
obtained from Theorem 4.2 and Corollary 4.3 in the previous section. Before
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describing the result on the existence of Gz, we consider that of ~GGzðwÞ ¼
limn!y d�n logjQn

z ðwÞj. Define

Ef ¼ 6
z AC

fzg � zaEh; where a ¼ s

r
:

Theorem 5.1. The limit ~GGz is defined, continuous and plurisubharmonic on
C2 � Ef . More precisely, if hðwÞ0wd , then it is equal to

a logjzj þ Gh

w

za

� �

on ðC� f0gÞ � C� Ef and logjwj on f0g � C. If 0 B Eh, then ~GGz is defined and
plurisubharmonic on C2 and continuous on C2 � fOg.

Proof. If z ¼ 0, then ~GG0ðwÞ ¼ logjwj since f ð0;wÞ ¼ ð0;wdÞ. For z0 0,

1

d n
logjQn

z ðwÞj ¼ a logjzj þ 1

d n
log hn w

za

� �����
����:

Hence we have the following rough equality for z0 0:

~GGzðwÞ ¼ a logjzj þ ~GGh

w

za

� �
:

Therefore, applying Theorem 4.2 completes the proof. r

The following two corollaries follow from Theorem 5.1 and an argument
similar to the proof of Corollary 4.3.

Corollary 5.2. It follows that the upper semicontinuous regularization

lim sup
w 0!w

lim sup
n!y

1

d n
logjQn

z ðw 0Þj
� �

is defined and plurisubharmonic on C2 and continuous on C2 � fOg. More
precisely, if hðwÞ0wd , then it is equal to

a logjzj þ Gh

w

za

� �
ðz0 0Þ;

logjwj ðz ¼ 0Þ:

8<
:

Corollary 5.3. It follows that the upper semicontinuous regularization

lim sup
ðz 0;w 0Þ!ðz;wÞ

lim sup
n!y

1

d n
logj f nðz 0;w 0Þj

� �
;
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which is equal to

lim sup
w 0!w

lim sup
n!y

1

d n
logj f nðz;w 0Þj

� �
;

is defined and plurisubharmonic on C2 and continuous on C2 � fOg. More
precisely, if hðwÞ0wd , then it is equal to

max logjzj; a logjzj þ Gh

w

za

� �� �
ðz0 0Þ;

logjwj ðz ¼ 0Þ:

8<
:

We now describe the results on the existence of Gz, which includes Theo-
rem A.

Theorem 5.4. The limit Gz is defined, continuous and plurisubharmonic
on C2 � Ef V ðfjzj > 1g � CÞ. More precisely, if hðwÞ0wd , then it is equal
to

max a logjzj þ Gh

w

za

� �
; 0

� �

on ðC� f0gÞ � C� Ef V ðfjzj > 1g � CÞ and logþjwj on f0g � C. Moreover, if
hðwÞ0wd , then it follows that

G a
f ðz;wÞ ¼

max a logjzj þ Gh

w

za

� �
; 0

� �
ðz0 0Þ;

logþjwj ðz ¼ 0Þ:

8<
:

In particular, the weighted Green function G a
f is defined, continuous and pluri-

subharmonic on C2. If 0 B Eh, then Gz ¼ G a
f on C2.

Proof. The proof of the claims about Gz is similar to that of Theorem 5.1;
we apply Theorem 4.2. Let us derive the form of G a

f . If z ¼ 0, then G a
f ð0;wÞ ¼

logþjwj. If z0 0, then roughly

G a
f ðz;wÞ ¼ maxfa logjzj; ~GGzðwÞ; 0g

¼ max a logjzj; a logjzj þ ~GGh

w

za

� �
; 0

� �

¼ max a logjzj þ Gh

w

za

� �
; 0

� �
: r

The following two corollaries follow from Theorem 5.4 and an argu-
ment similar to the proof of Corollary 4.3. The former is identical with
Corollary B.
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Corollary 5.5. It follows that the upper semicontinuous regularization

lim sup
w 0!w

lim sup
n!y

1

d n
logþjQn

z ðw 0Þj
� �

is defined, continuous and plurisubharmonic on C2. If hðwÞ0wd , then it coincides
with G a

f .

Corollary 5.6. It follows that the upper semicontinuous regularization

lim sup
ðz 0;w 0Þ!ðz;wÞ

lim sup
n!y

1

d n
logþj f nðz 0;w 0Þj

� �
;

which is equal to

lim sup
w 0!w

lim sup
n!y

1

d n
logþj f nðz;w 0Þj

� �
;

is defined, continuous and plurisubharmonic on C2. More precisely, if hðwÞ0wd ,
then it is equal to

max logjzj; a logjzj þ Gh

w

za

� �
; 0

� �
ðz0 0Þ;

logþjwj ðz ¼ 0Þ:

8<
:

As shown in Section 2, the map f extends to a holomorphic map ~ff on
Pðr; s; 1Þ. By Theorem 5.4, the Julia set of ~ff can be written in terms of the
dynamics of h; it coincides with the closure of

6
jzj<1

fzg � w : Gh

w

za

� �
¼ �a logjzj

� �� �

U 6
jzj¼1

ðfzg � zaKhÞU 6
jzj>1

ðfzg � zaJhÞ;

where the closure is taken in Pðr; s; 1Þ.
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