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CREATING LIMIT FUNCTIONS BY THE PANG-ZALCMAN LEMMA

Shai Gul and Shahar Nevo

Abstract

In this paper we calculate the collection of limit functions obtained by applying

an extension of Zalcman’s Lemma, due to X. C. Pang to the non-normal family

f f ðnzÞ : n A Ng in C, where f ¼ ReP. Here R and P are an arbitrary rational function

and a polynomial, respectively, where P is a non-constant polynomial.

1. Introduction

A well-known powerful tool in the theory of normal families is the following
lemma of L. Zalcman.

Zalcman’s Lemma [12]. A family F of functions meromorphic (resp.,
analytic) on the unit disk D is not normal if and only if there exist

(a) a number 0 < r < 1;
(b) points zn, jznj < r;
(c) functions fn A F; and
(d) numbers rn ! 0þ,

such that

fnðzn þ rnzÞ )
w
gðzÞ ð fnðzn þ rnzÞ ) gðzÞÞ;

where g is a nonconstant meromorphic (entire) function on C.
Moreover, g can be taken to satisfy the normalization

gaðzÞa gað0Þ ¼ 1; z A C:

Here and throughout the paper, ‘)
w
’ (‘)’) means local uniform convergence

in C with respect to the spherical metric (Euclidian metric) of a sequence of
meromorphic (holomorphic) functions.

This lemma was generalized by X. C. Pang as follows.
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Pang-Zalcman Lemma ([8, Lemma 2], [9, Theorem 1]). Given a family F
of functions meromorphic on the unit disk D and �1 < a < 1, then F is not normal
in D if and only if there exist

(a) a number 0 < r < 1;
(b) points zn, jznj < r for every n;
(c) functions fn A F; and
(d) positive numbers rn ! 0þ,

such that

(e)
fnðzn þ rnzÞ

ra
n

)
w
gðzÞ, where g is a non-constant meromorphic function

in C. Moreover, g can be taken to satisfy the normalization gaðzÞa gað0Þ ¼ 1,
z A C.

The case a ¼ 0 gives Zalcman’s Lemma. These two lemmas have a local
version that can be written uniformly as:

Local Pang-Zalcman Lemma (LPZ Lemma) cf. [11, Lemma 1.5], [5,
Lemma 4.1]. Let F be a family of functions meromorphic in a domain DHC
and let �1 < a < 1 and z0 A D: Then F is not normal at z0 if and only if there
exist

a) points fzngyn¼1, zn ! z0;
b) functions f fngyn¼1 A F;
c) positive numbers rn ! 0þ;

such that

r�a
n fnðzn þ rnzÞ )

w
gðzÞ;ð1:1Þ

where g is a nonconstant meromorphic function on C, such that for every
z A C,

gaðzÞa gað0Þ ¼ 1:ð1:2Þ

The Pang-Zalcman Lemma and the LPZ Lemma also have extensions in
case where we know that the multiplicities of the zeros (or of the poles) of
members of the family of functions F are large enough (see [10, Lemma 2], [3,
Lemma 3.2]). In this paper we shall not deal with these extensions, although our
particular results are valid also for these extensions.

For a nonconstant function f meromorphic on C, let Fð f Þ be the non-
normal family in C

Fð f Þ ¼ f f ðnzÞ : n A Ng:

Normality properties of the family Fð f Þ has already been studied from various
directions. Montel [4, PP. 158–176] was probably the first to deal with this
topic. This subject was also studied in [6], [7] and [2].

The family Fð f Þ is not normal in C, and specifically is never normal at
z ¼ 0. Given a point z0 where Fð f Þ is not normal and �1 < a < 1, then LPZ
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Lemma guarantees the existence of at least one function gðzÞ, not constant and
meromorphic on C that is obtained by the convergence process (1.1) described
in this lemma. For a certain �1 < a < 1, let Pað f Þ denote the collection of
all the non-constant limit meromorphic functions gðzÞ (on C) that are created
in the convergence process (1.1) (but not necessarily satisfies the normalization
(1.2)), considering all the points z0 A C of non-normality of Fð f Þ. For such a
function g, we have by the definition of Fð f Þ and by the LPZ Lemma a
sequence fkngyn¼1, kn A N, kn ! y, points zn ! z0 and positive numbers rn ! 0þ

such that

fn;aðzÞ :¼
f ðknzn þ knrnzÞ

ra
n

)
w
gðzÞ:ð1:3Þ

Our main goal in this paper is to calculate, for every �1 < a < 1, the
collection Pað f Þ for the function

f ðzÞ ¼ RðzÞePðzÞ;ð1:4Þ
where RðzÞ2 0 is a general rational function and PðzÞ is a nonconstant
polynomial.

Before we state our result we establish some notation: If z0 is a zero (pole)
of order k of a nonconstant meromorphic function f ðzÞ, then

~ffz0ðzÞ :¼
f ðzÞ

ðz� z0Þk
ð f̂fz0ðzÞ :¼ f ðzÞðz� z0ÞkÞ:

Also for z0 A C and r > 0,

Dðz0; rÞ :¼ fz : jz� z0j < rg; Dðz0; rÞ :¼ fz : jz� z0ja rg:

For y A R, Ry denotes the ray from the origin with argument y. For every
0 < b < p, we define the symmetric sector about Ry of the opening 2b as

Sðy; bÞ ¼ fz : y� b < arg z < yþ bg:

Now we state our main theorem. (The formulation is not short, as the
proof is fairly involved.)

Theorem 1. Let f ðzÞ ¼ RðzÞePðzÞ be as in (1.4), where PðzÞ ¼ akðz� a1Þ � � �

ðz� akÞ (the ai’s may occur with repetitions), ak 0 0; RðzÞ ¼ P1ðzÞ
P2ðzÞ

where P1ðzÞ ¼

ðz� g1Þ
l1 � � � ðz� gmÞ

lm , P2ðzÞ ¼ ðz� b1Þ
j1 � � � ðz� blÞ

jl . We assume that g1; . . . ;
gm; b1; . . . ; bl are all distinct. Let L1 :¼ jP1j ¼ l1 þ � � � þ lm, L2 :¼ jP2j ¼
j1 þ � � � þ jl . Then for the various values of �1 < a < 1, Pað f Þ is given as
follows:

I. kF jPjF 1
If aF 0, then

P0ð f Þ ¼ fk0eA1z : k0 0 0; arg A1 ¼ arg a1gU f f ðC1 þ C2zÞ : C1 A C;C2 > 0g:
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If 0H aH 1, then

Pað f Þ ¼ fk0eA1z : k0 0 0; arg A1 ¼ arg a1g

U fePðgiÞ ~RRgiðgiÞðA1zþ A0Þ li : 1a iam;A0 A C;A1 > 0g:
If C1H aH 0, then

Pað f Þ ¼ fk0eA1z : k0 0 0; arg A1 ¼ arg a1g

U fePðbiÞR̂RbiðbiÞðA1zþ A0Þ�ji : 1a ia l;A0 A C;A1 > 0g:
II. kK 2

If aF 0, then

P0ð f Þ ¼ f f ðC1 þ C2zÞ : C1 A C;C2 > 0gU
"
6
k�1

l¼0

�
eA1zþA0 : A0 A C;

arg A1 ¼ G
p

2
ðk � 1Þ þ arg ak þ ðk � 1Þ2pl

� ��
k

�#
:

If 0H aH 1, then
for k ¼ 2

Pað f Þ ¼ 6
m

i¼1

fePðgiÞAðzþ CÞ li : arg A ¼ arg ~RRgiðgiÞ;C A Cg
" #

U

�
eA0þA1z : A0 A C;

p

4
þ arg a2

2
a arg A1 a

3p

4
þ arg a2

2
or

5p

4
þ a2

2
a arg A1 a

7p

4
þ arg a2

2

�
:

For kb 3

Pað f Þ ¼ 6
m

i¼1

fePðgiÞAðzþ CÞ li : arg A ¼ arg ~RRgiðgiÞ;C A Cg
" #

U feA1zþA0 : A0 A C;A1 0 0g:
If C1H aH 0, then
for k ¼ 2

Pað f Þ ¼ 6
l

i¼1

fePðbiÞAðzþ CÞ�ji : arg A ¼ arg R̂RbiðbiÞ;C A Cg
" #

U

�
eA0þA1z : A0 A C;� p

4
þ arg a2

2
a arg A1 a

p

4
þ arg a2

2
or

3p

4
þ arg a2

2
a arg A1 a

5p

4
þ arg a2

2

�
:
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For kb 3

Pað f Þ ¼ 6
l

i¼1

fePðbiÞAðzþ CÞ�ji : arg A ¼ arg R̂RiðbiÞ;C A Cg
" #

U feA0þA1z : A0 A C;A1 0 0g:

Observe that in each of the three intervals a ¼ 0, 0 < a < 1 and �1 < a < 0,
Pað f Þ is independent of a.

The proof of Theorem 1 is similar to climbing a ladder with four steps where
each step is more complicated then the former step. In the first step we calculate

PaðMÞ for a general monome, MðzÞ ¼ ðz� aÞk. In the second step we find
PaðPÞ where P is a general nonconstant polynomial. In step 3 we calculate
PaðRÞ, where R is a general nonconstant rational function, and finally in the
fourth step we find PaðRePÞ. In each step we rely on the results of the previous
steps. The first three steps are the contents of section 2; the proof of Theorem 1
is actually the fourth step which we prove in section 3. We note that for a
nonconstant rational function, z0 ¼ 0 is the only point of non-normality in C, and
this is the situation in the first three steps. For f ¼ ReP, the points of non-
normality lies on few rays through the origin, as we will see in the sequel.
Throughout the proof we often deal with the connections between fzng and frng
in the LPZ Lemma. We hope this will contribute to the better understanding of
the potential of this somewhat obscure lemma. As it is always possible to move
to convergent subsequences (in the extended sense), we shall always assume
without loss of generality that the sequences fknzng, fknrng from (1.3) converge
(in the extended sense). This assumption also applies to other sequences of
complex numbers involved in our calculations.

The importance of this paper, beyond the result obtained in Theorem 1,
lies in the technique that we used. The possible connections between zn and
rn in (1.1) were used to deduce the limit function g. We note that the Pang-
Zalcman Lemma is a common tool to establish normality of families of mer-
omorphic functions. However, the proof of this lemma does not give an
explicit relation between zn to rn, because some unknown parameter is involved
in this relation (see [8, Lemma 2], [9, Theorem 1]). Hence, in general there is
some di‰culty in determining the limit function g. We expect that the detailed
calculation that given here will contribute and promote the study of this
subject.

2. Calculating PaðMÞ, PaðPÞ and PaðRÞ

We mention that in all these cases z0 ¼ 0 is the only point of non-normality
of FðMÞ, FðPÞ or FðRÞ:

2.1. First step: Calculating PaðMÞ where MðzÞ ¼ ðz� bÞk. Let �1 <
a < 1. By the LPZ Lemma, there exist zn ! 0, rn ! 0þ, integers kn ! y,
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and a nonconstant entire function g such that

Mn;aðzÞ ¼ knr
1�a=k
n zþ knzn � b

r
a=k
n

 !k
) gðzÞ:ð2:1Þ

We want to determine g: The left hand side of (2.1) has a single zero of
multiplicity k in C, and thus, it follows by Rouché’s Theorem that gðzÞ is also
a monome of degree k. There must be 0 < A < y and C A C, such that

knr
1�a=k
n ! A and

knzn � b

r
a=k
n

! C and so gðzÞ ¼ ðAzþ CÞk. Conversely, given

A > 0 and C A C, we set

kn ¼ n; rn ¼
A

n

� �k=ðk�aÞ
; zn ¼

Aa=ðk�aÞC þ bna=ðk�aÞ

n1þa=ðk�aÞð2:2Þ

to get (for every n) Mn;aðzÞ ¼ ðAzþ CÞk. Thus, for every �1 < a < 1

PaðMÞ ¼ fðAzþ CÞk : A > 0;C A Cg:ð2:3Þ

Observe that PaðMÞ is independent of a.

2.2. Second step: Calculating PaðPÞ for a nonconstant polynomial PðzÞ.
Let PðzÞ ¼ Lðz� g1Þ

l1 � � � ðz� gmÞ
lm , gi 0 gj, i0 j, k :¼ l1 þ l2 � � � þ lm. Assume

first that a ¼ 0. By the LPZ Lemma, there exist zn ! 0, rn ! 0þ, integers
kn ! y, and a nonconstant entire function g such that

Pn;0ðzÞ ¼ Pðknrnzþ knznÞ ) gðzÞ:ð2:4Þ

By substituting z ¼ 0 in (2.4), we get that fknzng is bounded and thus knzn !
C A C (recall that we always assume without loss of generality that fknzng,
fknrng, etc. converge). Now, if knrn ! 0 then g is constant and in case that
knrn ! y then gðzÞ ¼ y for every z0 0. Hence knrn ! A, 0 < A < y and we
have gðzÞ ¼ PðAzþ CÞ.

On the other hand, given 0 < A < y and C A C, the trivial setting kn ¼ n,

rn ¼
A

n
, zn ¼

C

n
gives Pn;0ðzÞ ¼ PðAzþ CÞ and we get

P0ðPÞ ¼ fPðAzþ CÞ : A > 0;C A Cg:ð2:5Þ

Consider now the case where 0 < a < 1. Here Pn;aðzÞ ) gðzÞ means

Lðknrnzþ knzn � g1Þ
l1 � � � ðknrnzþ knzn � gmÞ

lm

ra
n

) gðzÞ:ð2:6Þ

288 shai gul and shahar nevo



Because of ra
n ! 0, then by substituting z ¼ 0 in (2.6), we get that there exists

1a iam such that knzn ! gi, since otherwise Pn;að0Þ ! y, and this would be a
contradiction.

Without loss of generality, we assume that i ¼ 1.

Claim 2.1. knrn ! 0.

Proof. Indeed, if knrn ! y, then for every z0 0, Pn;aðzÞ ! y, a contra-
diction.

If knrn ! A, 0 < A < y, then there are some R > 0 and N0 A N such that
for every z, jzj > R, n > N0 and 1a iam, jknrnzþ knzn � gijb 1 and thus
Pn;aðzÞ ! y, a contradiction and the claim is proved. r

We then get from (2.6) that

L
ðknzn � g1 þ knrnzÞ

l1

ra
n

ðg1 � g2Þ
l2ðg1 � g3Þ

l3 � � � ðg1 � gmÞ
lm ) gðzÞ:

From the result in section 2.1 we then get that

gðzÞ ¼ ~PPg1ðg1ÞðAzþ CÞ l1

where A > 0 and C A C.
Conversely, given A > 0 and C A C, an analogous setting to (2.2)

kn ¼ n; rn ¼
A

n

� �l1=ðl1�aÞ
; zn ¼

Aa=ðl1�aÞC þ g1n
a=ðl1�aÞ

n1þa=ðl1�aÞ

gives

Pn;aðzÞ ) ~PPg1ðg1ÞðAzþ CÞ l1 :

Observe that since 0 < a < 1, indeed nrn ! 0. Running over all the roots gi,
1a iam, of PðzÞ we get that

PaðPÞ ¼ f ~PPgiðgiÞðAzþ CÞ li : A > 0; C A C; 1a iamg:ð2:7Þ

We turn now to the case �1 < a < 0. Suppose that

Pn;aðzÞ ) gðzÞ:ð2:8Þ

Claim 2.2. knrn ! y.

Proof. If to the contrary, knrn ! A, A < y and knzn ! C A C, then
Pn;aðzÞ ! 0 for every z A C and this is of course a contradiction. If
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knrn ! A < y and knzn ! y then (2.8) gives

L
ðknznÞk

ra
n

1þ knrnz� g1
knzn

� �l1
� � � 1þ knrnz� gm

knzn

� �lm
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

TnðzÞ

) gðzÞ:ð2:9Þ

Since

TnðzÞ ) 1;

we get that L
ðknznÞk

ra
n

) gðzÞ and we get that g is a constant, a contradiction.
r

Claim 2.3.
zn

rn
! B A C (equivalently, for every 1a iam,

knzn � gi
knrn

! B).

Proof. If this were not the case, then for every 1a iam,
knrn

knzn � gi
! 0,

and then

Pn;aðzÞ ¼
L

ra
n

Ym
i¼1

ðknzn � giÞ
li

" #
� 1þ knrn

knzn � g1
z

� �l1
� � � 1þ knrn

knzn � gm
z

� �lm
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

SnðzÞ

) gðzÞ:

Here also SnðzÞ ) 1 and as in Claim 2.2, we get a contradiction and Claim 2.3 is
proven. r

We can write (2.8) as

L
ðknrnÞ

k

ðra
n Þ

zþ knzn � g1
knrn

� �l1
� � � zþ knzn � gm

knrn

� �lm
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

RnðzÞ

) gðzÞ;ð2:10Þ

and since RnðzÞ ) ðzþ BÞk, we have
ðknrnÞ
r
a=k
n

! A, 0 < A < y. Thus gðzÞ ¼
LðAzþ CÞk, where C ¼ AB.

Conversely, let gðzÞ ¼ LðAzþ CÞk where A > 0, C A C. We set kn ¼ n and

consider (2.10), we wish that A ¼ nrn=r
a=k
n and

zn

rn
¼ C

A
. These requirements are

fulfilled by the setting

rn :¼
A

n

� �k=ðk�aÞ
; zn :¼

C

A

A

n

� �k=ðk�aÞ
:

Hence we get that for �1 < a < 0

PaðPÞ ¼ fLðAzþ CÞk : A > 0;C A Cg:ð2:11Þ
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2.3. Third step: Calculating PaðRÞ for a rational function RðzÞ.
I. We assume first that R has at least one zero and one pole in C.

Denote

RðzÞ ¼ L
ðz� g1Þ

l1 � � � ðz� gmÞ
lm

ðz� b1Þ
j1 � � � ðz� blÞ

jl
;ð2:12Þ

k ¼ l1 þ � � � þ lm > 0; j ¼ j1 þ � � � þ jl > 0:

Given �1 < a < 1, we have by the LPZ Lemma that

Rn;aðzÞ )
w
gðzÞ:ð2:13Þ

Observe first that Picard’s Great Theorem and Rouché’s Theorem imply that
PaðRÞ contains only rational functions. We separate into subcases according to
the value of a.

Case (A). 0 < a < 1.
Let us assume first that knrn ! C, 0 < C < y. In such case, if knzn ! y,

then as in (2.9) we deduce that g is a constant, a contradiction. If there exists
some b A C such that knzn ! b, then by (2.13) (observe that ra

n ! 0) we get for
every 0a y < 2p, except finitely many y’s, that Rn;aðzÞ ! y for every z ¼ reiy,
r > 0. This is a contradiction.

Secondly, we assume that knrn ! 0. In such a situation if knzn ! y then
gðzÞ1 d where d is some finite constant or d1y, a contradiction. If knzn ! h,
h A C, then if for every i, j h0 gi, bj then g1y, a contradiction.

If h ¼ bi0 for some j0, 1a j0 a l, then also by (2.13) g1y, a contra-
diction.

If h ¼ gi0 for some 1a i0 am, then assume without loss of generality that
h ¼ g1. Then (2.13) can be written as

1

ra
n

ðknzn � g1 þ knrnzÞ
l1 ~RRg1ðknzn þ knrnzÞ )

w
gðzÞ;

and since

~RRg1ðknzn þ knrnzÞ )
w

~RRg1ðg1Þ;

we get by the case of a monome that

gðzÞ ¼ ~RRg1ðg1ÞðAzþ CÞ l1 A > 0; C A C:ð2:14Þ

As in section 2.1, it can easily be shown that every function of the form (2.14) is
in PaðRÞ. Recall now that C0 can be any value 1a i0 am, and we get that the
contribution to PaðRÞ from this possibility is

fgðzÞ ¼ ~RRgiðgiÞðAzþ CÞ li : C A C;A > 0; 1a iamg:ð2:15Þ
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The last option in case (A) is that knrn ! y. Similarly to the case knrn ! 0,

we deduce that
zn

rn
! C, C A C. (Recall that we can assume with no loss of

generality that sequences as
zn

rn

� �
converges in the extended sense.) We can

write

Rn;aðzÞ ¼ L

ðknrnÞ
l1þ���þlm zþ knzn � g1

knrn

� �l1
� � � zþ knzn � gm

knrn

� �lm
ra
n ðknrnÞ

j1þ���þ jl zþ knzn � b1
knrn

� �j1

� � � zþ knzn � bl
knrn

� �jl

¼ L

ðknrnÞ
k zþ knzn � g1

knrn

� �l1
� � � zþ knzn � gm

knrn

� �lm
ra
n ðknrnÞ

j zþ knzn � b1
knrn

� �j1

� � � zþ knzn � bl
knrn

� �jl

¼ L

ðknrnÞ
k�j zþ knzn � g1

knrn

� �l1
� � � zþ knzn � gm

knrn

� �lm
ra
n zþ knzn � b1

knrn

� �j1

� � � zþ knzn � bl
knrn

� �jl
:

Observe that for every i and j,
knzn � gi
knrn

;
knzn � bj

knrn
! C. Thus, if kb j this is a

contradiction, since the only candidate to be a limit function is g1y.

If k < j, then L0 :¼ lim
ðknrnÞ

k�j

ra
n

must satisfy L0 0 0;y, since otherwise

g1 0 or g1y, as the value of L0. We deduce that gðzÞ ¼ L � L0ðzþ CÞk�j .

But Rn;aðzÞ vanishes at
knzn � g1
knrn

; . . . ;
knzn � gm

knrn
and thus gð�CÞ ¼ 0, a contra-

diction. Hence the collection (2.15) is PaðRÞ.

Case (B). �1 < a < 0.
The calculation of PaðRÞ is immediate since Rn;aðzÞ )

w
gðzÞ if and only if

1

R

� �
n;�a

ðzÞ )
w 1

g
ðzÞ, and since 0 < �a < 1. Thus, by Case (A), PaðRÞ ¼

fR̂RbnðbnÞððAzþ CÞ jnÞ�1 : A > 0;C A C; 1a na lg.

Case (C). a ¼ 0.
Assume first that knrn ! 0. Then if knzn ! y we deduce that g1 c, c A C,

a contradiction.
If knzn ! b, b A C, then in case b0 gi; bj for every i, j we get by (2.13) that

g is a constant, a contradiction.
If b ¼ gi0 , 1a i0 am, then g1 0, a contradiction. If b ¼ bj0 , 1a j0 a l

then g1y, a contradiction.
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The next possibility we examine is knrn ! y. As in Case (A) or Case (B)

we must have
zn

rn
! c A C. Then we can write

Rn;0ðzÞ ¼ LðknrnÞ
k�j

zþ knzn � g1
knrn

� �l1
� � � zþ knzn � gm

knrn

� �lm
zþ knzn � b1

knrn

� �j1

� � � zþ knzn � bl
knrn

� �jl
:

In any of the cases k ¼ j, k > j or k < j, we get a contradiction. So it must
be the case knrn ! c, 0 < c < y. Then, if knzn ! y then similarly to the case
knrn ! 0, we get that g is constant so knzn ! b, b A C and gðzÞ ¼ Rðbþ czÞ.

Conversely, for every b A C, c > 0, we can take kn ¼ n, rn ¼
c

n
, zn ¼

b

n
to get

Rn;0ðzÞ )
w
Rðbþ czÞ in C, so P0ðRÞ ¼ fRðbþ czÞ : b A C; c > 0g.

II. Now we consider the case where RðzÞ has only zeros or only poles. If
RðzÞ has only zeros, then R is a polynomial and this case was discussed in section

2.2. If RðzÞ has only poles then R ¼ 1

P
where P is a polynomial, and we can use

the same principle as in Case (B) of (I) of the present subsection, and then deduce
by the results in section 2.2 (see (2.5), (2.7) and (2.11)) the following:

For a ¼ 0 we get by (2.5)

P0ðRÞ ¼ fRðAzþ CÞ : A > 0;C A Cg:
For 0 < a < 1 we get by (2.11)

PaðRÞ ¼
L

ðAzþ CÞ j
: A > 0;C A C

( )
:

And for �1 < a < 0 we have by (2.7)

PaðRÞ ¼ fR̂RbiðbiÞððAzþ CÞ jiÞ�1 : A > 0;C A C; 1a ia lg:

3. Finding PaðRePÞ

Let f ðzÞ ¼ RðzÞePðzÞ where

R ¼ P1

P2
; P1ðzÞ :¼ ðz� g1Þ

l1 � � � ðz� gmÞ
lm ;

P2ðzÞ :¼ ðz� b1Þ
j1 � � � ðz� blÞ

jl ; L1 :¼ jP1j ¼ l1 þ � � � þ lm;ð3:1Þ
L2 :¼ jP2j ¼ j1 þ � � � þ jl ; L1;L2 b 0:

The case R ¼ L
P1

P2
, L0 0; 1 is also included here, i.e., we can assume that L ¼ 1,

since otherwise L ¼ ea
0
0 , a 0

0 0 0. We can write âa0 ¼ a0 þ a 0
0 instead of a0 as the

constant coe‰cient of PðzÞ.
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Also let us denote PðzÞ ¼ akðz� a1Þðz� a2Þ � � � ðz� akÞ, ak 0 0. We wish to
find Pað f Þ for �1 < a < 1, but first we need some preparation.

3.1. Auxiliary lemmas and a remark.

Lemma 3.1. Let f be a nonconstant meromorphic function in C and
�1 < a < 1. Then

(1) If gðzÞ A Pað f Þ then for every C A C gðzþ CÞ A Pað f Þ and
(2) If eazþb A Pað f Þ then for every a 0 0 0 such that argða 0Þ ¼ argðaÞ and for

every b 0 A C, ea
0zþb 0

A Pað f Þ.

Proof. Suppose that g A Pað f Þ. Then we have
f ðknzn þ knrnðzþ CÞÞ

ra
n

)
w

gðzþ CÞ in C, with rn ! 0þ, zn ! z0 and kn A N. We set r 0
n ¼ rn, z 0n ¼

zn þ rnC ! z0 and get

f ðknz 0n þ knr
0
nzÞ

r 0a
n

¼ f ðknzn þ knrnðzþ CÞÞ
ra
n

)
w
gðzþ CÞ;

and this proves (1). For the proof of (2) assume that
f ðknzn þ knrnzÞ

ra
n

)
w
eazþb in

C. Define for a 0 with arg a 0 ¼ arg a, r 0
n ¼

a 0

a
rn ! 0þ and

a 0

a

� ��a

¼ eb0 , where
b0 A R. We have

f ðknzn þ knr
0
nzÞ

ðr 0
nÞ

a ¼
f knzn þ knrn

a 0

a
z

� �� �
ra
n ða 0=aÞa )

w
g

a 0

a
z

� �
eb0 ¼ ea

0zþbþb0 :

By (1) we can replace bþ b0 with every b 0 A C. This completes the proof of the
lemma. r

Remark. Let F be a family of non-vanishing holomorphic functions which
is not normal at z0 and let �1 < a < 1. Then the convergence process (1.1) in
the LPZ Lemma guarantees a limit function gðzÞ with gaðzÞa 1 for every z A C.
By a theorem of Clunie and Hayman [1, Theorem 3], the order of g is at most 1
and since gðzÞ0 0, z A C, by Hurwitz’s Theorem we deduce that gðzÞ ¼ eazþb.
The results which we will prove in the detailed process of calculating PaðRePÞ are
indeed consistent with this theorem of Clunie and Hayman.

Lemma 3.2. Let f ¼ ReP be given by (3.1). Then the points where Fð f Þ is
not normal in C are exactly

6
k�1

l¼0

Ryþ
k
ðlÞ

( )
U 6

k�1

l¼0

Ry�k ðlÞ

( )
ð3:2Þ
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where for every 0a la k � 1, yþk ðlÞ and y�k ðlÞ are defined by yGk ðlÞ ¼
G

p

2
� arg ak

k
þ 2pl

k
and arg ak is taken to be in ½0; 2pÞ.

Observe that for every 0a l0 ja k � 1, yþk ðlÞ0 yGj ðlÞ.

Proof. For every z0 0 0 that is not in the union (3.2) there exist r > 0 and
0a la k � 1 such that

Dðz0; rÞHS
yþk ðlÞ þ y�k ðl þ 1Þ

2
;
p

2k

� �
ð3:3Þ

or that

Dðz0; rÞHS
y�k ðlÞ þ yþk ðlÞ

2
;
p

2k

� �
:ð3:4Þ

Observe that we inserted ‘modðk � 1Þ’ in (3.3) only for the case where l ¼
k � 1:

There is some small e0 > 0 such that in the case that (3.3) holds, then for
every z A Dðz0; rÞ and for every n A N

p=2þ 2pl þ e0 < arg akðnzÞk < 3p=2þ 2pl � e0:

In the case (3.4), then for every z A Dðz0; rÞ

�p=2þ 2pl þ e0 < argðakðnzÞkÞ < p=2þ 2pl � e0:

Hence there exists N0, such that if n > N0 and z A Dðz0; rÞ, then

p=2þ 2pl þ e0=2 < arg PðnzÞ < 3p=2þ 2pl � e0=2

in the case of (3.3) or that

� p

2
þ 2pl þ e0

2
< arg PðnzÞ < p

2
þ 2pl � e0

2

in the case of (3.4).
Hence in the case of (3.3) f ðnzÞ ! 0 uniformly in Dðz0; rÞ and in case of

(3.4) f ðnzÞ ! y uniformly in Dðz0; rÞ, that is, in any case Fð f Þ is normal at z0.
If z0 belongs to one of the 2k rays from the union (3.2), then any

neighbourhood of z0 contains points z where f ðnzÞ ! 0 and points z where
f ðnzÞ ! y. So Fð f Þ is not normal at z0. r

We are now ready to calculate Pað f Þ. We shall do this by separating into 2
cases according to the value of k ¼ jPj.

3.2. Calculating PaðRePÞ for linear polynomial PðzÞ. We have PðzÞ ¼
a1zþ a0, a1 0 0. Let z0 be a point where Fð f Þ is not normal. This means that
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z0 is in the union (3.2). Let �1 < a < 1. By the LPZ Lemma, there exist
zn ! z0, rn ! 0þ, integers kn ! y, and a nonconstant meromorphic function g
such that

fn;aðzÞ ¼
f ðknzn þ knrnzÞ

ra
n

)
w
gðzÞ;ð3:5Þ

where zn ! z0, rn ! 0þ and kn ! y.

Case (A) z0 0 0.
In this case

knzn ! y and
zn

rn
! y;ð3:6Þ

and thus

Rðknzn þ knrnzÞ
ðknznÞL1�L2

) 1:

By 3.5, we deduce that

~ggnðzÞ :¼ ðknznÞL1�L2
ea1knznþa0ea1knrnz

ra
n

ð3:7Þ

¼ ðknznÞL1�L2

Rðknzn þ knrnzÞ
� f ðknzn þ knrnzÞ

ra
n

) gðzÞ:

Since ~ggnðzÞ0 0 for z A C, we deduce that g0 0 in C, i.e., g ¼ eQ where Q is an
entire function. With a suitable branch of the logarithm, we have

ea1knznþa0�a ln rnþðL1�L2Þ log knznþa1knrnz ) eQðzÞ:

Thus, there are integers mn such that

a1knzn þ a0 � a ln rn þ ðL1 � L2Þ log knzn þ a1knrnzþ 2pimn ) QðzÞ:

Hence Q is a linear function, QðzÞ ¼ A1zþ A0 and gðzÞ ¼ eA0 � eA1z. Substitut-
ing z ¼ 0 in (3.7) gives that

ðknznÞL1�L2ea1knznþa0

ra
n

		!
n!y

eA0 ;

and thus

a1knrn ! A1ð3:8Þ

and arg A1 ¼ arg a1. Now let ĝgðzÞ :¼ keAz where k0 0 and arg A ¼ arg a1:
We have arg A ¼ arg A1 and k ¼ eb for some b A C, and thus, since we have
already proved that gðzÞ ¼ eA1zþA0 is in Pað f Þ, we get by (2) of Lemma 3.1, that
ĝg A Pað f Þ: Hence, we deduce that the contribution of z0 0 0, point of non-
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normality of Fð f Þ to Pað f Þ, is

fkeAz : k0 0; arg A ¼ arg a1g:ð3:9Þ

Observe that this collection is independent of a.

Case (B) z0 ¼ 0.
We separate into subcases according to the behaviour of fknzng.

Case (BI). knzn m b, b A C.
We also separate this subcase into three possibilities according to the

behaviour of knrn:
(i) knrn mT. Then when ab 0 it holds for every z0 0, z A Ry and

y�1 ð0Þ < y < yþ1 ð0Þ, that fn;aðzÞ 		!
n!y

y, and this implies that g1y, a contra-

diction. If aa 0, then for every z0 0, z A Ry, where

yþ1 ð0Þ < y < y�1 ð1Þ;ð3:10Þ

we have fn;aðzÞ ! 0 and this also leads to a contradiction.
(ii) knrn m a, aI 0. Then in case that a > 0, it holds that gðzÞ ¼ y for

every z such that Rðazþ bÞ0 0, and this is impossible.
If a < 0, then for every z such that Rðazþ bÞ0y, gðzÞ ¼ 0, again a

contradiction.
So the case knzn ! b, knrn ! a > 0 can happen only with a ¼ 0, and indeed

in this case the limit function is gðzÞ ¼ f ðazþ bÞ and every such function is

attained with kn ¼ n, rn ¼
a

n
, zn ¼

b

n
.

So this possibility gives the collection

f f ðazþ bÞ : a > 0; b A Cgð3:11Þ
to P0ð f Þ.

The last possibility is
(iii) knrn m 0. In this case we have that

Rn;aðzÞ ¼
Rðknzn þ knrnzÞ

ra
n

)
w
gðzÞe�PðbÞ:ð3:12Þ

If a ¼ 0 then g is a constant, a contradiction. If 0 < a < 1, then in the case that
P1ðzÞ is a constant, Rn;aðzÞ ) y and g1y, a contradiction. If P1 is not a
constant then necessarily there exists some 1a iam such that knzn 		!

n!y
gi. We

then have

ðknzn � gi þ knrnzÞ
li

ra
n

) gðzÞe�PðgiÞ

~RRgiðgiÞ
:

By the case of monome (see (2.3)), we get that

gðzÞ ¼ ePðgiÞ ~RRgiðgiÞðazþ bÞ li ; b A C; a > 0ð3:13Þ
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and by the setting of (2.2), every gðzÞ of the form (3.13) belongs to Pað f Þ
(corresponding to all the roots gi of P1ðzÞ, 1a iam).

Now, if �1 < a < 0 then 0 < �a < 1 and as in Case (B) of (I) in section 2.3,
or in (II) in section 2.3, we get that if P2ðzÞ is a constant then g1y, a
contradiction. If P2ðzÞ is not a constant then knzn 		!

n!y
bi for some 1a ia l,

and analogously to (3.13) we have

gðzÞ ¼ ePðbiÞR̂RbiðbiÞ
ðazþ bÞ ji

; a > 0; b A C;ð3:14Þ

and conversely, every function gðzÞ as in (3.14), (corresponding to the various
roots of P2ðzÞ, bi, 1a ia l) belongs to Pað f Þ.

We turn now to the second subcase of Case (B).

Case (BII). knzn mT.
We separate this subcase into two possibilities.
(i) knrn mT.
In this situation, if

zn

rn
! y then (3.5) is equivalent to

ðknznÞL1�L2

ðra
n Þ

ea1knznþa0ea1knrnz ) gðzÞ;

and we deduce that we must have gðzÞ ¼ k0e
az.

On the other hand, for every z, z B Ryþ
1 ð0Þ URy�

1 ð0Þ, gðzÞ ¼ 0 or gðzÞ ¼ y, and
this is a contradiction.

Suppose now that
zn

rn
! C, C A C. Then (3.5) can be written as

fn;aðzÞ ¼
R knrn zþ zn

rn

� �� �
ea0ea1knrnðzþzn=rnÞ

ra
n

)
w
gðzÞ:ð3:15Þ

When z belongs to the half plane fz : �p=2 < argða1Þ þ argðzþ CÞ < p=2g we
have fn;aðzÞ ! y if ab 0, while if aa 0, then fn;aðzÞ ! 0 for every z in the
complementary half plane, fz : p=2 < argða1Þ þ argðzþ CÞ < 3p=2g, and we have
got a contradiction.

To summarize, the possibility knzn ! y and knrn ! y does not occur.
(ii) knrn m a, a A C. Then (3.5) is equivalent to (3.7) and gðzÞ ¼ eAzþB and

it must be that a > 0 and A ¼ a � a1.
In order to show that for each B A C and for each A satisfying argðAÞ ¼

argða1Þ, the function gðzÞ ¼ eAzþB belongs to Pað f Þ, it is enough by Lemma 3.1
to show that one such function is attained (in fact, it is equally easy to show
directly that each such function is attained).

Indeed, let us take a sequence of non-zero numbers, z
ðlÞ
0 		!

l!y
0 such that for

every lb 1, argðzðlÞ0 Þ ¼ p=2� argða1Þ. By the results of Case (A) (see (3.9)), for
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every lb 1 there are sequences, k
ðlÞ
m 		!

m!y
y, z

ðlÞ
m 		!

m!y
z
ðlÞ
0 and r

ðlÞ
m 		!

m!y
0þ such

that

f ðk ðlÞ
m z

ðlÞ
m þ k

ðlÞ
m r

ðlÞ
m zÞ

r
ðlÞa
m

)
w
ea1z:

Now for every nb 1, there is mn > n such that

jk ðnÞ
mn

� zðnÞmn
j > n; rðnÞmn

<
1

n
and jzðnÞmn

� z
ðnÞ
0 j < 1

n
;ð3:16Þ

and such that jkmn
rmn

� 1j < 1

n
(cf. (3.8)) and

max
fz:jzjang

f ðk ðnÞ
mn z

ðnÞ
mn þ k

ðnÞ
m r

ðnÞ
mn zÞ

r
ðnÞa
m

� ea1z












a 1

n
:

We define now for every nb 1, kn :¼ k
ðnÞ
mn , rn :¼ r

ðnÞ
mn , zn :¼ z

ðnÞ
mn . By (3.16) we

deduce that

f ðknzn þ knrnzÞ
ra
n

)
w
ea1z;

as required (with knzn ! y and knrn ! 1).
Hence the collection of limit functions created by the possibility knzn ! y

and knrn ! a, a > 0 is exactly

feAzþB : B A C and arg A ¼ argðA1Þg:ð3:17Þ
We can now summarize the results and conclude the assertion of Theorem 1 for
the case where P is linear.

For a ¼ 0, we get by (3.9), (3.11), and (3.17) (and the various contradictions
along the way)

P0ð f Þ ¼ feazþb : arg a ¼ arg a1; b A CgU f f ðazþ bÞ : a > 0; b A Cg:
For 0 < a < 1, (3.9), (3.13) and (3.17) give

Pað f Þ ¼ feazþb : arg a ¼ arg a1; b A Cg

U fePðgiÞ ~RRgiðgiÞðazþ bÞ li : a > 0; b A C; 1a iamg:

For �1 < a < 0 we have by (3.9), (3.14) and (3.17)

Pað f Þ ¼ feazþb : arg a ¼ arg a1; b A Cg

U fePðbiÞR̂RbiðbiÞ=ðazþ bÞ ji : a > 0; b A C; 1a ia lg:

3.3. Calculating PaðRePÞ when k ¼ jPjb 2. We consider (3.5) that is
guaranteed by the LPZ Lemma with some nonconstant meromorphic function
g, and separate into cases according the behaviour of fknzng.
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Case (A) knzn m b A C.
Of course in this case zn ! 0. We separate into cases according to the

behaviour of fknrng:
(i) knrn mT. Then if ab 0 it holds for every non-zero z, z A Ry, for

y�k ðlÞ < y < yþk ðlÞ, 0a la k � 1, that fn;aðzÞ 		!
n!y

y (compare (3.10)), and this

is a contradiction. If aa 0 then for every non-zero z, z A Ry, yþk ðlÞ < y <
y�k ðl þ 1Þ, fn;aðzÞ 		!

n!y
0, and this is a contradiction.

(ii) knrn m a A C. If a > 0 and a0 0, then similarly to the parallel case
when jPj ¼ k ¼ 1 (Case (B) in section 3.2) we get a contradiction.

The possibility a > 0 and a ¼ 0, as in the case jPj ¼ 1, gives the collection

f f ðazþ bÞ : a > 0; b A Cgð3:18Þ
to P0ð f Þ.

We are left with the possibility knrn ! 0. We then get that

Rðknzn þ knrnzÞ
ra
n

)
w
gðzÞe�PðbÞ;

that is, ~gg :¼ g � e�PðbÞ belongs to PaðRÞ. Thus, in the case 0 < a < 1 we get by
the discussion in section 2.3 that for some 1a i0 am, b ¼ gi0 (in case jP1j > 0,
otherwise we get a contradiction) and consider all gi, 1a iam, we get from
(2.15) that the case knrn ! 0, knzn ! b A C gives the collection

6
m

i¼1

fePðgiÞ ~RRgiðgiÞðA1zþ A2Þ l1 ;A1 > 0;A2 A Cgð3:19Þ

to P0ð f Þ.
In the case �1 < a < 0 we get (similarly to the parallel subcase in Case (B)

in Section 3.2) the collection

6
l

i¼1

fePðbiÞR̂RbiðbiÞðA1zþ A2Þ�j1 ;A1 > 0;A2 A Cg:ð3:20Þ

The case a ¼ 0 leads to a contradiction, similarly to the parallel case in Case (B)
in Section 3.2.

Case (B) knzn mT
We have zn ! z0, and in this case both options z0 ¼ 0 or z0 0 0 are possible.
We separate into two cases.

Case (BI). knzn mT, zn m z0 0 0
This case occurs when z0 ¼ reiy0 is on one of the 2k rays from (3.2), that is,

z0 ¼ reiy
þ
k
ðlÞ or z0 ¼ reiy

�
k ðlÞ for some 0a la k � 1: Since

rn
zn

! 0, then (3.5) is
equivalent to

ðknznÞL1�L2
ePðknznþknrnzÞ

ra
n

)
w
gðzÞ:ð3:21Þ
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By Hurwitz’s Theorem gðzÞ ¼ eQðzÞ, where Q is an entire function. For a
suitable branch of the logarithm, we have

ePðknznþknrnzÞþðL1�L2Þ log knzn�a ln rn ) eQðzÞ:

Thus, there exist integers fmng such that

Pðknzn þ knrnzÞ þ ðL1 � L2Þ lnjknznj þ iðL1 � L2Þðy0 þ enÞð3:22Þ
� a ln rn þ 2pimn ) QðzÞ;

where en A R, en ! 0.
We conclude that Q is a polynomial of degree jQja k. Denote QðzÞ ¼

A0 þ A1zþ � � � þ Akz
k. We have

Pðknzn þ knrnzÞ ¼ akðknzn � a1 þ knrnzÞðknzn � a2 þ knrnzÞ � � � ðknzn � ak þ knrnzÞ;

so for every 1a ia k, the coe‰cient of z i in the left hand side of (3.22) is

ak �
X

1aj1<j2<���<jk�iak

ðknzn � aj1Þðknzn � aj2Þ � � � ðknzn � ajk�i
ÞðknrnÞ

i

¼ akðknrnÞ
iðknznÞk�i

X
1aj1<���<jk�iak

1� aj1
knzn

� �
1� aj2

knzn

� �
� � � 1� ajk�i

knzn

� �
:

The free coe‰cient is

akðknznÞ i 1� a1

knzn

� �
1� a2

kn2n

� �
� � � 1� ak

knzn

� �
þ ðL1 � L2Þ lnjknznj þ iðL1 � L2Þðy0 þ enÞ � a ln rn þ 2pimn:

Now, since knzn ! y, then each term 1� aji
knzn

tends to 1 as n ! y, and thus

comparing the coe‰cients of the two sides of (3.22) gives the following relations:

akðknrnÞ
k 		!

n!y
Ak

..

.

akðknrnÞ
i k

i

� �
ðknznÞk�i ! Ai

..

.

akðknrnÞ
k

1

� �
ðknznÞk�1 ! A1

akðknzn � a1Þ � � � ðknzn � akÞ þ ðL1 � L2Þ lnjknznj
þ iðL1 � L2Þðy0 þ enÞ � a ln rn þ 2pimn ! A0

ð3:23Þ
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Now, if knrn ! y, then by the relation of Ak in (3.23) we deduce that
Ak ¼ y, a contradiction. If knrn ! a, a > 0 then by the relation for Ak�1 in
(3.23), we get that Ak�1 ¼ y (here we use kb 2), a contradiction. Hence
we deduce that knrn ! 0. Then from (3.23), we see that if Ai 0 0 for some
2a ia k, then Ai�1 ¼ y. Thus Ai ¼ 0 for 2a ia k.

The LPZ Lemma guarantees that g is nonconstant. Thus, we must have
A1 0 0, and so gðzÞ ¼ eA0þA1z. By (3.23) and (3.2) we get that arg A1 is

arg A1 ¼ arg ak þ ðk � 1Þy0 ¼
ðk � 1ÞðGp=2Þ þ arg ak þ ðk � 1Þ2pl

k
ð3:24Þ

for some 0a la k � 1.
We emphasize that by the LPZ Lemma, the 2k possible values to arg A1 in

(3.24) are accepted with appropriate sequences fkng, fzng and frng.
This means that for every one of the 2k possibilities in (3.24), for the value

of arg A1, there is some g A Pað f Þ, gðzÞ ¼ eA1zþA0 , where A0 is determined by
the last relation in (3.23). Consider one such function gðzÞ ¼ eA1zþA0 and let
ĝgðzÞ :¼ eA

0
1
zþA 0

0 , where arg A 0
1 ¼ arg A1 and A 0

0 A C is arbitrary. Then Lemma
3.1(2) implies that ĝg A Pað f Þ, and taking into account all the 2k possibilities for
the argument of A1 from (3.24), we get that the possibility zn ! z0 0 0 gives (for
every �1 < a < 1) the collection

6
k�1

l¼0

eA0þA1z : A0 A C; arg A1 ¼
arg ak þ ðk � 1ÞðGp=2Þ þ ðk � 1Þ2pl

k

� �
ð3:25Þ

to Pað f Þ.
We turn now to

Case (BII). knzn mT, zn m 0.

Claim 3.3. knrn ! 0.

Proof. If knrn ! y, then in the case that
zn

rn
! y, (3.21)–(3.23) hold and

we get a contradiction by the relation for Ak in (3.23). If
zn

rn
! b A C, we get a

contradiction similarly to the parallel case in section 3.2 (see (3.15)).
If on the other hand, knrn ! a, 0 < a < y, then the relations in (3.23) hold,

and by the relation of Ak�1 we get that Ak�1 ¼ y, a contradiction. Thus we
must have that knrn ! 0, and the claim is proven. r

We can deduce now, as in the case where zn ! z0 0 0, that gðzÞ ¼ eA1zþA0

and for A1, A0 the two last relations in (3.23) hold, respectively.
We separate now according to the value of a.

Case (BII_1) knzn mT, zn m 0, 0H aH 1.
We can assume that argðznÞ ! y0. We need the following claim.
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Claim 3.4. There is some 0a la k � 1, such that p=2þ 2pla arg ak þ ky0
a 3p=2þ 2pl.

Proof. If it is not the case, then there exists some C > 0 such that
Re½akðknzn � a1Þðknzn � a2Þ � � � ðknzn � akÞ� > Cjknznjk for large enough n: In

addition, �a ln rn ! þy and
lnjknznj
jknznjk

! 0. We deduce that the real part of

the left side of the relation for A0 in (3.23) tends to þy, and this is a
contradiction. r

Hence we can write

2pl

k
þ p=2� arg ak

k
a y0 a

3p=2� arg ak

k
þ 2pl

k
ð3:26Þ

for some 0a la k � 1.
We denote y1 :¼ arg A1, and by the relation for A1 in (3.23) we have

y1 ¼ arg ak þ ðk � 1Þy0 and thus

arg ak þ
k � 1

k

p

2
� arg ak þ 2pl

� �
ð3:27Þ

a y1 a arg ak þ
k � 1

k

3p

2
� arg ak þ 2pl

� �
; 0a la k � 1:

We show now that for every y1 that satisfies (3.27), there is g A Pað f Þ,
gðzÞ ¼ eA0þA1z with arg A1 ¼ y1.

Evidently it is enough for this purpose to show that for every y0 that satisfies
(3.26), there are sequences fkng, kn A N, fmng, mn A Z and fzng, frng, zn ! 0
with arg zn ! y0, rn ! 0þ, such that the relations (3.23) hold (with 0 ¼
A2 ¼ � � � ¼ Ak, A1 0 0 and A0 A C arbitrary).

We first show it for y0 that satisfies (3.26) without equalities (and the
corresponding y1 will satisfy (3.27) without equalities).

Indeed, for nb 2 define kn ¼ n, rn ¼
1

n1þððk�1Þ=kÞðln ln n=ln nÞ and ẑzn ¼

eiy0
ð�ln rnÞ

n

1=k

.

Observe that since kb 2, knrn ! 0 and knẑzn ! y, we have

jknrnðknẑznÞ
k�1j ¼ 1

nððk�1Þ=kÞðln ln n=ln nÞ 1þ k � 1

k

ln ln n

ln n

� �
ln n

� �ðk�1Þ=k

¼ 1þ k � 1

k

ln ln n

ln n

� �ðk�1Þ=k 		!
n!y

1:
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In addition, we have
jknẑznjk

�ln rn
¼ 1. By the choice of y0 (see (3.26)), we get

Re½Pðreiy0Þ þ ðL1 � L2Þ lnjreiy0 j�
jakðreiy0Þkj

			!
r!þy

cosðarg ak þ ky0Þ < 0;ð3:28Þ

and then we get

�a ln rn
�Re½PðnẑznÞ þ ðL1 � L2Þ lnjnẑznj�

! �a

jakj cosðarg ak þ ky0Þ
> 0:ð3:29Þ

Denote C0 ¼
�a

jakj cosðarg ak þ ky0Þ
.

In order to take care of the real part of the relation of A0 in (3.23), we need

Claim 3.5. For large enough n, there exists tn,
ffiffiffiffiffiffiffiffiffiffiffi
C0=2

k
p

< tn <
ffiffiffiffiffiffiffiffi
2C0

k
p

, such
that

Re½PðnẑzntnÞ þ ðL1 � L2Þ lnjnẑzntnj� ¼ a ln rn:

Proof. Let us define for t > 0

hnðtÞ :¼
a ln rn

Re½PðnẑzntÞ þ ðL1 � L2Þ lnjnẑzntj�
:

We show that for every t0 > 0,

hnðtÞ
C0=tk

¼)
n!y

1 uniformly on ½t0;yÞ:ð3:30Þ

Indeed,

hnðtÞ
C0=tk

¼ a ln rn
Re½PðnẑznÞ þ ðL1 � L2Þ lnjnẑznj�

� 1

C0

� Re½PðnẑznÞ þ ðL1 � L2Þ lnjnẑznj�
Re½PðnẑzntÞ þ ðL1 � L2Þ lnjnẑzntj�

� tk:

By (3.29), we have

a ln rn
Re½PðnẑznÞ þ ðL1 � L2Þ lnjnẑznj�

� 1

C0
		!
n!y

1:ð3:31Þ

Now,

Re½PðnẑznÞ þ ðL1 � L2Þ lnjnẑznj�
Re½PðnẑzntÞ þ ðL1 � L2Þ lnjnẑzntj�

� tk

¼ Re½PðnẑznÞ þ ðL1 � L2Þ lnjnẑznj�
jakðnẑznÞkj

jakðnẑzntÞkj
Re½PðnẑzntÞ þ ðL1 � L2Þ lnjnẑzntj�

:
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Hence, by twice using (3.28), we get that the last term tends to

cosðarg ak þ ky0Þ �
1

cosðarg ak þ ky0Þ
¼ 1;

and together with (3.31) it gives (3.30), as desired.
Now, according to (3.30), we have hnð

ffiffiffiffiffiffiffiffi
2C0

k
p

Þ ! C0

2C0
¼ 1

2
and hn

ffiffiffiffiffiffi
C0

2

k

r !
!

C0

C0=2
¼ 2: Hence, by the Mean Value Theorem, there is, for large enough n,

some tn,

ffiffiffiffiffiffi
C0

2

k

r
< tn <

ffiffiffiffiffiffiffiffi
2C0

k
p

, such that hnðtnÞ ¼ 1 and the claim follows. r

Observe that it can easily be proved by replacing

ffiffiffiffiffiffi
C0

2

k

r
,

ffiffiffiffiffiffiffiffi
2C0

k
p

byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C0 �

m

mþ 1
k

r
,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C0 �

mþ 1

m

k

r
, respectively, and letting m tend to y, to get tn as in

the Claim 3.5 such that tn !
ffiffiffiffiffiffi
C0

k
p

:
We set zn ¼ tnẑzn, tn from Claim 3.5 and then the relation for A1 in (3.23)

holds for some A1 with arg A1 ¼ arg ak þ ðk � 1Þy0. After moving to subse-
quence if necessary, that will be denoted with no loss of generality with the same
indices, there are integers mn, nb 2 (note that if n ¼ 1, then r1 is not well-
defined), such that the relation with regard to A0 in (3.23) holds for some
A0 A C. Observe that these integers a¤ect only the imaginary part of the relation
for A0 in (3.23).

Moreover, since knrn ! 0 and knzn ! y, we deduce that the relations for
A2; . . . ;Ak in (3.23) hold and give 0 ¼ A2 ¼ A3 ¼ � � � ¼ Ak.

The fulfillment of these relations in (3.23) means that

f ðknzn þ knrnzÞ
ra
n

)
w
eA0þA1z:

Now, similarly to Case (A) in section 3.2, or to Case (BI) here, we get by
Lemma 3.1 (2), that for every a with arg a ¼ arg ak þ ðk � 1Þy0 ¼ y1, and for
every b A C, gðzÞ ¼ eazþb belongs to Pað f Þ:

Now suppose that y1 is equal to the left or to the right side of (3.27). With-
out loss of generality,

y1 ¼ arg ak þ
k � 1

k

3p

2
� arg ak þ 2pl

� �
; 0a la k � 1:

Then we take an increasing sequence, fyð jÞ1 gyj¼1 such that

arg ak þ
k � 1

k

p

2
� arg ak þ 2pl

� �
< y

ð jÞ
1 %

j!y
y1:
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By the case of strict inequality in (3.27), for every jb 1, correspond sequences

z
ð jÞ
n 		!

n!y
0, r

ð jÞ
n 		!

n!y
0þ such that

f ðnzð jÞn þ nr
ð jÞ
n zÞ

r
ð jÞa
n

¼)
w

n!y
ee

iy
ð jÞ
1 z:

Since

ee
iy
ð jÞ
1 z ¼)

j!y
ee

iy1 z;

then in a similar way to the case knzn ! y, knrn ! a in Case (BII(ii)) of
section 3.2, we deduce the existence of sequences rn ! 0þ, zn ! 0, and fkng such
that

f ðknzn þ knrnzÞ
ra
n

¼)
n!y

ee
iy1 z:

Also we can get knzn ! y and knrn ! 0:
As usual, by Lemma 3.1 every gðzÞ ¼ eazþb with arg a ¼ y1 and arbitrary

b A C belongs to Pað f Þ.
In order to determine explicitly Pað f Þ, we need to find the range of y1 in

(3.27). For k ¼ 2 we have

l ¼ 0:
p

4
þ arg a2

2
a y1 a

3p

4
þ arg a2

2

l ¼ 1:
5p

4
þ arg a2

2
a y1 a

7p

4
þ arg a2

2
;

ð3:32Þ

which are two distinct intervals with sum of length p.

Claim 3.6. For kb 3 the range of y1 in (3.27) is ½0; 2p�.

Proof. Denote for 0a la k � 1, the general interval in (3.27) by Il ¼

½el ; dl �. The length of Il is jIl j ¼ p
k � 1

k
and elþ1 � 2pþ 2p

k
¼ el . Thus it is

enough to show that
k � 1

k
pb

2p

k
and

k � 1

k
pþ ðk � 1Þ 2p

k
b 2p. It is easy to

see that these two inequalities are satisfied for kb 3. The claim is proven.
r

As a result, from the claim and from Lemma 3.1, we get that for kb 3 the
possibility zn ! 0, knzn ! y gives the collection (for 0 < a < 1)

feazþb : a0 0; b A Cgð3:33Þ

to Pað f Þ.
We turn now to the complementary case.
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Case (BII_2) knzn mT, zn m 0, C1H aH 0

Here again, as fn;aðzÞ )
w
gðzÞ if and only if

1

f

� �
n;�a

ðzÞ )
w 1

g

� �
ðzÞ and since

1

f
¼ 1

R
e�P, i.e., a function of the same type we get the following.

For k ¼ 2, observe that
1

eazþb
¼ e�az�b and argð�aÞ ¼ pþ arg a and also the

leading coe‰cient of �PðzÞ has the argument argð�a2Þ ¼ pþ argða2Þ. So we
substitute in (3.27) (or in (3.32)) these values (or argðaÞ � p and argða2Þ � p,
respectively) instead of y1 and argða2Þ, respectively, to get

arg a2

2
þ 3p

4
a y1 a

5p

4
þ arg a2

2
or

7p

4
þ arg a2

2
a y1 a

9p

4
þ arg a2

2
:ð3:34Þ

Observe that the set of values of a A C corresponds to (3.34) is the com-
plement (up to the boundary) of the set of values of a A C corresponding to
(3.32).

For kb 3 we get the collection

feazþb : a0 0; b A Cgð3:35Þ
to Pað f Þ, exactly as in (3.33).

The last case to treat is

Case (BII_3) knzn mT, zn m 0, aF 0.
In this case as we have seen by Claim 3.3, also knrn ! 0. In addition, the

relations in (3.23) hold and Ai ¼ 0 for 2a ia k, and A1 0 0.
We can assume, without loss of generality, that argðznÞ ! y0. From the

relations for A0 in (3.23), we get

arg ak þ ky0 ¼G
p

2
þ 2pl for some l A Z:ð3:36Þ

And by the relation for A1 in (3.23), we get

y1 :¼ arg A1 ¼ arg ak þ ðk � 1Þy0ð3:37Þ

¼
ðk � 1Þ G

p

2

� �
þ arg ak þ ðk � 1Þ2pl

k
; 0a la k � 1:

In the other direction we show now that every function of the form
gðzÞ ¼ eazþb, with y1 ¼ argðaÞ, that satisfies (3.37) is obtained in P0ð f Þ.

Indeed, set y1 ¼ y1ðy0Þ ¼ arg ak þ ðk � 1Þy0.
For every y0 that satisfies (3.36) and for every mb 1, there exist according to

(3.25) sequences z
ðmÞ
n 		!

n!y

1

m
eiy0 , r

ðmÞ
n 		!

n!y
0þ and fkðmÞ

n gyn¼1 such that

f ðkðmÞ
n zðmÞ

n þ kðmÞ
n rðmÞ

n zÞ ¼)
w

n!y
ee

iy0 z:
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Hence, we get as in the case knzn !y in Case (B) in Section 3.2 that gðzÞ ¼ ee
iy0 z

is attained as a limit function with zn ! 0 (and arg zn ¼ y0) and rn ! 0þ. Then
as usual by Lemma 3.1, we obtain that every gðzÞ ¼ eazþb, with arg a ¼ y1 where
y1 is as in (3.37) is attained. Thus this option gives the collection

6
k�1

l¼0

eazþb : b A C; arg a ¼ ðk � 1ÞðGÞ p
2
þ arg ak þ ðk � 1Þ2pl

� ��
k

� �
ð3:38Þ

to P0ð f Þ.
Observe that not as in the cases 0 < a < 1, �1 < a < 0, this case does not

add new functions to Pað f Þ (here a ¼ 0).

Now we can finally collect all the limit functions to fix Pað f Þ for �1 < a < 1
in the case kb 2.

aF 0.
For every kb 2 we get by (3.18), (3.25) (and (3.38))

P0ð f Þ ¼ f f ðazþ bÞ : a > 0; b A Cg

U

8>><
>>:eazþb : b A C; arg a ¼

arg ak þ ðk � 1Þ G
p

2

� �
þ ðk � 1Þ2pl

k
;

0a la k � 1

9>>=
>>;:

0H aH 1
For k ¼ 2 we get by (3.19) and (3.25) and (3.32)

Pað f Þ ¼ 6
m

i¼1

fePðgiÞ ~RRgiðgiÞðazþ bÞ li : a > 0; b A Cg
( )

U

�
eazþb : b A C;

p

4
þ arg a2

2
a arg aa

3p

4
þ arg a2

2
or

5p

4
þ arg a2

2
a arg aa

7p

4
þ arg a2

2

�
:

For kb 3 we get by (3.19), (3.25) and (3.33)

Pað f Þ ¼ 6
m

i¼1

fePðgiÞ ~RRgiðgiÞðazþ bÞ li : a > 0; b A Cg
" #

U feazþb : a0 0; b A Cg:
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C1H aH 0.
For k ¼ 2 we get by (3.20), (3.25) and (3.34)

Pað f Þ ¼ 6
l

i¼1

fePðbiÞR̂RbiðbiÞðazþ bÞ�ji : a > 0; b A Cg
" #

U

�
eazþb : b A C;

�p

4
þ arg a2

2
a arg aa

p

4
þ arg a2

2
or

3p

4
þ arg a2

2
a arg aa

5p

4
þ arg a2

2

�
:

For kb 3 (3.20), (3.25) and (3.35) give

Pað f Þ ¼ 6
l

i¼1

fePðbiÞR̂RbiðbiÞðazþ bÞ�ji : a > 0; b A Cg
" #

U feazþb : a0 0; b A Cg:

The proof of Theorem 1 is completed. r
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