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FIBERWISE GREEN FUNCTIONS OF SKEW PRODUCTS
SEMICONJUGATE TO SOME POLYNOMIAL PRODUCTS ON C?

Koner UENO

Abstract

We consider the dynamics of polynomial skew products that are semiconjugate to
some polynomial products on C2. We show that the fiberwise Green functions exist
outside thin sets, whose upper semicontinuous regularizations are defined, continuous
and plurisubharmonic on C2. This result is obtained from the existence of Green
functions of polynomials outside thin sets.

1. Introduction

In [8] we considered the dynamics of a polynomial skew product on C?
of the form f(z,w) = (p(z),q(z,w)), where p and ¢ are polynomials such that
p(z) =22+ 0(z°7") and ¢(z,w) = w? + O.(w¥ ). Let §>2 and d >2. Then
the dynamical degree 1; of f coincides with max{J,d}. Let f" be the n-th
iterate of f. By definition, f"(z,w) = (p"(z), Q!(w)), where Q! = g,n1(;j0---0
dp(z) © q- and q.(w) = g(z,w). We investigated the existence of the Green func-
tion of f,

Gr(z,w) = lim - log*| /" (z,w).

n— oo l?

and the fiberwise Green function of f,

.1 "
G:(w) = lim — log"| Q2 (w)l,
where log™ = max{log,0} and |(z,w)| = max{|z|,|w|}. Besides giving an exam-
ple of polynomial skew products whose Green and fiberwise Green functions are
not defined on some curves in C2, we introduced the weighted Green function

of f,

1
lim — log”[/"(2. )L,

n

Gi(z,w)
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where |(z,w)|, = max{|z|”,|w|} and « is the rational number determined by the
map f. Our main theorem in [8] shows that G} is defined, continuous and
plurisubharmonic on C?, which follows from the results on the existence and
properties of G.. Moreover, we showed that f extends to a rational map on the
weighted projective space, which is holomorphic if and only if 6 = d, and that G
determines the Fatou and Julia sets of the extension of f if § < d.

However, the existence of the Green and fiberwise Green functions are still
unclear.

In this study, we consider the dynamics of a polynomial skew product of the
form f(z,w) = (z¢,q(z,w)), where g(z,w) =w? + O.(w?"!), that is semiconju-
gate to a polynomial product (z¢,h(w)) by n(z,w) = (z",z*w) for some positive
integers r and 5. In this case, h(w) is equal to g(1,w) =w+ O(w' ). We
investigate the existence of the fiberwise Green function G., which implies the
existence of the Green function Gy. By the equality |Q(w)| = |z*?"h"(z*w)|,
where o = s/r, we have the following theorem and corollary:

THEOREM A. The limit G, is defined, continuous and plurisubharmonic on
C? — E N({|z| > 1} x C), where

Er= \J{z} xz"Ey and E,= () |J h=(0).
zeC 1>0 n>1
If 0¢E,, then G, is defined, continuous and plurisubharmonic on C2, which
coincides with G7.

COROLLARY B. It follows that the upper semicontinuous regularization

. . 1 "
lim sup (hm sup — log"|Q”"(w') |>
wi—w n—oo
is defined, continuous and plurisubharmonic on C*.  If h(w) # w9, then it coincides
with G

S

Similar results hold for a fiberwise Green function G.(w)=lim,_ .,
d " log|Q(w)|. See Theorems 5.1 and 5.4 and Corollaries 5.2 and 5.5 for
details.

These results on the existence of the fiberwise Green functions of f are
obtained from an investigation of a Green function of the polynomial A,

~ 1
G,(w) = lim — log|h"(w)|.

n—oo dn
Let A;, be the set of points whose orbits tend to infinity, and Kj, be the set of
points whose orbits are bounded.

TuroreMm C.  The limit Gy, is defined, continuous and subharmonic on C — Ej,.
More precisely, if h(w) = w? then Gy(w) = log|w|, and if h(w) # w? then G, = Gj,
on C—E, If 0¢E,, then G, =G, on C.
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COROLLARY D. It follows that the upper semicontinuous regularization

. . 1
hn} sup <hm sup log|h”(w") |>
wi—w n—oo

is defined, continuous and subharmonic on C. If h(w) # w, then it coincides with
Gy

The organization of the paper is as follows. In Section 2 we recall the
dynamics of polynomial skew products and some results in [§]. We begin the
study of the dynamics of a skew product semiconjugate to a polynomial product
of the form (z¢,h(w)) in Section 3, which contains necessary and sufficient con-
ditions for a polynomial skew product of the form (z%, ¢(z,w)) to be semi-
conjugate to a polynomial product. In Section 4 we analyze the existence of
Green functions of polynomials, which induces the results on the existence of the
Green and fiberwise Green functions of the polynomial skew product in Section 5.

2. Dynamics of polynomial skew products

In this section we briefly recall the dynamics of a polynomial skew product
f(z,w) = (p(z),q(z,w)), where p and ¢ are polynomials such that p(z)=
294+ 0@z and q(z,w) =w? + O0.(w'"), and d > 2. Here we assume that
deg p = deg,, ¢, where deg,, ¢ denotes the degree of g with respect to w, although
we did not impose this assumption in [8]. Roughly speaking, the dynamics of
f consists of the dynamics on the base space and the fibers. The first component
p defines the dynamics on the base space C. Note that f preserves the set of
vertical lines in C>. In this sense, we often use the notation ¢.(w) instead of
q(z,w). The restriction of f” to a vertical line {z} x C can be viewed as the
composition of n polynomials on C, gyn1(;)0 - 0 gy:) ©g:.

A useful tool in the study of the dynamics of p on the base space is the
Green function of p,

.1
Gy(2) = lim — log™|p"(2)].
It is well known that G, is defined, continuous and subharmonic on C. More
precisely, G, is harmonic and positive on 4, and zero on K,, where A4, =
{z:p"(z) > 0 as n— oo} and K, ={z:{p"(2)},>, bounded}, and G,(z) =
log|z| + o(1) as |z| — oo. By definition, G,(p(z)) = dG,(z). Note that 4, LUK,
= C and G, coincides with the Green function of K, with a pole at infinity.

It is useful to consider the dynamics of the extension of p to a holomorphic
map on the one-dimensional projective space P'.  We define the Fatou set F, of
p as the maximal open set of P! where the family of iterates of the extension of p
is normal. A Fatou component of p means any connected component of the
Fatou set of p. The Julia set J, of p is defined as the complement of the Fatou
set of p. It is well known that F,NC=4,Uint K, and J, =04, = 0K, =
{z: G, is not harmonic}.
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In a similar fashion, we consider the fiberwise Green function of f,
: 1 +1n
G:(w) = lim — log™|Q(w)|,
n—oo dn -

where Q! = q,n1(;) 0 -0qy0q.. By definition, Gp)(q-(w)) = dG.(w) if it
exists. Roughly speaking, Gr(z,w)= max{G,(z),G-(w)}. Since the limit G,
exists on C, the existence of G. implies that of Gy.

Known results about the existence of the limits Gy and G: are as follows. If
[ is regular then Gy is defined, continuous and plurisubharmonic on C?. Several
studies have been made on the dynamics of regular polynomial skew products
(e.g. [3], [4], [5] and [1]). However, the existence of G. is unclear even if f is
regular. Conversely, the existence of G. implies that of Gy. It is clear that G
is well-behaved on K, x C. Favre and Guedj [2] studied the existence and
properties of G. on K, x C without assuming that deg p = deg,, ¢ and the leading
coefficient of ¢. to be a constant. Using an argument in the proof of [2,
Theorem 6.1], the existence of G. on an open subset of K¢ x C is shown in [7,
Lemma 2.3], which was improved in [8, Theorems 3.1 and 3.2].

In [8] we defined the rational number o of f as

min{leQ

ld = n; + Im; for any integers n; and m;
s.t. ¢izw™ is a term in ¢ for some ¢; # 0

if deg.¢ >0 and as 0 if deg.q =0. Since ¢ has only finitely many terms, the
minimum can be taken. Indeed, « is equal to

i
max
d—m;

ciz%w" is a term in g
with ¢; #0 and m; <d |’

This rational number o plays an important role in the study of the dynamics of f
such as the existence of the limits G. and G;. Define 4, = (), _, /~"(Wg) and
Wr = {|w| > R|z|*,|w| > R*"'} for large R > 0. N

THEOREM 2.1 ([8, Theorem 3.1]). The fiberwise Green function G, is defined,
continuous and pluriharmonic on A;.  Moreover, G.(w) tends to aG,(z) as (z,w) in
Ay tends to 0Ay.

Hence Gy is also defined, continuous and pluriharmonic on 4y. For an
optimality of the minimum « and the region Ay, see [8, Remark 2] and [8,
Examples 5.2 and 5.3]. Theorem 2.1 implies the existence of Gf.

CorOLLARY 2.2 ([8, Theorem 4.1]). The weighted Green function G} is
defined, continuous and plurisubharmonic on C%.  More precisely, '
G-(w) on Ay,

G[x 5 =
72 w) {aGp(z) on C* — A4;.
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In Theorem 5.4, we give a simple proof of the former statement of this
corollary for skew products semiconjugate to some polynomial products.

It is useful to consider the dynamics of the extension of f to a holomorphic
map on a weighted projective space. When we consider the extension of f, we
assume that o # 0; that is, f is not a polynomial product. Let r and s be the
denominator and numerator of o respectively. The weighted projective space
P(r,s,1) is a quotient space of C*>— {0},

P(r,s,1) = C* - {O}/~,
where (z,w,t) ~ (1"z,A*w,At) for any 1 in C—{0}. We denote a point in
P(r,s,1) by weighted homogeneous coordinates [z:w: . It follows from the
definition of « that f extends to a holomorphic map f on P(r,s,1),

flz:w:d = {p(%)tdr : q(%,%)tds : td}

We define the Fatou set of f as the maximal open set of P(r,s,1) where
the family of iterates {f"},., is normal. The Julia set of f is defined as the
complement of the Fatou set of f. We showed that the Julia set of f coincides
with the closure of the set where G7 is not pluriharmonic, where the closure is
taken in P(r,s,1). In other words, the Julia set of f coincides with the closure
of

Y (ifear(z) =of)o U (19 {wer () -0}
U ‘Zgl ({z} x {w : G (z’—”> _ 10g|z|}>,

where the closure is taken in P(r,s,1).

3. Skew products semiconjugate to some polynomial products

In this section we begin the study of the dynamics of a polynomial skew
product of the form f(z,w) = (z%,¢q(z,w)), where g(z,w) = w? + O.(w?"1), that
is semiconjugate to a polynomial product (z¢ h(w)) by =(z,w) = (z",z%w) for
some positive integers r and s:

C? c?
nl ln(:, w)=(z",z*w)
C2 (z4,q(z,w)) .

Note that /#(w) =¢(1,w) and so the degree of % is also d; see Proposition
3.1 below. Since s is positive, f is not a polynomial product except (z¢, w?),
which occurs if and only if #(w) = w?. The dynamics of a polynomial product

Sf(z,w) = (p(z),q(w)) is relatively easy: G:(w) = Gy(w) coincides with G for



350 KOHEI UENO

o =0, and f extends to a holomorphic map on the two-dimensional projective
space P2

For any polynomial /(w) of degree d and positive integer s, there exists a
polynomial skew product semiconjugate to (z¢ i(w)) by n(z,w) = (z,z*w). In
fact, (z?,z°?h(z~°w)) is the required map. On the other hand, we give necessary
and sufficient conditions for a polynomial skew product f(z,w) = (z%,¢q(z, w)) to
be semiconjugate to a polynomial product.

PrOPOSITION 3.1.  Let f(z,w) = (z%,q(z,w)) be a polynomial skew product,
where q(z,w) = w? + O.(w?™").  Assume that f is not a polynomial product.
Then the following are equivalent for some mutually prime positive integers r and s:

(1) f is semiconjugate to a polynomial product (z¢,q(1,w)) by n(z,w) =

(=", 2w),
() a5, 2w) = 24q(1,w),
(3) fr =1 for any t(z,w) = (Az,xw) with 2° = K".

Proof. Clearly, (1) and (2) are equivalent. Let us show the equivalence of
(2) and (3). Suppose that (2) holds, and let z"w™ be a term of ¢ with a nonzero
coefficient for m < d. Then rn+ sm = sd. Since (3) is equivalent to the equality
q(2z,xw) = x%q(z,w), it is enough to show that A"x™ = k9. From the equality

A =" and the mutually primeness of r and s, it follows that
3= () Y = ()Y = e = e,

In particular, the equality of sets (K’)l/ *and (x!/%)" is guaranteed by the mutually
primeness of r and s. The proof of the opposite direction from (3) to (2) is
similar to above but relatively easy; from the equalities 2"x” = k¢ and A* = «", it
follows that rn + sm = sd. O

Any pair of multiple integers of r and s with the same positive multiplier
satisfies (1) and (2) of Proposition 3.1. On the other hand, r and s in (3) of
Proposition 3.1 should be mutually prime. We can restate the necessary and
sufficient condition (3) for a polynomial skew product to be semiconjugate to a
polynomial product as follows:

ProOPOSITION 3.2. Let [ be a polynomial skew product as in Proposition 3.1.
If the equality ft = tf holds for some t(z,w) = (Jz,xw) with |A| # 1 and Jx # 0,
then f is semiconjugate to a polynomial product (z¢,q(1,w)) by n(z,w) = (2", z*w)
for some positive integers r and s.

Proof. Let z%w" be a term of ¢ with a nonzero coeflicient for m; < d. By
assumption, A and x are related by A"« = x?. The equalities 2" = k¢~ and
M = d=mi imply that A"@m)=m@=m) — 1 Since A" #1 for any nonzero
integer n, we have n;(d —mj) —nj(d —m;) =0. Hence the ratio of d—m;
and n; are independent of j. Therefore, (2) of Proposition 3.1 holds for any
positive integers r and s whose ratio are equal to that of d —m; and n;. [0



FIBERWISE GREEN FUNCTIONS 351

Moreover, there are other necessary and sufficient conditions in terms of the
weighted homogeneous part of the polynomial ¢, which is defined in [8], and the
symmetries of the Julia set of f, which is described in [7, Proposition 3.9].

Now, we consider the existence of the fiberwise Green function G, for
f(z,w) = (z%,q(z,w)) as above. Note that the ratio of r and s coincides with the
rational number « of f defined in Section 2 unless o« = 0; thus let o = s/r. If o is
an integer, then we have the following equalities for any positive integer n:

q(z,w) = z*h (K> and Q"(w) =z*"h" (1>
Z‘l = ZO(
Even if o is not an integer, it follows that |Q"(w)| = |z*?"h"(z~*w)|. Hence

1 4" pr <W>‘_max{alog|z| 4—i log|h" <W) ,O}.
Zu dn Zo

dn
Therefore, the existence of G. follows from that of the limit of d~" log|h”|,
which is investigated in the next section.

" 1
log |02 (w)| = - log*

4. Existence of Green functions of polynomials

Let h(w) = w? 4+ O(w?"!) be a monic polynomial of degree d >2. As we
mentioned in Section 2, a useful tool of the study of the dynamics of /4 is the
Green function of A,

1
Gy(w) = lim — log™|h"(w)|.
n—oo dn
Due to the term log®™ = max{log,0}, it follows that G is defined on C. We
investigate what happens if we replace log® by log in this section. Define
~ .1 - . 1
Gy(w) = lim — log|h"(w)| and G,(w) = limsup — log|h"(w)].
n—ow d" noo A"
It follows that Gy=G,>0 on Aj_and Gy, is defined on C. Note that G =
max{Gy,0}, or roughly G, = max{Gj,0}. Here we define max{Gj,0} as 0 when
the limit Gj(w) is not defined. Then max{Gj,0} coincides with max{G,,0}
because G,(w) <0 if G,(w) is not defined.

The point is that the function log|w| has singularity at w =0, and so
log|i"(w)| has singularity on ~27"(0). We show that Gj, has singularity only
when the preimages of 0 has recurrence at 0 in Theorem 4.2 below; thus we
define

Eh = ﬂ U h_"(O)

>0 n>1

For example, if 0 is a fixed point, then G, is —oo on_the preimages of 0 and
discontinuous on Ej. If 0 is a periodic point, then Gj is not defined on the
preimages of 0, although G, = 0 on the preimages of 0. On the other hand, we
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show that the limit G;, is well-behaved on C — Ej, in Theorem 4.2 below, using the
following fact by Sullivan and others such as Fatou and Julia.

THEOREM 4.1 ([6, Theorems 16.1 and 16.4]). Every Fatou component of a
holomorphic map R on P! is eventually periodic. If R maps the Fatou component
U onto itself, then there are just four possibilities, as follows: Either U is the
immediate basin of an attracting fixed point, or of a parabolic fixed point, or else U
is a Siegel disk or Herman ring.

A polynomial has no Herman rings. Because the dynamics of a holomor-
phic map on the periodic Fatou components is well understood, Theorem 4.1
induces the following key theorem, which includes Theorem C.

TarOREM 4.2. The limit Gy is defined, continuous and subharmonic on
C— E,. More precisely, if h(w)=w? then G,(w)=log|w|, and if h(w) # w?
then G, = G, on C— Ej,. If 0 ¢ Ej, then G, = G, on C.  If 0 € Ey, then there are
Just three possibilities, as follows:

(1) 0 is an attracting periodic point,

(2) 0 is contained in a Siegel cycle,

(3) 0 is contained in the Julia set Jj.

Proof. If h(w) = w¥, then clearly Gj,(w) =log|w|. If 0 ¢ K;, then G), = Gj.
Hence we may assume that A(w) # w? and 0 € K. For the former statement, it
is enough to show that G, =0 on K;, — E;,. The following proof of this equality
also shows the latter statement.

First, we consider the case 0 € Fj; thus 0 €int K;,. In this case, 0 is con-
tained in the attracting basin of an attracting periodic point, or of a parabolic
periodic point, or in the preimage of a Siegel cycle. Hereinafter we assume that
the periodic point or the Siegel cycle is the fixed point or the Siegel disk for
simplicity.

Let us assume that 0 is contained in the attracting basin. If 0 is not an
attracting fixed point, then clearly G; = 0 on Kj; thus G, = G, on C. If 0 is an
attracting fixed point, then it is enough to show that G, =0 on A4y — Ej, where
Ay denotes the attracting basin of 0. Let A =A'(0). If 0 < |4 < 1, then h(w) =
Aw+ O(w?). Hence there exist constants ¢ < |A| and r >0 such that |[a(w)| >
c|w| for any |w| <r. Therefore, |h"(w)| > c¢"|w| for any n >0 and so G, =0 on
{0 < |w| < r} since h"(w) is bounded on K. Consequently, G, =0 on Ay — Ej.
If 2=0, then h(w)=aw™+ O(w"*!). Hence there exist constants ¢ < |a]
and r>0 such that |h(w)|>clw|”™ for any |w|<r. Therefore, [h"(w)| >
el m™ ™ for any n>0 and so G, =0 on {0 < |w| <r} since A”(w)
is bounded on Kj. Consequently, G, =0 on A4y — Ej.

If 0 is contained in the attracting basin of a parabolic fixed point that is not
0, then clearly G, =0 on Kj; thus G, = G, on C.

Let us assume that 0 is contained in the preimage of a Siegel disk. If 0 is
not contained in the Siegel disk, then clearly G;, =0 on Kj; thus G/, = Gy, on C.



FIBERWISE GREEN FUNCTIONS 353

If 0 is contained in the Siegel disk D, then £ is conjugate to e’w on D. Hence
G,=0on D—Ej, and so G, =0 on K;, — Ej.

Next, we consider the case 0 € Jj,; that is, 0 € 0Kj,. In this case E, = Jj,, and
the proof depends on whether 0 is a parabolic point or not.

Let us assume that 0 is a parabolic fixed point and that h(w) = w 4+ aw™*! +
O(w™?2) for simplicity. Then [h"(w)| ~ ({/mlaln)™" as n— oo and so there
exists a constant ¢ < 1 such that |h"(w)| > ¢({/mlajn)"" on the attracting petals
of 0. See [6] for details. Therefore, G, =0 on the parabolic basin of 0 since
h"(w) is bounded on Kj,. It follows from Theorem 4.1 that, except the parabolic
basin of 0, there is no periodic Fatou component U such that 0 is contained in
0U and attracts some points in U. Consequently, G, =0 on K, — E;, = K, — Jj,
= int Kj,.

For other cases of 0 e Jj, it follows that G, =0 on Kj, — Ej, from the fact
that there is no periodic Fatou component U such that 0 is contained in U and
attracts some points in U. O

The following corollary of Theorem 4.2 is identical with Corollary D.

CoRrROLLARY 4.3. It follows that the upper semicontinuous regularization

. . 1 "

lim sup (hm sup log|h” (w") |>
wi—w n—oo

is defined, continuous and subharmonic on C. If h(w) # w, then it coincides with

Gy

Proof. Clearly, G, = G, on 4,. We may assume that h(w) # w?. It then
follows from Theorem 4.2 that G, = 0 on Kj, — E;,. We may assume that 0 € Kj,;
thus 4”(w) is bounded on E;. Hence it is enough to show that Gj(w) tends to
0 as win C— Ej, tends to Ej;. If 0 € Fj,, then this convergence holds because
G, =0 on (K, — E;,) UOK;, and because K, — Ej, is dense in K. If 0 €J,, then
the convergence above holds because G,(w) tends to 0 as w in A, tends to 04,
and G, =0 on int Kj,, and because E; = J;, = 04;, = 0Kj,. O

Remark 4.4. We can replace limsup,_ ., d " loglh"| by liminf, .
d™" log|h"| in Corollary 4.3 besides many places in the paper, because these
functions are the same on C — Ej,.

5. Existence of fiberwise Green functions

In this section we investigate the existence of the fiberwise Green function
G. of a polynomial skew product f(z,w)= (z% q(z,w)), where q(z,w)=
wd 4+ 0.(w?1), that is semiconjugate to a polynomial product (z?, Ai(w)) by
n(z,w) = (z",z*w) for some positive integers r and s. Results in this section are
obtained from Theorem 4.2 and Corollary 4.3 in the previous section. Before
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describing the result on the existence of G., we consider that of G.(w)=
lim,_.. d" log|QZ(w)|. Define

E; = (J{z} x z"E;, where « =2
zeC r

THEOREM 5.1.  The limit G. is defined, continuous and plurisubharmonic on
C? - E;.  More precisely, if h(w) # wd, then it is equal to

o log|z| + Gy, (%)
V4

on (C—{0}) x C — Er and log|w| on {0} x C. If 0 ¢ Ey, then G. is defined and
plurisubharmonic on C? and continuous on C* —{0}.

Proof. If z=0, then Go(w) = log|w| since f(0,w) = (0,w?). For z # 0,

n" (W> .
ZO!

Hence we have the following rough equality for z # 0:

1
dn

1
log|Q? (w)| = o log|z| + - log

~ ~ (W
G.(w) = aloglz| + Gy, (ﬂ)
Therefore, applying Theorem 4.2 completes the proof. O

The following two corollaries follow from Theorem 5.1 and an argument
similar to the proof of Corollary 4.3.

COROLLARY 5.2. It follows that the upper semicontinuous regularization

lim sup <lim sup % log|Q” (w’)|>

w!'—w n— o0

is defined and plurisubharmonic on C* and continuous on C* —{0}. More
precisely, if h(w) # w’, then it is equal to

atogli + Gi(%) (2 #0)
loglw| (z=0).

COROLLARY 5.3. It follows that the upper semicontinuous regularization

1
lim sup (lim sup log|f"(Z', w’)|),

()= (W) \ n—oo
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which is equal to

1
lim sup <lim sup — log|f"(z,w") |> )

w/—w

is defined and plurisubharmonic on C* and continuous on C* —{0}. More
precisely, if h(w) # w9, then it is equal to

rnax{log|z|7 o loglz| + Gy <;—i) } (z #£0),
loglw| (z=0).

We now describe the results on the existence of G., which includes Theo-
rem A.

THEOREM 5.4. The limit G, is defined, continuous and plurisubharmonic
on C* —E;N({|z| > 1} x C). More precisely, if h(w)# w?, then it is equal

to
W
max{oc log|z| + Gy (),0}
Z“

on (C—{0}) x C—ErN({|z] > 1} x C) and log™|w| on {0} x C. Moreover, if
h(w) # w?, then it follows that

max{ac log|z| + Gy <K>,O} (z #0),
ZO(
log*|w| (z=0).

Gf(z,w) =

In particular, the weighted Green function Gf is defined, continuous and pluri-
subharmonic on C*>. If 0 ¢ Ej, then G. = G on 2

Proof.  The proof of the claims about G. is similar to that of Theorem 5.1;
we apply Theorem 4.2.  Let us derive the form of Gf. If z =0, then G (0,w) =
log*|w|. If z#0, then roughly '

G/ (z,w) = max{a log|z|, G-(w),0}

= rnax{cx log|z|, « log|z| 4+ G}, <K> , O}

ZO(

= max{oc log|z| + Gy, <z1i“) , O}. O

The following two corollaries follow from Theorem 54 and an argu-
ment similar to the proof of Corollary 4.3. The former is identical with
Corollary B.
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COROLLARY 5.5. It follows that the upper semicontinuous regularization
. . 1 "
lim sup <hm sup — log™|Q’ (w’)|>
w'—w n—o
is defined, continuous and plurisubharmonic on C*.  If h(w) # w9, then it coincides
with G7.
COROLLARY 5.6. It follows that the upper semicontinuous regularization
. . 1 :
lim sup <hm sup — 10g+|f”(z',w')|),
' w)—(z,w n—o0 d}’l
(z",w")—(z,w)
which is equal to
. . 1
lim sup (hfl Sup log™|/"(z,w") |> ;

is defined, continuous and plurisubharmonic on C>.  More precisely, if h(w) # w?,
then it is equal to

max{log|z|, o log|z| + Gy, (1—11)0} (z #0),
V4
log™|w| (z=0).

As shown in Section 2, the map f extends to a holomorphic map f on
P(r,s,1). By Theorem 5.4, the Julia set of f can be written in terms of the
dynamics of #; it coincides with the closure of

b (9 (2) -

({2} x2"Kn)U U ({z} x 2"7),

|z|=1 |z|>1

where the closure is taken in P(r,s, 1).

Acknowledgments. 1 would like to thank the referee for helpful suggestions
that refine the paper.
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