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CREATING LIMIT FUNCTIONS BY THE PANG-ZALCMAN LEMMA
SHAI GUL AND SHAHAR NEVO

Abstract

In this paper we calculate the collection of limit functions obtained by applying
an extension of Zalcman’s Lemma, due to X. C. Pang to the non-normal family
{f(nz) :neN} in C, where f = Re”. Here R and P are an arbitrary rational function
and a polynomial, respectively, where P is a non-constant polynomial.

1. Introduction

A well-known powerful tool in the theory of normal families is the following
lemma of L. Zalcman.

ZALCMAN’S LemMmA [12]. A family & of functions meromorphic (resp.,
analytic) on the unit disk A is not normal if and only if there exist

(@) a number 0 <r < 1;

(b) points z,, |z,| <r;

(¢) functions f, e F; and

(d) numbers p, — 07,
such that

Fon 420 5 90 alzn+pa0) = 9(0),

where g is a nonconstant meromorphic (entire) function on C.
Moreover, g can be taken to satisfy the normalization

() <g*(0)=1, (eC
Here and throughout the paper, & (‘=") means local uniform convergence
in C with respect to the spherical metric (Euclidian metric) of a sequence of
meromorphic (holomorphic) functions.

This lemma was generalized by X. C. Pang as follows.
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PANG-ZALCMAN LEMMA ([8, Lemma 2], [9, Theorem 1]). Given a family F
of functions meromorphic on the unit disk A and —1 < o < 1, then F is not normal
in A if and only if there exist

(a) a number 0 <r < 1;

(b) points z,, |z,| <r for every n,

(¢) functions f, e F; and

(d) positive numbers p, — 07,
such that

fi"l (ZH + pnC)
(@—77—

n
in C.  Moreover, g can be taken to satisfy the normalization g#({) < g*#(0) = 1,
(eC.

X . . .
= g({), where g is a non-constant meromorphic function

The case o =0 gives Zalcman’s Lemma. These two lemmas have a local
version that can be written uniformly as:

LocAL PANG-ZaLcMaN LemmA (LPZ Lemma) cf. [11, Lemma 1.5], [5,
Lemma 4.1]. Let F be a family of functions meromorphic in a domain D < C
and let —1 <o <1 and zo € D. Then F is not normal at zy if and only if there
exist

a) points {z,},~1, Zn — Zo;

b) functions {fy},~, € 7,

¢c) positive numbers p, — 0F;
such that

(1.1) i fo(zn + pal) 2 9(0),

where ¢ is a nonconstant meromorphic function on C, such that for every
(eC,

(1.2) g (0) < g*(0) = 1.

The Pang-Zalcman Lemma and the LPZ Lemma also have extensions in
case where we know that the multiplicities of the zeros (or of the poles) of
members of the family of functions % are large enough (see [10, Lemma 2], [3,
Lemma 3.2]). In this paper we shall not deal with these extensions, although our
particular results are valid also for these extensions.

For a nonconstant function f meromorphic on C, let #(f) be the non-
normal family in C

F(f)={f(nz) : ne N}.

Normality properties of the family 7 (f) has already been studied from various
directions. Montel [4, PP. 158-176] was probably the first to deal with this
topic. This subject was also studied in [6], [7] and [2].

The family Z (f) is not normal in C, and specifically is never normal at
z=0. Given a point zp where Z (f) is not normal and —1 < « < 1, then LPZ
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Lemma guarantees the existence of at least one function g({), not constant and
meromorphic on C that is obtained by the convergence process (1.1) described
in this lemma. For a certain —1 <o <1, let II,(f) denote the collection of
all the non-constant limit meromorphic functions g({) (on C) that are created
in the convergence process (1.1) (but not necessarily satisfies the normalization
(1.2)), considering all the points zy € C of non-normality of #(f). For such a
function ¢, we have by the definition of Z#(f) and by the LPZ Lemma a
sequence {k,},-, kn € N, k, — o0, points z, — z¢ and positive numbers p, — 0"
such that

knzn + kup,l) 1
(13) ) = BB £ o)
Our main goal in this paper is to calculate, for every —1 < a <1, the
collection IT,(f) for the function

(1.4) f(2) = R(z)e"?),
where R(z) #0 is a general rational function and P(z) is a nonconstant
polynomial.

Before we state our result we establish some notation: If zj is a zero (pole)
of order k of a nonconstant meromorphic function f(z), then

Fo@ =19 (7 )= - ).
(z — z0)

Also for zp e C and r > 0,

A(zo,r) :=={z: |z —z0| <r}, Alzo,r):={z:|z—z0| <r}.

For 6 e R, Ry denotes the ray from the origin with argument 6. For every
0 < f < m, we define the symmetric sector about Ry of the opening 2f as

SO,p)={z:0-p<argz< 0+ f}.

Now we state our main theorem. (The formulation is not short, as the
proof is fairly involved.)

THEOREM 1. Let f(z) = R(z)e?®) be as in (1.4), where P(z) = a;(z — o) - - -

(z — o) (the a;’s may occur with repetitions), a; # 0; R(z) = 1}:1 EZ where Pi(z) =
2
(z—y)" =), P2 =@z —=B)" - (z=B)". We assume that y,,...,
Vs P1,---. B are all distinct. Let Ly:=|Pi|=L+ -+, L):=|P)|=
J1+ -+ ji. Then for the various values of —1 <a <1, I, (f) is given as
follows:
L. k=|P|=1
If a =0, then

o(f) = {koe™® : ko # 0,arg Ay = arg a; Y U{f(C1 + C3{) : C, € C, C, > 0}.
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If 0<a<1, then
IL,(f) = {koe™ : ko # 0,arg 4, = arg a; }
U{ep(yi)R'/,»( )<A1C+A0) 1 <i<m,AyeC, 4, >0}.
If —1<a<0, then
IL(f) = {koeAI{ : ko #0,arg A = arg a|}
U{e" PRy (B) (410 + Ag) 7 11 <i<1 AgeC, A >0}

II. k=2
If a=0, then

k—1

H()(f) = {f(C1 + CZC) : Cl € C7 CZ > O}U [ U {6A14+A0 : AO (= C,
1=0

arg A) = (ig(k— 1) +arg ar + (k — 1)2n1)/k}].

If 0<a<1, then

for k=2
[U{e A+ C)" s arg 4 = arg R, (7,), C e C}
. m arga 3_7z arg a,
U{e 1 Ag € "2 < 4+ 3
St ap Tn  arg a
— =< A < — .
gty =swedis gty }
For k>3

lU{e WAL+ C)" rarg A = arg R, (), C e C}

U{ehct40: 49€C, 4, #0}.

If —1<a<0, then
for k=2

[U{e BIA(C+ C)7' - arg A = arg Ry (), C e C}

U{ At 4o e C, _%+arg 2 <argd; < Z+arg2,az or

3 arga, 5t arga, }
+ 5 .

4

<arg 4, < Z+ >
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For k>3
/ . ~
IL(f) = | U{e" A+ C)7 s arg 4 = arg Ri(B,), C € C}
i=1

U{ehtht: 49eC, 4, #0}.

Observe that in each of the three intervals =0, 0 <o <1 and —1 < a <0,
I1,(f) is independent of o.

The proof of Theorem 1 is similar to climbing a ladder with four steps where
each step is more complicated then the former step. In the first step we calculate
I1,(M) for a general monome, M(z) = (z— o). In the second step we find
I1,(P) where P is a general nonconstant polynomial. In step 3 we calculate
IT,(R), where R is a general nonconstant rational function, and finally in the
fourth step we find IT,(Re®). In each step we rely on the results of the previous
steps. The first three steps are the contents of section 2; the proof of Theorem 1
is actually the fourth step which we prove in section 3. We note that for a
nonconstant rational function, zy = 0 is the only point of non-normality in C, and
this is the situation in the first three steps. For f = Re’, the points of non-
normality lies on few rays through the origin, as we will see in the sequel.
Throughout the proof we often deal with the connections between {z,} and {p,}
in the LPZ Lemma. We hope this will contribute to the better understanding of
the potential of this somewhat obscure lemma. As it is always possible to move
to convergent subsequences (in the extended sense), we shall always assume
without loss of generality that the sequences {k,z,}, {k.p,} from (1.3) converge
(in the extended sense). This assumption also applies to other sequences of
complex numbers involved in our calculations.

The importance of this paper, beyond the result obtained in Theorem 1,
lies in the technique that we used. The possible connections between z, and
p, in (1.1) were used to deduce the limit function g. We note that the Pang-
Zalcman Lemma is a common tool to establish normality of families of mer-
omorphic functions. However, the proof of this lemma does not give an
explicit relation between z, to p,, because some unknown parameter is involved
in this relation (see [8, Lemma 2|, [9, Theorem 1]). Hence, in general there is
some difficulty in determining the limit function g. We expect that the detailed
calculation that given here will contribute and promote the study of this
subject.

2. Calculating IT,(M), I1,(P) and II,(R)

We mention that in all these cases zp = 0 is the only point of non-normality
of # (M), #(P) or #(R).

2.1. First step: Calculating I1,(M) where M(z) = (z— ). Let —1<
o< 1. By the LPZ Lemma, there exist z, — 0, p, — 0", integers k, — oo,
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and a nonconstant entire function g such that

n

k
2.1) Mn,%(é)=< " “/"C+%> = g(0).

We want to determine g. The left hand side of (2.1) has a single zero of
multiplicity k in C, and thus, it follows by Rouché’s Theorem that g({) is also
a monome of degree k. There must be 0 <4 < oo and CeC, such that

M kuz, —
knp;i 1k — A and %/kﬂ

P
A>0 and CeC, we set

A ke /(k—a) Aoc/(kfoc)c_i_ﬁnoc/(kfzx)
(2.2) kn=n, p,= (n) y o En = it/ (k=)

— C and so g() = (4 + C)*. Conversely, given

to get (for every n) M, ,({) = (AL + C)*. Thus, for every —1 < o« < 1
(2.3) I, (M) = {(A{ + C)* : 4> 0,C e C}.

Observe that IT,(M) is independent of o.

2.2. Second step Calculatmg I1,(P) for a nonconstant polynomial P(z).
Let P(z)=L(z—p)" - (z=»,)", 7 # v, i# J, ki=h+h---+1, Assume
first that « =0. By the LPZ Lemma, there exist z, — 0, p, — 0T, integers
k, — o0, and a nonconstant entire function g such that

(2.4) Ppo(8) = Plknp,C + knzn) = 9(0).

By substituting { =0 in (2.4), we get that {k,z,} is bounded and thus k,z, —
C e C (recall that we always assume without loss of generality that {k,z,},
{kup,}, etc. converge). Now, if k,p, — 0 then g is constant and in case that
knp, — oo then g({) = oo for every { #0. Hence k,p, — 4, 0 < A < 0o and we
have ¢({) = P(4{+ C).

On the other hand, given 0 < 4 < o0 and C € C, the trivial setting k, = n,

A c .
Py :;’ Zn :; gives Pn,O(C) = P(Aé—i— C) and we get

(2.5) IMy(P) = {P(4{+C): A>0,CeC}.
Consider now the case where 0 < « < 1. Here P, ,({) = g({) means

L(knpnC + knzy — yl)l1 e (knpné: + knzp — ym)lm
P

(2.6)
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Because of p* — 0, then by substituting { =0 in (2.6), we get that there exists
1 <i < m such that k,z, — y;, since otherwise P, ,(0) — co, and this would be a
contradiction.

Without loss of generality, we assume that i = 1.

CLamm 2.1. kyp, — 0.

Proof. Indeed, if k,p, — oo, then for every { #0, P, 4({) — o0, a contra-
diction.

If k,p, — A, 0 < A < oo, then there are some R > 0 and Ny € N such that
for every {, |{|>R, n>No and 1<i<m, |kup,{+kyzys—7;] =1 and thus
P, () — o0, a contradiction and the claim is proved. O

We then get from (2.6) that

L (knzn -+ knPnC) §
Pn

=702 00 = 73)" - 01 = 7)™ = 9(0).

From the result in section 2.1 we then get that

g(0) = P, (n)(AL + C)"

where 4 >0 and CeC.
Conversely, given 4 >0 and C € C, an analogous setting to (2.2)

A)ll/(ll—o’«) . 7A“/<’l*°‘)C+y1n“/("’°‘)
I’ n
n

kn=n, py,= <_ i)
gives

Pus(0) = P, (y) (AL + O).

Observe that since 0 < o < 1, indeed np, — 0. Running over all the roots y;,
1 <i<m, of P(z) we get that

(2.7) IL(P) = {P,(7)(AL+ C)": 4 >0, CeC, 1 <i<m}.
We turn now to the case —1 < o < 0. Suppose that

(2.8) Pua(0) = 9(0).

CLamM 2.2. kyp, — .

Proof. If to the contrary, k,p, — A, A< oo and k,z, — CeC, then
P,,({) —0 for every {e€C and this is of course a contradiction. If
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kyp, — A < 0 and k,z, — oo then (2.8) gives

(knzn)"® [ kupul — Vl]" { knpul =y }’
2.9 L 1+ —= e = = g(0).
29 : ko koo o
7’;’(5)
Since
T.00) =1,
(knzn)k . ..
we get that L-———= g({) and we get that g is a constant, a contradiction.
Pn D
Zy . . knzn — 7;
CrLam 2.3. p_ — B e C (equivalently, for every 1 <i<m, T — B).
n nFn
. ky
Proof. If this were not the case, then for every 1 <i <m, ki — 0,
and then nin = Vi
L | k /) h k p I
el (knzu — 7; 1o n | o ]
Prol( [H n =) { " knzn — 71 C} [ " knZn = Vm 4 =60

Sau(0)

Here also S,({) = 1 and as in Claim 2.2, we get a contradiction and Claim 2.3 is
proven. O

We can write (2.8) as

kn k ann - h knzn —/m b
(2.10) L (ppj)) {C+ - yl} ---[c+%} = 9(0),

Ru(0)

and since R,(() = ({+ B)*, we have (k';'?;:) — A, 0< A< o. Thus g({) =
L(A, + C)¥, where C = 4B. P
Conversely, let g({) = L(A{ + C)* where 4 >0, Ce C. We set k, =n and

. n  C .
consider (2.10), we wish that 4 = np, / p“/ *and " = L These requirements are
fulfilled by the setting Pn

(A L C A\
Py = . , Z"'iA . .

Hence we get that for -1 <a <0

(2.11) I,(P) = {L(A{+ C)* : 4> 0,CeC}.
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2.3. Third step: Calculating IT,(R) for a rational function R(z).
I. We assume first that R has at least one zero and one pole in C.
Denote

bn

=) (2= )
2.12 R(z)=L : _
@12) &) (z=p)" (2= B)"

k=h+-+1ln>0,j=j+-+ji>0.

Given —1 <« < 1, we have by the LPZ Lemma that

V4

(2.13) Ry 4(8) = 9(0).

Observe first that Picard’s Great Theorem and Rouché’s Theorem imply that
IT,(R) contains only rational functions. We separate into subcases according to
the value of o.

CasE (A). O0<a< 1.

Let us assume first that k,p, — C, 0 < C < c0. In such case, if k,z, — oo,
then as in (2.9) we deduce that g is a constant, a contradiction. If there exists
some b € C such that k,z, — b, then by (2.13) (observe that p? — 0) we get for
every 0 < 0 < 2m, except finitely many 0’s, that R, ,({) — oo for every { = re'?,
r> 0. This is a contradiction.

Secondly, we assume that k,p, — 0. In such a situation if k,z, — oo then
g({) = d where d is some finite constant or d = oo, a contradiction. If k,z, — 7,
n€C, then if for every i, j 7 # y;, B; then g = oo, a contradiction.

If n=p, for some jo, 1 < jo </, then also by (2.13) g = o0, a contra-
diction.

If 7 =7y, for some 1 <iy <m, then assume without loss of generality that
n=7y,. Then (2.13) can be written as

1 n ‘..
ﬁ(knzn =71 +kuppl) h R, (knzn + kup,{) :/> 9(0),

n

and since
Ryl (knzn + knpy) = Ryl 1),
we get by the case of a monome that
(2.14) 9(0) = Ry, (»)(AL+CO)" 4>0,CeC.
As in section 2.1, it can easily be shown that every function of the form (2.14) is
in IT,(R). Recall now that Cy can be any value 1 < iy < m, and we get that the

contribution to IT,(R) from this possibility is

(2.15) {9(0) =R, (7)(AL+ CO)': CeC, 4> 0,1 <i<m}.
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The last option in case (A) is that k,p, — oo. Similarly to the case k,p, — 0,
we deduce that - — C, CeC. (Recall that we can assume with no loss of

. n z .
generality that sequences as {—"} converges in the extended sense.) We can
write n

knzy —y h knzp — b
kn B+l n<n 1 o n<n m
( pn) Z:+ knpn €+ kn/)n

L k z ﬁ J1 k z [)) Ji
o St n 1 . n /
Pn (knpn) (C - knp, ) (C M knp,,

k knzp — 71 h knzp — m I
(k”pn) (C N k'lpn C + knpn

k nZn — ﬂl k nZn — ﬁl
Pn ( npn) (z: + knpn > : (g + knp,, >

; knzn — 7\ knzp — b
k—j n<n yl . n«n ym
(k”pﬂ) (C + kﬂpn ) (g + kl’lpn >
o knzn — P knzn — B\ .
P (C " knpy ) (C o knp,

knzw — y; knZn — ﬁj
knpn ’ knpn
contradiction, since the only candldate to be a limit function is g =
ki
If k< j, then Ly:=lim %

Pu .
g=0 or g= oo, as the value of Ly. We deduce that g({) = L- Lo({ + C)*.
knzn — N knzn — Vm

knpn T kﬂpn
diction. Hence the collection (2.15) is IT,(R).

Rn,a(C) =L

Observe that for every i and j, — C. Thus, if k> j thisis a

must satisfy Ly # 0, co, since otherwise

But R, ,({) vanishes at

and thus g(—C) =0, a contra-

Case (B). —1<a<0. p
The calculation of IT,(R) is immediate since R, ,({) = ¢g({) if and only if

<11Q> (C)éé((), and since 0 < —o < 1. Thus, by Case (A), II,(R)=

(R, (B)(AC+C) ' s 4>0,CeC 1 <n<1}.

Case (C). a=0.

Assume first that k,p, — 0. Then if k,z, — oo we deduce that g =¢, ce C,
a contradiction.

If kyzy — b, b € C, then in case b # y;, f; for every i, j we get by (2.13) that
g is a constant, a contradiction.

If b=y, 1 <ip<m, then g =0, a contradiction. If b=8,, 1 <jp<!
then g = oo, a contradiction.
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The next possibility we examine is k,p, — o0. As in Case (A) or Case (B)

Z .
we must have =2 — ¢ce C. Then we can write

P knzn — 7 ! knzn — 7y n
(+5550) (- 555")
k—j n¥n ntn
Ruol8) = Llkap,)™ -4 lozn — BV
R N
nPn nPn

In any of the cases k = j, k > j or k < j, we get a contradiction. So it must
be the case k,p, — ¢, 0 < ¢ < oco. Then, if k,z, — oo then similarly to the case
kup, — 0, we get that g is constant so k,z, — b, be C and ¢g({) = R(b + ().

c b
Conversely, for every b € C, ¢ > 0, we can take k, =n, p, = —, z, = — to get
n n

Ruo(0) 2 R(b+c) in C, so Hy(R) = {R(b+cl) :beC,c> 0.
II. Now we consider the case where R(z) has only zeros or only poles. If
R(z) has only zeros, then R is a polynomial and this case was discussed in section

1 . .
2.2. 1If R(z) has only poles then R = 2 where P is a polynomial, and we can use

the same principle as in Case (B) of (I) of the present subsection, and then deduce
by the results in section 2.2 (see (2.5), (2.7) and (2.11)) the following:
For « =0 we get by (2.5)

IMy(R) = {R(A{+ C): 4> 0,CeC}.
For 0 <o <1 we get by (2.11)

nx(R)z{#.:A>o,Cec}.
(AL+ C)’

And for —1 <o <0 we have by (2.7)
IL(R) = {Rg (B)(AC+C)") ' 14 >0,CeC, 1 <i<I}.

3. Finding IT,(Re?)
Let f(z) = R(2)e?® where

R=— Pl(z) = (Z_YI)II"'(Z_ym)lmv
B1) P =B =) Lii= P =l
Ly:=|P|=j+-+ji, Li,L,>=0.

P
The case R = LP—I, L # 0,1 is also included here, i.e., we can assume that L = 1,
2

since otherwise L = e%, ab #0. We can write dy = ap + a}, instead of ay as the
constant coefficient of P(z).



294 SHAI GUL AND SHAHAR NEVO

Also let us denote P(z) = ax(z —oy)(z —o2) -+ (z — o), ax #0. We wish to
find TI,(f) for —1 < o < I, but first we need some preparation.

3.1. Auxiliary lemmas and a remark.

Lemma 3.1. Let f be a nonconstant meromorphic function in C and
—1l<a< 1. Then

(1) If g({) e T,(f) then for every CeC g({+ C)eTIl,(f) and

(2) If e®“*t e T0,(f) then for every a' # 0 such that arg(a') = arg(a) and for

every b’ € C, e e TL,(f).
kn n kn n C X
S (knz +pf (E+0) «
g((+C) in C, with p, —» 0", z, —z and k,eN. We set ;,’1 =pp Iy =
zy+p,C — zo and get
f(an,l1 + knP,QC) S (knzn + knpn(C + C)) 4

= =g+ C),
P Py ( )

Proof. Suppose that g eIl,(f). Then we have

and this proves (1). For the proof of (2) assume that f(knzn——&;k”pné) L eeth in

/ AN
C. Define for o' with arga’ = arga, p, = a—pn — 0" and (a_) = ™, where
by e R. We have a a

/

knzn + knp,, (a—

N s,
a é g (CZI 4’) el — @' iHb+bo

.ﬂha+h%®f<

(pp)* pia’/a)*

By (1) we can replace b + by with every b’ € C. This completes the proof of the
lemma. O

Remark. Let F be a family of non-vanishing holomorphic functions which
is not normal at zp and let —1 <« < 1. Then the convergence process (1.1) in
the LPZ Lemma guarantees a limit function g({) with g#({) <1 for every { € C.
By a theorem of Clunie and Hayman [1, Theorem 3], the order of ¢ is at most 1
and since g({) #0, { e C, by Hurwitz’s Theorem we deduce that g({) = e“*’.
The results which we will prove in the detailed process of calculating IT,(Re”) are
indeed consistent with this theorem of Clunie and Hayman.

LemMmA 3.2. Let f = Re® be given by (3.1). Then the points where F (f) is
not normal in C are exactly

k—1 k—1
(3.2) /Qo Ry ¢ U /k—)o Roca)
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where for every 0<I<k—1, 0;() and 0, (l) are defined by 0;(l)=

T
+- —arga; 27l

2 B o and arg ay is taken to be in [0,2n).

Observe that for every 0 </+# j<k—1, 0f(I) # 6;°(I).

Proof. For every zy # 0 that is not in the union (3.2) there exist r > 0 and
0 </<k—1 such that

(3.3) A(zo,7) < S(Hk () + z’;(l ), %)
or that
(3.4) A(zo, 1) S<w,%>

Observe that we inserted ‘mod(k — 1)’ in (3.3) only for the case where /=
k—1.

There is some small ¢ > 0 such that in the case that (3.3) holds, then for
every z € A(zg,r) and for every ne N

)2+ 2nl + & < arg ap(nz)* < 3m/2 + 2al — &.
In the case (3.4), then for every z e A(z,r)
—n)2 4 21l + &y < arg(ag(nz)*) < n/2 + 21l — &.
Hence there exists Ny, such that if n > Ny and z € A(zg,r), then
/2 + 27l + &y/2 < arg P(nz) < 3n/2 4 2rl — &/2
in the case of (3.3) or that

T

2+27zl+%0<argP(nz) <g+2nl—£—0

2
in the case of (3.4).
Hence in the case of (3.3) f(nz) — 0 uniformly in A(z,r) and in case of
(3.4) f(nz) — oo uniformly in A(zo,r), that is, in any case Z (f) is normal at z.
If zy belongs to one of the 2k rays from the union (3.2), then any
neighbourhood of z; contains points z where f(nz) — 0 and points z where
f(nz) - 0. So Z(f) is not normal at z. O

We are now ready to calculate IT,(f). We shall do this by separating into 2
cases according to the value of k = |P|.

3.2. Calculating IT,(Re”) for linear polynomial P(z). We have P(z) =
az+ap, a1 #0. Let zyp be a point where # (f') is not normal. This means that
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zo is in the union (3.2). Let —1 <o < 1. By the LPZ Lemma, there exist
Zy — 20, p, — 07, integers k, — oo, and a nonconstant meromorphic function g
such that

(3.5) foal0) = M 4 4(0).

where z, — zp, p, — 0" and k, — 0.

Case (A) zp #0.
In this case

(3.6) knzy — oo and ;—"—> 00,

and thus
R(knzy + kup,Q)
(knzn)Ll—Lz
By 3.5, we deduce that

e@knzutao garknp,{

(3.7) G,(0) = (knza) 171 pr
_ (knzn) bimko f(knzn + knpnC)
B R(knzn + kup,) . Py =90

Since §,({) # 0 for { e C, we deduce that g # 0 in C, i.e., g = e¢ where Q is an
entire function. With a suitable branch of the logarithm, we have

e@knzatao—eIn p,+(Li—Lo) log knzutarknp,C — ,0(0)
Thus, there are integers m, such that
arknzy +ao — o ln p, + (L1 — Ly) log kyz, + arkyp, + 2znim, = Q(0).

Hence Q is a linear function, Q({) = 4,{+ 4o and g({) = e? - e1¢.  Substitut-
ing (=0 in (3.7) gives that

Ly—L> ,a,k,z,+a
(knzn) e nZn+ao Ao

pg n— oo
and thus
(3.8) arknp, — Ay

and arg A; = arga;. Now let §({) :=ke?* where k #0 and arg 4 = arg a;.
We have arg A = arg A4; and k = e¢” for some b e C, and thus, since we have
already proved that g({) = e+ is in I1,(f), we get by (2) of Lemma 3.1, that
gelIl,(f). Hence, we deduce that the contribution of zy # 0, point of non-
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normality of Z(f) to I, (f), is
(3.9) {ke® : k #0,arg A = arg a, }.

Observe that this collection is independent of o.

Case (B) zp=0.
We separate into subcases according to the behaviour of {k,z,}.

Case (BI). kyz,— b, beC.

We also separate this subcase into three possibilities according to the
behaviour of k,p,.

(i) kup, — oo. Then when o >0 it holds for every {#0, (e Ry and
0, (0) < 0 < 0/ (0), that f, ,({) —— o0, and this implies that g = oo, a contra-
diction. If o <0, then for every { # 0, { € Ry, where

(3.10) 07 (0) < 0 < 0; (1),

we have f, ,({) — 0 and this also leads to a contradiction.

(i) knp, — a, a>0. Then in case that « > 0, it holds that g({) = «o for
every ( such that R(al+ b) # 0, and this is impossible.

If <0, then for every { such that R(al+b) # o0, ¢({) =0, again a
contradiction.

So the case k,z, — b, k,p, — a > 0 can happen only with o = 0, and indeed
in this case the limit function is g({) = f(al+b) and every such function is

. . a b
attained with k, =n, p,=—-, z, =—.
n

n
So this possibility gives the collection
(3.11) {f(al+b):a>0beC}

to H()(f)
The last possibility is
(iii) kup, — 0. In this case we have that

(3.12) Ro(0) = W £

If « = 0 then ¢ is a constant, a contradiction. If 0 < o < 1, then in the case that
P|(z) is a constant, R, ,({) = oo and g = co, a contradiction. If P; is not a
constant then necessarily there exists some 1 < i < m such that k,z, — y;. We
then have e

g(()e .

. i —P(y;)
(knzp Vi + kﬂpnc) = g(gi)e _

/7,3( R”/,-(yi)
By the case of monome (see (2.3)), we get that

(3.13) g(&) = e"WIR, () (@l +b)", heC,a>0
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and by the setting of (2.2), every ¢g({) of the form (3.13) belongs to IT,(f)
(corresponding to all the roots y; of Pi(z), 1 <i<m).

Now, if =1 < o < 0 then 0 < —a < 1 and as in Case (B) of (I) in section 2.3,
or in (II) in section 2.3, we get that if P,(z) is a constant then g = o0, a
contradiction. If P,(z) is not a constant then k,z, — f; for some 1 <i </,
and analogously to (3.13) we have e

e" PRy, (5:)
(al + b)”

and conversely, every function ¢({) as in (3.14), (corresponding to the various
roots of P,(z), f;, 1 <i <) belongs to IT,(f).

(3.14) 9(0) = , a>0,beC,

We turn now to the second subcase of Case (B).

Case (BII). kyz, — .
We separate this subcase into two possibilities.
(1) k"pn —> ©. z
In this situation, if =% — oo then (3.5) is equivalent to
n

Li—L
%ku = 9(0),
n

and we deduce that we must have g({) = koe®.

On the other hand, for every {, { ¢ Ry 0y U Ro; (0), g(0) =0 or g({) = o, and
this is a contradiction. _

Suppose now that =~ — C, C e C. Then (3.5) can be written as

Pn

=9
Py

When ( belongs to the half plane {{: —n/2 < arg(a;) + arg({ + C) < n/2} we
have f, ,({) — oo if o >0, while if « <0, then f,,({) — 0 for every { in the
complementary half plane, {{: #/2 < arg(a;) + arg({ + C) < 3n/2}, and we have
got a contradiction.

To summarize, the possibility k,z, — co and k,p, — oo does not occur.

(ii) kyp, — a, ae C. Then (3.5) is equivalent to (3.7) and ¢({) = e““*8 and
it must be that ¢ >0 and 4 =a - a;.

In order to show that for each Be C and for each A satisfying arg(4) =
arg(aj), the function g({) = e““*% belongs to I1,(f), it is enough by Lemma 3.1
to show that one such function is attained (in fact, it is equally easy to show
directly that each such function is attained). 0

Indeed, let us take a sequence of non-zero numbers, z; — 0 such that for
— 00

every [ > 1, arg(z(()l)) =mn/2 —arg(a;). By the results of Case (A) (see (3.9)), for
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every [ > 1 there are sequences, k,S? — o, z,(,i) —2 zél) and p,(,? —— 0" such

that m—w
Sz ko' Q) 2
lo '
i
Now for every n > 1, there is m, > n such that

n n n 1 n 1

(3.16) kD20 > n, pi) < - and |zt — 2| < e
1

and such that |k, p, — 1| <; (cf. (3.8)) and

max |70z + k' pin))
(¢t <n} P

— et < l

T n
We define now for every n> 1, k, := ,sﬁ), Py = pf,zl), Zp = z,§?> By (3.16) we
deduce that

S (knzp + knpnc)
Py
as required (with k,z, — oo and k,p, — 1).

Hence the collection of limit functions created by the possibility k,z, — oo
and k,p, — a, a > 0 is exactly

(3.17) {e®8 . Be C and arg 4 = arg(4,)}.

We can now summarize the results and conclude the assertion of Theorem 1 for
the case where P is linear.

For o =0, we get by (3.9), (3.11), and (3.17) (and the various contradictions
along the way)

o(f) = {e“*? :arga = arg a;,b e C}U{f(al +b) :a>0,be C}.
For 0 <a <1, (3.9), (3.13) and (3.17) give
IL(f) = {e“*’ :arga = arg a;, b € C}
U {ePOIR, (7,)(al + B)i:ia>0beC1<i<m}
For —1 <a <0 we have by (3.9), (3.14) and (3.17)
IL,(f) = {e“*" : arga = arg a;, b € C}
U{eP PRy (B)/(al+b)":a>0,beC,1 <i<l}.

x
= e‘”{,

3.3. Calculating IT,(Re”) when k= |P| >2. We consider (3.5) that is
guaranteed by the LPZ Lemma with some nonconstant meromorphic function
g, and separate into cases according the behaviour of {k,z,}.
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Cast (A) kyz, — beC.

Of course in this case z, — 0. We separate into cases according to the
behaviour of {k,p,}.

(i) kpp, — o0. Then if >0 it holds for every non-zero {, { € Ry, for
O, () <0<65 (), 0<I<k-—1, that £, ,({) —— o0 (compare (3.10)), and this
is a contradiction. If o <0 then for every non-zero {, {e Ry, 0 ()< 0<
0, (1+1), f40) — 0, and this is a contradiction.

(i) knpp, —a€eC. If a>0 and « # 0, then similarly to the parallel case
when |P| =k =1 (Case (B) in section 3.2) we get a contradiction.

The possibility ¢ > 0 and o« =0, as in the case |P| = 1, gives the collection

(3.18) {f(al+b):a>0,beC}

to H()(f)
We are left with the possibility k,p, — 0. We then get that

R(knzy + knp,{) * _
bz L0 1 ggye-ro

that is, §:= g - e ©® belongs to II,(R). Thus, in the case 0 < x < 1 we get by
the discussion in section 2.3 that for some 1 <iy <m, b=y, (in case [P;| >0,
otherwise we get a contradiction) and consider all y;, 1 <i<m, we get from
(2.15) that the case k,p, — 0, kyz, — b € C gives the collection

m ~
(3.19) U{e R, () (A1l + 42)", 41 > 0,45 € C}
i=1

to Ip(f).
In the case —1 < o < 0 we get (similarly to the parallel subcase in Case (B)

in Section 3.2) the collection
l .

(3.20) {ePPIRs (B) (A1 + 42) ™', 41 > 0,45 € C}.
i=1

The case o = 0 leads to a contradiction, similarly to the parallel case in Case (B)
in Section 3.2.

Case (B) kuzn — ©
We have z, — zp, and in this case both options zyp = 0 or zy # 0 are possible.
We separate into two cases.

Case (BI). kyzy — 00, 2, — 20 # 0

This case occurs when zo = re’® is on one of the 2k rays from (3.2), that is,

20 =re% D) or zo = re% ! for some 0 </<k—1. Since 22— 0, then (3.5) is
equivalent to Zn

P(krzzn+kupno
(3.21) (knz) P2 T A ).

pe
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By Hurwitz’s Theorem g¢({) = e9), where Q is an entire function. For a
suitable branch of the logarithm, we have

eP(k,,z,,Jrk,,/)”C)Jr(L]7L2)logknz,ﬁo:ln/)” = eQ(C)
Thus, there exist integers {m,} such that
(3.22) P(kyzy + kup,() + (L1 — La) In|kyz,| + i(Ly — L) (60 + &)
—oln p, + 27im, = Q({),

where ¢, €R, ¢, — 0.
We conclude that Q is a polynomial of degree |Q| < k. Denote Q(z) =
Ao+ AL+ --- —|—Aka. We have

P(knzn + knpnC) = dg (ann — o+ knpnC) (knzn — o+ knpn&:) s (ann — o+ knPnC)’
so for every 1 <i <k, the coefficient of (' in the left hand side of (3.22) is

A - Z (knzn = o, ) (knzn — o) -+ - (KnZn — ajk—i)(knpn)i

1<ji<p<-<jk-i<k

. . " o .
= a(kup,) ' (euzn) (L—“)O— ”)”Q_fm)
I<j <2‘<:j1¢7; <k knzn knzn kuz,

The free coefficient is

i o 2% Ok
ellonzn) <l - knzn> (1 - kn2n> " <1 - k,,zn>

+ (L) — Ly) Inlkyz,| + i(L1 — L2)(00 + &,) — o In p,, + 27im,,.

. o,

Now, since k,z, — oo, then each term 1 — —2— tends to 1 as n — oo, and thus
nZn

comparing the coefficients of the two sides of (3.22) gives the following relations:

a(kupy)* —— Ak

n— oo

ak(knpn)i (llc) (knzn)kii — A;
(3.23)

k _
albr) (] )tz =

ar(knzn — o1) -+ - (knzo — o) + (L1 — L) In|k,z,|
+i(Ly — Ly)(00 + &1) — o In p, + 27imy, — Ao
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Now, if k,p, — oo, then by the relation of A4 in (3.23) we deduce that
Ay = o0, a contradiction. If k,p, — a, a > 0 then by the relation for 4;_; in
(3.23), we get that A;_; = oo (here we use k >2), a contradiction. Hence
we deduce that k,p, — 0. Then from (3.23), we see that if 4; #0 for some
2<i<k, then 4,y =o0. Thus 4;,=0 for 2<i<k.

The LPZ Lemma guarantees that g is nonconstant. Thus, we must have
Ay #0, and so g(¢) = edot4C. By (3.23) and (3.2) we get that arg A; is

(k —1)(£r/2) + arg a; + (k — 1)2=nl
k

(3.24) argd; =argar+ (k—1)0) =

for some 0 </ <k—1.

We emphasize that by the LPZ Lemma, the 2k possible values to arg 4, in
(3.24) are accepted with appropriate sequences {k,}, {z,} and {p,}.

This means that for every one of the 2k possibilities in (3.24), for the value
of arg A, there is some g € I1,(f), g({) = e1¢"40, where Ay is determined by
the last relation in (3.23). Consider one such function g({) = e®1¢*40 and let
g() = et 4y where arg A} =arg A; and Aj e C is arbitrary. Then Lemma
3.1(2) implies that g € IT,(f), and taking into account all the 2k possibilities for
the argument of 4; from (3.24), we get that the possibility z, — zo # 0 gives (for
every —1 < a < 1) the collection

k-1 B ~
325 U {er+A1£ . Ay e C,arg A, = arg ai + (k 1)(ik7z/2) + (k 1)2nl}
120
to IL,(f).

We turn now to
Case (BII). k,z, — o0, z, — 0.
CrLam 3.3. kup, — 0.

Proof. 1If kyp, — oo, then in the case that %H o0, (3.21)~(3.23) hold and
n
we get a contradiction by the relation for 4 in (3.23). If o _pe C, we get a

n
contradiction similarly to the parallel case in section 3.2 (see (3.15)).
If on the other hand, k,p, — a, 0 < a < co, then the relations in (3.23) hold,
and by the relation of A, | we get that Ay | = oo, a contradiction. Thus we
must have that k,p, — 0, and the claim is proven. O

We can deduce now, as in the case where z, — zo # 0, that g({) = ehé+
and for A4;, Ao the two last relations in (3.23) hold, respectively.
We separate now according to the value of .

Case (BIL_1) kuz,— o0, 7, —0, 0 <a<1.
We can assume that arg(z,) — 6y. We need the following claim.



CREATING LIMIT FUNCTIONS BY THE PANG-ZALCMAN LEMMA 303
CraM 3.4. There is some 0 <[ <k — 1, such that n/2 + 2nl < arg a; + k0
<3n/2 4+ 2nl

Proof. 1If it is not the case, then there exists some C >0 such that
Re[ak(knzn—ocl)(k,,zn—oc2)~~-(k,,z,,—ock)}>C|k,,z,1|k for large enough n. In

. In|k
addition, —o In p, — +oo and | "Z’;J — 0. We deduce that the real part of
nZn
the left side of the relation for Ay in (3.23) tends to +oo, and this is a
contradiction. U

Hence we can write

2nl  w/2 — arg ay 3n/2 —arga, 2nl

for some 0 </ <k —1.
We denote 6, :=arg 4;, and by the relation for 4; in (3.23) we have
0) =argax + (k—1)6p and thus

(3.27) arg ay + k1 (

B r_ arg ay + 27zl>

2

<0 Sargak—&—%(%—argak—i—Zﬂ), 0<l<k-1.

We show now that for every 6 that satisfies (3.27), there is g € I1,(f),
g() = et with arg 4; = 0,.

Evidently it is enough for this purpose to show that for every 6, that satisfies
(3.26), there are sequences {k}, k, €N, {m,}, myeZ and {z,}, {p,}, z. — 0
with argz, — 0y, p, — 07, such that the relations (3.23) hold (with 0=
Ay =---=Ax, A1 #0 and A4, € C arbitrary).

We first show it for 6y that satisfies (3.26) without equalities (and the
corresponding 0 will satisfy (3.27) without equalities).

Incleed,1 kfor n>2 define k,=n, p,= ()R (/i)
ei()g (_lnpn>

and Z, =

n
Observe that since k > 2, k,p, — 0 and k,z, — oo, we have

1 k—1Inlnn (k=1)/k
A k-1
|knpn(kn2n) | = 5 ((k=1)/k)(InInn/In n) Kl + k Inn ) In n]

k—1InInn\* D/
—(1+=—="" .
k Inn n— o0
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s [k
In addition, we have f’fé"/') = 1. By the choice of 0y (see (3.26)), we get
Re[P(re™) + (L — Ly) In|re™™

(3.28) e[Plre™) + L 8 2) Injre"] . cos(arg ax + k) <0
|ak(ret(7’o) | r—+o0

and then we get
—olnp —o

3.29 i > 0.

(3.29) —Re[P(nz,) + (L) — Ly) In|nz,|] - |a| cos(arg ax + k0y)

Denote Cy = —

|ay| cos(arg ax + k0p)
In order to take care of the real part of the relation of A4y in (3.23), we need

CramM 3.5. For large enough n, there exists t,, +/Cy/2 < t, < /2Cy, such
that

Re[P(nz,t,) + (L — Ly) In|nz,t,|]] = o In p,,.
Proof. Let us define for 1 >0

olnp,
Re[P(nzut) + (L — Ly) In|nZ, 1]

h(t) :=
We show that for every # > 0,

hu 1) = 1 uniformly on [t, o0).

3.30
( ) C()/tk n— o0

Indeed,
N (1) olnp, 1
Cy/tk Re[ (nz,) + (L1 — Ly) 1n|nzn|]

Re[P(nzy) + (Li Lz)ln\nznl] Lk
Re[P(nz,t) + (Li — Ls) In|nz,f]

By (3.29), we have

oln p, 1 |
Re[P(nz,) + (L — Ly) In|nz,|]] Cy n—

(3.31)

Now,
Re[P(nz,) + (L — L») In|nZ,|] y
Re[P(nz,t) + (L1 — Ly) In|nz,¢]
_ Re[P(nz,) + (Li — L) In|nz,|] |a (nz,1)¥|
- |ak(n2n)k| Re|P(nzut) + (L — Ly) In|nz,t|])
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Hence, by twice using (3.28), we get that the last term tends to

1
cos(arg ay + k) ' cos(arg a7 k0o) 1,
and together with (3.31) it gives (3.30), as desired. G 1 IC
Now, according to (3.30), we have £,(v/2Cy) — 36,2 and h| /= 0
CC;2 = 2. Hence, by the Mean Value Theorem, there is, for large enough n,
0

e .
some 1, Y 70 < t, < /2Cy, such that h,(t,) =1 and the claim follows. O

Observe that it can easily be proved by replacing Y 9, V2Cy by
k C m k 2

U
the Claim 3.5 such that t, — /.

We set z, = 1,2, t, from Claim 3.5 and then the relation for 4; in (3.23)
holds for some A; with arg A = arg a; + (k — 1)8. After moving to subse-
quence if necessary, that will be denoted with no loss of generality with the same
indices, there are integers m,, n>2 (note that if n =1, then p, is not well-
defined), such that the relation with regard to A4y in (3.23) holds for some
Ap € C. Observe that these integers affect only the imaginary part of the relation
for Ay in (3.23).

Moreover, since k,p, — 0 and k,z, — oo, we deduce that the relations for
Az, ..., A in (3.23) hold and give 0 = A, = A3 = -+ = A;.

The fulfillment of these relations in (3.23) means that

o - ——, respectively, and letting m tend to oo, to get ¢, as in
m

S (knzan + knpnC) e Aot Al
Pn

Now, similarly to Case (A) in section 3.2, or to Case (BI) here, we get by
Lemma 3.1 (2), that for every a with arga = arga; + (k —1)0y = 6,, and for
every be C, g({) = e“*" belongs to II,(f).

Now suppose that 6, is equal to the left or to the right side of (3.27). With-
out loss of generality,

Blargak+k;1[32 argak+2nl}, 0<l<k-1.

Then we take an increasing sequence, {9§j>}jﬁl such that

k—1 ;
arg a +—— (g— arg ay +27z1) < 05") /0.

Jj— 0
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By the case of strict inequality in (3.27), for every j > 1, correspond sequences

A0 0, p,<,]> —— 0% such that
n— o0 n— o0

f(nz;(ij)‘*‘nﬂi(zj)g) y L’M‘U)C_

() A
Pn
Since
()
i0 i
e ! ¢ s e 1{’
J—

then in a similar way to the case k,z, — oo, kup, — a in Case (BII(ii)) of
section 3.2, we deduce the existence of sequences p, — 0", z, — 0, and {k,} such
that

f(knzn + knpné) — ee”’l(.

pg n— oo

Also we can get k,z, — oo and k,p, — 0.
As usual, by Lemma 3.1 every g({) =e¢
b e C belongs to IT,(f).
In order to determine explicitly IT,(f), we need to find the range of 6, in
(3.27). For k=2 we have

a@+b with arga = 0; and arbitrary

[=0: %Jrar‘(’;az <0 < %n ariaz
(3.32) . g
T arga n o arga
= 1: e < < —

which are two distinct intervals with sum of length 7.
CrLamM 3.6. For k >3 the range of 0, in (3.27) is [0,2x].

Proof. Denote for 0 </<k—1, the general interval in (3.27) by I, =

-1 2
[e1,01]). The length of I; is |Ij] :nk and &4 —27T+£:81. Thus it is

-1 2 k—1 2 .
enough to show that ya > % and B n+ (k— 1)% >2n. It is easy to
see that these two inequalities are satisfied for k> 3. The claim is proven.

O

As a result, from the claim and from Lemma 3.1, we get that for k > 3 the
possibility z, — 0, k,z, — oo gives the collection (for 0 < o < 1)

(3.33) {e®™ . a#0,beC}

to IT,(f).
We turn now to the complementary case.
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Case (BII_2) kuzy— 00, 7, — 0, —1<a <0

1 ¢ (1 .
Here again, as f, ,({) % g(¢) if and only if (—) ) % (—) (¢) and since
1 1 _p . X f n,—o g

7: RS i.e., a function of the same type we get the following.

For k = 2, observe that

—al—b

=€

oadlth and arg(—a) = n + arg a and also the

leading coefficient of —P(z) has the argument arg(—a,) = 7 + arg(az). So we
substitute in (3.27) (or in (3.32)) these values (or arg(a) — =z and arg(ay) — 7,
respectively) instead of #; and arg(a,), respectively, to get

arga, 3n St argap T arg a, 9 arga;
. — <0 <= — <0 < — .
(3.34) +4_91_4+ ) or 4+ 5 _61_4+ )

Observe that the set of values of @ e C corresponds to (3.34) is the com-
plement (up to the boundary) of the set of values of a e C corresponding to

(3.32).
For k >3 we get the collection
(3.35) {e“*" :a#0,heC}

to I,(f), exactly as in (3.33).
The last case to treat is

Case (BIL_3) kuz,— o0, 2,— 0, a =0.

In this case as we have seen by Claim 3.3, also k,p, — 0. In addition, the
relations in (3.23) hold and 4; =0 for 2 <i <k, and 4; #0.

We can assume, without loss of generality, that arg(z,) — 6p. From the
relations for Ay in (3.23), we get

(3.36) arg ap + kb = £ =+ 2n/ for some /e Z.

T
2
And by the relation for A; in (3.23), we get
(3.37) 0, :=arg A = arg a, + (k — 1)6

(k — 1)(%) +arg a + (k — 1)2al

k

In the other direction we show now that every function of the form
g(0) = e, with 0; = arg(a), that satisfies (3.37) is obtained in ITo(f).

Indeed, set 0 = 0,(0y) = arg ar + (k — 1)6y.

For every 6, that satisfies (3.36) and for every m > 1, there exist according to

0<i<k-1.

1 I m
(3.25) sequences z\" — —e™ p\™ — 0% and {k\"}, such that
n— oo m n— oo

f(k(m)z(m)_i_k(m)p(m)é«) é €€WO£.

n—oo
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Hence, we get as in the case k,z, — oo in Case (B) in Section 3.2 that ¢({) = e¢"¢
is attained as a limit function with z, — 0 (and arg z, = 6)) and p, — 0". Then
as usual by Lemma 3.1, we obtain that every g({) = e®“*?, with arg a = 0; where
0; is as in (3.37) is attained. Thus this option gives the collection

k-1 -
(3.38) lk_jo{e““b :heC,arga = ((k - 1)(1)5 +arg a; + (k — 1)2nl>/k}
to H()(f)

Observe that not as in the cases 0 < a < 1, —1 < a < 0, this case does not
add new functions to IL,(f) (here o =0).

Now we can finally collect all the limit functions to fix IT,(f) for -1 <a < 1
in the case k > 2.

a=0.
For every k > 2 we get by (3.18), (3.25) (and (3.38))

o(f) = {f(al+b):a>0,beC}

arg ax + (k — 1) (ig) + (k= 1)2xl
k )

UL e heC arga =

0<i<k-1

0<ax<l1
For k=2 we get by (3.19) and (3.25) and (3.32)

IL(f) = {G{ep(y")Ryi(y,»)(aC +b)":a>0 be C}}
U

{e““b:bec, %—i—% <arga < %Tn+aria2 or
5_7z+arga2 <arga< 7_n+arga2}'
4 2 4 2
For k>3 we get by (3.19), (3.25) and (3.33)

lU{ePO ()@ +b)":a>0beC}

U{e“:a#0,beC}.
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-1<a<0.
For k=2 we get by (3.20), (3.25) and (3.34)

1
= | J{e" PRy (B:)(al +b) 7 :a>0,beC}
=1

u{e

3n+arga2 <arga< 54_7z+arga2}.

arg a, T arga,
- 4 2

4" 2 TEET= 4T

For k>3 (3.20), (3.25) and (3.35) give
U{e "Ry (B)(al +b)7 :a>0,beC}

U{e™™ . a#0,beC}.

The proof of Theorem 1 is completed.
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