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INTERSECTION THEORY ON MIXED CURVES

Mutsuo Oka

Abstract

We consider two mixed curves C;C 0 HC2 which are defined by mixed functions of

two variables z ¼ ðz1; z2Þ. We have shown in [4], that they have canonical orienta-

tions. If C and C 0 are smooth and intersect transversely at P, the intersection number

ItopðC;C 0;PÞ is topologically defined. We will generalize this definition to the case

when the intersection is not necessarily transversal or either C or C 0 may be singular at

P using the defining mixed polynomials.

1. Introduction

First we recall the complex analytic situation. Consider complex polyno-
mials f ðzÞ and gðzÞ of two variables z ¼ ðz1; z2Þ and consider complex analytic
curves defined by C : f ðzÞ ¼ 0 and C 0 : gðzÞ ¼ 0. Suppose that P is an isolated
intersection point of C VC 0. Then the local algebraic intersection number
Ið f ; g;PÞ is defined by the dimension of the quotient module dim OP=ð f ; gÞ
where OP is the local ring of the holomorphic functions at P and ð f ; gÞ is the
ideal generated by f and g. Thus Ið f ; g;PÞ is a strictly positive integer and it is
equal to 1 if and only if C and C 0 are non-singular at P and transversal to each
other. On the other hand, the complex curves C, C 0 have canonical orientations
which come from their complex structures (see for example, [1]) and the local
algebraic intersection number is equal to the local topological intersection number
if the intersection is transverse. Moreover this is also true for a non-transverse
intersection in the sense that under a slight perturbation, an intersection P of
algebraic intersection number n splits into n transverse intersections. In partic-
ular, the topological local intersection number can be defined by the algebraic
local intersection number.

The purpose of this note is to define the local intersection multiplicity for
two mixed curves using the defining polynomials and study the analogous
properties. The problem in this case is that the local intersection number is
not necessarily positive. This makes the algebraic calculation more di‰cult.
Let C : f ðz; zÞ ¼ 0 and C 0 : gðz; zÞ ¼ 0 be mixed curves which have at worst
an isolated mixed singularity at P A C VC 0. We will define the intersection
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multiplicity ItopðC;C 0;PÞ using a certain mapping degree which is described by
the defining polynomials f , g (Definition 5, §2 and Theorem 2). This definition
coincides with the usual one for complex analytic curves.

In §4, we consider the roots of a mixed polynomial hðu; uÞ of one variable u
as a special case. We introduce the notion of multiplicity with sign msðh; aÞ for a
root a of hðu; uÞ ¼ 0 and we give a formula for the description of msðh; aÞ for an
admissible mixed polynomial hðu; uÞ (Theorem 20).

2. Mixed curves

2.1. A mixed singular point. Let f ðz; zÞ, z ¼ ðz1; z2Þ A C2, be a mixed
polynomial. See [6, 5, 4] for further details about a mixed polynomial. Using
real coordinates ðx1; y1; x2; y2Þ with zj ¼ xj þ iyj, j ¼ 1; 2, f can be understood as
a sum of two polynomials with real coe‰cients:

f ðz; zÞ ¼ fRðx1; y1; x2; y2Þ þ ifI ðx1; y1; x2; y2Þ:
where fR, fI are the real part and the imaginary part of f respectively. Recall
that f ðz; zÞ is a polynomial of x1, y1, x2, y2 by the substitution

xj ¼
zj þ zj

2
; yj ¼

zj � zj

2i
; j ¼ 1; 2:

We say that C : f ðz; zÞ ¼ 0 is mixed non-singular at P A C if the Jacobian matrix
of ð fR; fI Þ has rank two at P ([3, 5]). We recall that C2 has a canonical orienta-
tion given from the complex structure. We identify C2 with R4 by ðz1; z2Þ $

ðx1; y1; x2; y2Þ and thus a positive frame of R4 is given by
q

qx1
;
q

qy1
;
q

qx2
;
q

qy2

� �
.

If P is a mixed non-singular point, C is locally a real two dimensional mani-
fold. The normal bundle NC;P of CHC2 at P has the canonical orientation
so that the orientation is compatible with the complex valued function f ,
namely dfP : NC;P ! T0C is an orientation preserving isomorphism. Thus the
orientation of C at P is defined as follows. A frame ðv1; v2ÞHTPC, v1 ¼
ðv11; v12; v13; v14Þ, v2 ¼ ðv21; v22; v23; v24Þ, is positive if and only if the frame

M :¼

v1

v2

grad fR

grad fI

0
BBB@

1
CCCA¼

v11 v12 v13 v14

v21 v22 v23 v24
qfR

qx1

qfR

qy1

qfR

qx2

qfR

qy2
qfI

qx1

qfI

qy1

qfI

qx2

qfI

qy2

0
BBBBBBB@

1
CCCCCCCA

is a positive frame of C2 ¼ R4. The gradient vector grad hðx1; y1; x2; y2Þ of a
real valued function h is defined by

grad hðx1; y1; x2; y2Þ ¼
qh

qx1
;
qh

qy1
;
qh

qx2
;
qh

qy2

� �
:

249intersection theory on mixed curves



2.2. Mixed homogenization and the closure in P2. Assume that f ðz; zÞ ¼P
n;m cnmz

nzm is a mixed polynomial of two variables z ¼ ðz1; z2Þ. Put C ¼
f �1ð0ÞHC2. We assume that C is non-empty and that C has only a finite
number of mixed singular points. We consider the a‰ne space C2 with co-
ordinates z as the a‰ne chart Z0 0 0 of the projective space P2 with homo-
geneous coordinates ðZ0;Z1;Z2Þ. The coordinates are related by z1 ¼ Z1=Z0,
z2 ¼ Z2=Z0. Let dþ and d� be the degree of f ðz; zÞ in z and z respectively.
That is,

dþ ¼ maxfjnj j cnm 0 0g; d� ¼ maxfjmj j cnm 0 0g
where jnj ¼ n1 þ n2 for a multi-integer n ¼ ðn1; n2Þ. We associate with f a
strongly polar homogeneous mixed polynomial F ðZ;ZÞ as follows, where Z ¼

ðZ0;Z1;Z2Þ and Z ¼ ðZ0;Z1;Z2Þ by FðZ;ZÞ :¼ Z
dþ
0 Zd�

0 f
Z1

Z0
;
Z2

Z0
;
Z1

Z0

;
Z2

Z0

� �
and

we call F the mixed homogenization of f . Here a mixed polynomial gðZ;ZÞ
is called strictly polar homogeneous polynomial of radial degree dr and polar
degree dp if it is a linear combination of monomials ZnZm with jnj þ jmj ¼ dr,
jnj � jmj ¼ dp. We define CHP2 by the topological closure of CHC2 HP2 and
we define a mixed projective curve ~CC :¼ fððZ0 : Z1 : Z2Þ A P2 jF ðZ;ZÞ ¼ 0g. It
is easy to see that the closure C of C in P2 is a subset of ~CC but in general,
C might be a proper subset of ~CC. See Remark 3.3.1. F is a strongly polar
homogeneous polynomial of radial degree dr ¼ dþ þ d� and the polar degree
dp ¼ dþ � d� respectively and F jZ000 ¼ f .

Remark 1. In [4], we have assumed that the polar degree is non-zero for the
definition of strongly polar homogeneous polynomials, but in this paper, we
consider also the case dþ ¼ d�. In this case, F ðZ;ZÞ : C3nF�1ð0Þ ! C� does
not give a global fibration but F�1ð0Þ is C�-action stable where C�-action is the
usual one:

C� � C3 ! C3; ðr; ðZ0;Z1;Z2ÞÞ 7! ðrZ0; rZ1; rZ2Þ:
In particular, the zero set F ¼ 0 is well-defined in P2.

3. Intersection numbers

3.1. Local intersection number I (Smooth and transversal intersection case).
In this section, we denote vectors in R4 by column vectors for brevity’s sake.
Assume that C : f ¼ 0 and C 0 : g ¼ 0 are two mixed curves and assume that
P A C VC 0 and C, C 0 are mixed non-singular at P and the intersection is trans-
verse at P. Let u1, u2 and v1, v2 be positive frames of TPC and TPC

0. Then
the local (topological) intersection number ItopðC;C 0;PÞ is defined by the sign of
the determinant detðu1; u2; v1; v2Þ (See for example [2]). Namely

ItopðC;C 0;PÞ ¼ 1; detðu1; u2; v1; v2Þ > 0;

�1; detðu1; u2; v1; v2Þ < 0:

�
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For any frames w1; . . . ;w4 of R4, we define

Signðw1;w2;w3;w4Þ :¼
1; if detðw1;w2;w3;w4Þ > 0

�1; if detðw1;w2;w3;w4Þ < 0:

�

By the definition of the orientation of C and C 0,

Signðu1; u2; tgrad fRðPÞ; tgrad fI ðPÞÞ ¼ 1;

Signðv1; v2; tgrad gRðPÞ; tgrad gI ðPÞÞ ¼ 1:

Now our first result is the following.

Theorem 2. The intersection number ItopðC;C 0;PÞ is given by

Signð tgrad fRðPÞ; tgrad fI ðPÞ; tgrad gRðPÞ; tgrad gI ðPÞÞ:

Recall that the tangent space TPC is generated by the vectors orthogonal
to the two dimensional subspace h tgrad fRðPÞ; tgrad fI ðPÞiR. Thus two dimen-
sional planes hu1; u2iR and h tgrad fRðPÞ; tgrad fI ðPÞiR are orthogonal. Here
hw1;w2iR is the two dimensional plane spanned by w1, w2.

3.1.1. Gram-Schmidt orthonormalization. First we consider a simple asser-
tion. Let a1, a2, a3, a4 be column vectors in R4 and let P, Q be 2� 2
matrices. Then

Assertion 3.

detðða1; a2ÞP; ða3; a4ÞQÞ ¼ detða1; a2; a3; a4Þ detðPÞ detðQÞ

Proof. The assertion follows from the simple equality in 4� 4 matrices:

ðða1; a2ÞP; ða3; a4ÞQÞ ¼ ða1; a2; a3; a4Þ
P O

O Q

� �
: r

Now we consider Gram-Schmidt orthonormalization of ðu1; u2Þ and
ð tgrad fR;

tgrad fI Þ. They are orthonormal frames ðu 0
1; u

0
2Þ and ð tgrad fRðPÞ0;

tgrad fI ðPÞ0Þ such that they satisfy the equalities:

ðu 0
1; u

0
2Þ ¼ ðu1; u2ÞQ1; and

ð tgrad fRðPÞ0; tgrad fI ðPÞ0Þ ¼ ð tgrad fRðPÞ; tgrad fI ðPÞÞQ2

where Q1, Q2 are upper triangular 2� 2 matrices with positive entries in their
diagonals. Similarly we consider the orthonormalization

ðv 01; v 02Þ ¼ ðv1; v2ÞR1

ð tgrad gRðPÞ0; tgrad gI ðPÞ0Þ ¼ ð tgrad gRðPÞ; tgrad gI ðPÞÞR2;
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where R1, R2 are upper triangular matrices with positive entries in their
diagonals. Using Assertion 3, we get

Signðu 0
1; u

0
2; v

0
1; v

0
2Þ ¼ Signððu1; u2ÞQ1; ðv1; v2ÞR1Þ

¼ Signðu1; u2; v1; v2Þ;

and

Signð tgrad fRðPÞ0; tgrad fI ðPÞ0; tgrad gRðPÞ0; tgrad gI ðPÞ0Þ
¼ Signðð tgrad fRðPÞ; tgrad fI ðPÞÞQ2; ð tgrad gRðPÞ; tgrad gI ðPÞÞR2Þ
¼ Signð tgrad fRðPÞ; tgrad fI ðPÞ; tgrad gRðPÞ; tgrad gI ðPÞÞ:

Thus the calculation of the intersection number can be done using these
orthonormal frames

ðu 0
1; u

0
2;

tgrad fRðPÞ0; tgrad fI ðPÞ0Þ; ðu 0
1; v

0
2;

tgrad gRðPÞ0; tgrad gI ðPÞ0Þ:

Thus the proof of Theorem 2 is reduced to the following.

Lemma 4. Assume that ðu1; u2; u3; u4Þ and ðv1; v2; v3; v4Þ be positive ortho-
normal frames of R4. Then

detðu1; u2; v1; v2Þ ¼ detðu3; u4; v3; v4Þ:

Proof. Assume that

ðu1; u2; u3; u4Þ ¼ ðv1; v2; v3; v4ÞA;ð1Þ

with A A SOð4;RÞ. Write A by 2� 2 matrices as

A ¼ A1 A2

B1 B2

� �

The equality (1) can be rewritten as

ðv1; v2; v3; v4Þ ¼ ðu1; u2; u3; u4Þ tAð2Þ
where

tA ¼
tA1

tB1

tA2
tB2

� �
:

First we consider the equality from (1):

detðu1; u2; v1; v2Þ ¼ detððv1; v2ÞA1 þ ðv3; v4ÞB1; v1; v2Þ
¼ detðv1; v2; ðv3; v4ÞB1Þ
¼ det B1:
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On the other hand, we have also from (2):

detðu1; u2; v1; v2Þ ¼ detðu1; u2; ðu3; u4Þ tA2Þð3Þ
¼ det tA2 ¼ det A2ð4Þ

Thus det A2 ¼ det B1. Similarly we get

detðu3; u4; v3; v4Þ ¼ detððv1; v2ÞA2; v3; v4Þ ¼ det A2

¼ detðu3; u4; ðv1; v2Þ tB1Þ ¼ det B1:

Thus the assertion follows from these equalities. r

3.2. Local intersection number II (General case). Assume that C : f ðz; zÞ ¼
0 and C 0 : gðz; zÞ ¼ 0 are mixed curves as above and let P be an isolated
intersection point of C VC 0. We assume also that both C and C 0 have at worst
an isolated mixed singularity at P.

Definition 5. Let j ¼ ð fR; fI ; gR; gI Þ : R4 ! R4. We define the local inter-
section number ItopðC;C 0;PÞ by the local mapping degree of the normalized
mapping c of j:

c :¼ j=kjk : S3
e ðPÞ ! S3:

Here S3
e ðPÞ :¼ fx A R4 j kx� Pk ¼ eg and e is a su‰ciently small positive number

so that P is the only intersection of C and C 0 in BeðPÞ where BeðPÞ is the disk of
radius e centered at P.

Suppose that P is a transverse intersection of C and C 0 and assume that C
and C 0 are mixed smooth at P. Take a small positive number e so that

kjð1ÞðzÞkb 2kj� jð1ÞðzÞk; kz� Pk ¼ e

where jð1Þ is the linear term of j at P. Then we consider the homotopy jt ¼
ð1� tÞjþ tjð1Þ, 0a ta 1. Then the normalized mapping c is homotopic to
that of jð1Þ on S3

e ðPÞ. The latter is nothing but the normalization of ð tgrad fR;
tgrad fI ;

tgrad gR;
tgrad gI Þ. Thus

Proposition 6. This definition coincides with the topological local intersec-
tion number if the intersection is transverse and two curves C, C 0 are mixed non-
singular at P.

3.2.1. Stability of the intersection number under a bifurcation. Consider
two mixed algebraic curves C : f ¼ 0 and C 0 : g ¼ 0 and assume that P A C VC 0

is an isolated point of C VC 0 (but probably not a transversal intersection).
Let ft, gt, jtja r be two continuous families of mixed polynomials such that
f0 ¼ f , g0 ¼ g. We take a fixed e > 0 so that C VC 0 VB4

e ðPÞ ¼ fPg with
B4
e ðPÞ ¼ fz A C2 j kz� Pka eg and put Ct ¼ fz A C2 j ftðz; zÞ ¼ 0g and C 0

s ¼
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fz A C2 j gsðz; zÞ ¼ 0g. Take a su‰ciently small g > 0 so that

fz A Se j faðz; zÞ ¼ gbðz; zÞ ¼ 0g ¼ j; jaj; jbja ga r:

Take d, d 0 with jdj; jd 0ja g and assume that Cd VC 0
d 0
VB4

e ðPÞ ¼ fP1; . . . ;Png and
at each point Pj, two curves Cd and C 0

d 0
are smooth and they intersect trans-

versely. Then we claim:

Theorem 7. Suppose that P A C VC 0 is bifurcated into n transverse inter-
sections in the near fibers Cd VC 0

d 0
as above. Let a and b the number of posi-

tive and negative intersection points among fP1; . . . ;Png (aþ b ¼ n). Then
ItopðC;C 0;PÞ ¼ a� b.

Proof. The assertion follows from the following standard topological argu-
ment. First, we consider the map of the pair jt; s ¼ ð ft; gsÞ and its normalized
one:

ct; s : S
3
e ! S3; ct; sðz; zÞ ¼ jt; sðz; zÞ=kjt; sðz; zÞk:

The mapping degree of ct; s is independent of t and s for any jtja g, jsja g.
Secondly, take a su‰ciently small positive number 0 < rf e so that the disks

B4
r ðPjÞ, j ¼ 1; . . . ; n are mutually disjoint and do not intersect with S3

e ðPÞ. Then
cd; d 0 is extended to a mapping

cd; d 0 : X :¼ B4
e ðPÞ

�
6
n

j¼1

Int B4
r ðPjÞ ! S3

where Int B4
r ðPjÞ ¼ B4

r ðPjÞnS3
r ðPjÞ. Thus the fundamental class ½SeðPÞ� is equal

to the sum of fundamental classes
Pn

i¼1½SrðPjÞ� in H3ðXÞ, the mapping degree of
cd; d 0 : S

3
e ðPÞ ! S3 is the sum of the local mapping degrees of cd; d 0 : S

3
r ðPjÞ ! S3.

r

Remark 8. Note that a, b in the above theorem depends on the bifurcation
but a� b is independent of the chosen bifurcation. Note also that a, b can be 0
which implies Cd VC 0

d 0
VB4

e ðPÞ ¼ j. See Example 10.

3.3. Global intersection number. We consider the global intersection
number. Let C : F ðX;XÞ ¼ 0 and C 0 : GðX;XÞ ¼ 0 be mixed projective curves
in P2 defined by strongly polar homogeneous polynomials F and G of polar
degree d and d 0 respectively. We assume also that the mixed singularities of C
and C 0 are at worst isolated singularities. Then by Theorem 11, [4], they have
respective fundamental cycles ½C� and ½C 0�. Here X ¼ ðX0;X1;X2Þ are homo-
geneous coordinates of P2. Assume that C VC 0 V fX0 ¼ 0g ¼ j. We consider
the a‰ne space C2 with coordinates z1 ¼ X1=X0 and z2 ¼ X2=X0 respectively and
put

f ðz; zÞ :¼ F ð1; z1; z2; 1; z1; z2Þ; gðz; zÞ :¼ Gð1; z1; z2; 1; z1; z2Þ
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respectively. Let C VC 0 ¼ fP1; . . . ;Pmg. Then by Theorem 11, [4], the funda-
mental classes ½C�, ½C 0� of C, C 0 exist and they satisfy, in H2ðP2Þ

½C� ¼ d½P1�; ½C 0� ¼ d 0½P1�

where ½P1� is the homology class corresponding to the fundamental class of the
complex line P1 HP2. Thus we have the equality ½C� � ½C 0� ¼ dd 0. Now we
have the equality:

Theorem 9.

Xm

j¼1

ItopðC;C 0;PjÞ ¼ dd 0:

Example 10. Consider the special case:

C : z1 ¼ 0; C 0 : gðz; zÞ ¼ 2z1 þ z1z1 þ z2z2 ¼ 0:

Then ~CC is the projective line z1 ¼ 0 of degree 1 and ~CC 0 is the mixed curve
of polar degree 0 which is defined by GðZ;ZÞ ¼ 2Z0Z1 þ Z1Z1 þ Z2Z2 ¼ 0.
Actually C 0 is a 2 dimensional sphere

C 0 : y1 ¼ 0; ðx1 þ 1Þ2 þ x2
2 þ y22 ¼ 1

and it has a mixed singular point ð�1; 0Þ. We see that ~CC V ~CC 0 ¼ fð1 : 0 : 0Þg
and ~CC � ~CC 0 ¼ 0. This implies IðC;C 0; ð0; 0ÞÞ ¼ 0. In fact, consider the bifurca-
tion Ct ¼ fz1 � t ¼ 0g. It is easy to see that Ct VC 0 ¼ j if t > 0. For t < 0
small, the intersection Ct VC 0 is a circle.

3.3.1. Remark. 1. Twisted line. The singular locus of a mixed curve can
be non-isolated, even if we assume that it does not have any real codimension 1
components.

Consider the curve f ðz; zÞ ¼ z1 � z2. Then C is a smooth real two-plane
and ~CC is defined by F ¼ Z1Z0 � Z0Z2 ¼ 0. We call C (and ~CC) a twisted line.
Let CHP2 be the topological closure. The complex line at infinity Ly is
defined by Z0 ¼ 0. To see more details about the structure of these mixed
curves, we consider the coordinate chart U2 ¼ fZ2 0 0g with complex coordinates
ðu0; u1Þ ¼ ðZ0=Z2;Z1=Z2Þ. Then ~CC VU2 is defined by

f2ðu0; u1Þ ¼ u1u0 � u0 ¼ 0:ð5Þ
We observe that

(a) ~CC ¼ Ly UC and S :¼ Ly VC is a circle defined by Ly V fjZ1=Z2j ¼ 1g.
This follows from (5), as ju1j ¼ 1.

(b) The singular locus of ~CC is equal to S. Using the coordinates ðu0; u1Þ
on U2, S is defined by ju1j ¼ 1 on Ly ¼ fu0 ¼ 0g. As a 1-cycle, we orient
it counterclockwise. Inside the circle S (i.e., ju1j < 1), the orientation is the
same with the disk D :¼ fu1 A C j ju1j < 1g. Outside fju1j > 1g of S, the orien-
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tation is opposite to the complex structure with coordinates u1. The singular
locus can be computed by the Jacobian matrix of ð f2R; f2I Þ or by Proposition 1,
[3]

(c) Let U0 ¼ fZ0 0 0g. In this coordinate, p : C ! C, pðz1; z2Þ ¼ z2 is an
orientation preserving di¤eomorphism. The circle SR :¼ fjz2j ¼ Rg converges to
�2S when R ! y.

Proof. To see this, consider the large circle SR parametrized by z1 ¼ Re�iy,
z2 ¼ Reiy, 0a ya 2p. In the chart U2, this corresponds to

u0ðyÞ ¼
1

R
e�iy; u1ðyÞ ¼ z1=z2 ¼ e�2iy: r

In [4], we have observed that there exists a fundamental class ½D� A H2ðDÞ
for any mixed projective curve D with at most isolated mixed singularities. Our
curve ~CC has non-isolated singularities along S. However we claim that

Claim 11. ~CC has a fundamental class.

To see this, triangulate ~CC so that S is a union of 1-simplices. Then the sum
o of all two simplices with positive orientation in Ly satisfies qo ¼ 2S by the
observation (b). The sum s of 2 simplices in C satisfies qs ¼ �2S as we have
observed in (c). Thus oþ s is a cycle and it gives the fundamental class.

2. It is possible that a projective mixed curve D with at most isolated
singularities may have some 0-dimensional components. The fundamental class
½D� A H2ðDÞ is the sum of 2 simplices with positive orientation under a trian-
gulation where singular points are vertices.

Problem 12. Assume that a projective mixed curve C has at most 1
dimensional singular locus. Does C have always a fundamental class as above?

3.3.2. Remark on complex analytic cases. Assume that C and C 0 are
complex analytic curves. Assume first that P ¼ ða; bÞ A C VC 0 is a transverse
intersection where C, C 0 are non-singular. Let J be the complex Jacobian
matrix at P

J ¼ det

qf

qz1
ða; bÞ qf

qz2
ða; bÞ

qg

qz1
ða; bÞ qg

qz2
ða; bÞ

0
BB@

1
CCA

Then using the Cauchy-Riemann equality, we can easily show that

det
qð fR; fI ; gR; gI Þ
qðx1; y1; x2; y2Þ

ða; bÞ ¼ jJj2 > 0:
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This implies that the local intersection number is 1 if the intersection is trans-
versal at a regular point P. For a generic case, we have

ItopðC;C 0;PÞ ¼ dimC OP=ð f ; gÞ ¼ IðC;C 0;PÞ A N

where IðC;C 0;PÞ is the algebraic local intersection multiplicity and ð f ; gÞ is the
ideal generated by f , g.

4. Multiplicity with sign

In this section, we consider the special case that C : f̂f ðz; zÞ ¼ 0 is a mixed
curve and C 0 is a complex line in C2. So z ¼ ðz1; z2Þ A C2 and we assume that
g :¼ z2 and f̂f jz2¼0 is a mixed polynomial of one complex variable, z1. Put

f :¼ f̂f jz2¼0. Suppose that a A C is an isolated mixed root of f ðz1; z1Þ ¼ 0, i.e.,
f ða; aÞ ¼ 0 and f ðz1; z1Þ0 0 for any su‰ciently near z1 0 a. For a positive
number e > 0, we put

S1
e ðaÞ :¼ fz1 A C j jz1 � aj ¼ eg:

We define the multiplicity with sign of the root z1 ¼ a by the mapping degree of
the normalized function

f =j f j : S1
e ðaÞ ! S1; z 7! f ðz1; z1Þ=j f ðz1; z1Þ:

for a su‰ciently small e and we denote the multiplicity with sign by msðf ; aÞ.
The mapping degree msðf ; aÞ is also called the rotation number. We claim

Lemma 13. Let f , f̂f be as above. Let gðz; zÞ ¼ z2. Let C ¼ f f̂f ðz; zÞ ¼ 0g
and C 0 ¼ fz2 ¼ 0g. Let a A C be a root of f and let âa ¼ ða; 0Þ. Then
âa A Vð f̂f ; gÞ and ItopðC;C 0; âaÞ ¼ msðf ; aÞ.

Proof. We use the notations:

DeðaÞ :¼ fz j jz� aja eg; S1
e ðaÞ ¼ qDeðaÞ;

De :¼ Deð0Þ; S1
e :¼ S1

e ð0Þ:

Put ftðz; zÞ ¼ f ðz1; z1Þ þ tð f̂f ðz; zÞ � f ðz1; z1ÞÞ. Note that f1 ¼ f̂f , f0 ¼ f . Take
a positive number e1 small enough so that 0 is the unique root of f ðz1; z1Þ ¼ 0
in De1ðaÞ. Then take 0 < e2 f e1 so that ft is non-zero on S1

e1
ðaÞ �De2 , that

is, ftðz; zÞ0 0 if jz1 � aj ¼ e1, jz2ja e2. For the calculation of the mapping
degree of the normalization c of ð f̂fR; f̂fI ; gR; gI Þ, we can use the boundary of
qðDe1ðaÞ �De2Þ instead of the sphere S3

e ðâaÞ. We use the Mayer-Vietoris exact
sequence of qðDe1ðaÞ �De2Þ associated with the decomposition fDe1ðaÞ � S1

e2
;

S1
e1
ðaÞ �De2Þ. Then we have the following commutative diagram where the

horizontal arrows are isomorphisms.
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H3ðqðDe1ðaÞ �De2ÞÞ ���!d H2ðS1
e1
ðaÞ � S1

e2
Þ???yc�

???yc 0
�1

H3ðqðDeðaÞ �De2ÞÞ ����!d H2ðS1
e1
ðaÞ � S1

e2
Þ

The right vertical map c 0
�1 is induced by f̂f ¼ f1 and f1 is homotopic to f0 ¼ f .

Therefore c 0
�1 coincides with ðe1 f =j f jÞ� � id. The homotopy is given by the

normalization of ð ftðz; zÞ; gðz; zÞÞ. Here the normalization c� of ftðz; zÞ is
defined by c�ðz; zÞ ¼ âaþ ftðz; zÞl where l is the unique positive number so
that the right hand side is in qðDeðaÞ �De2Þ. Thus we get

ItopðC;C 0; âaÞ ¼ mapping degree of c�

¼ mapping degree of ðe1 f =j f jÞ� ¼ msðf ; aÞ: r

We define the total multiplicity with sign by the sum of msðf ; aÞ for all
a A Vð f Þ where Vð f Þ ¼ fa A C j f ða; aÞ ¼ 0g and denote it by ms; totðfÞ ¼P

a AVðfÞ msðf ; aÞ. Note that msðf ; aÞ and ms; totðfÞ is not necessarily positive
and it can be any integer.

4.1. A criterion for the positivity. Let us study some details for a simple
root a A Vð f Þ. First f ðz1; z1Þ can be written as a polynomial of w1, w1 with
w1 ¼ z1 � a by the substitution faðw1; w1Þ :¼ f ðw1 þ a; w1 þ aÞ. Put a :¼
qf

qz1
ða; aÞ and b :¼ qf

qz1
ða; aÞ. This implies that Lðw1; w1Þ ¼ aw1 þ bw1 is the

linear term of faðw1; w1Þ. Put

a ¼ a1 þ a2i; b ¼ b1 þ b2i; a ¼ a1 þ a2i; a1; a2; b1; b2; a1; a2 A R:

Then the expansions of the real polynomials fR, fI in two real variables
ðxa; yaÞ :¼ ðx� a1; y� a2Þ are given as follows:

fRðxa; yaÞ ¼ <f ðw1 þ a; w1 þ aÞ
¼ ða1 þ b1Þxa þ ð�a2 þ b2Þya þ ðhigher termsÞ

fI ðxa; yaÞ ¼ =f ðw1 þ a; w1 þ aÞ
¼ ða2 þ b2Þxa þ ða1 � b1Þya þ ðhigher termsÞ:

Thus we observe that

det
qð fR; fI Þ
qðx; yÞ ða1; a2Þ

� �
¼ a1 þ b1 �a2 þ b2

a2 þ b2 a1 � b1

� �����
����

¼ ða21 þ a22Þ � ðb21 þ b22Þ ¼ jaj2 � jbj2:
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Definition 14. We say that a is a positive simple root if a is a mixed-
regular point for f and msðf ; aÞ > 0 which is equivalent to

det
qð fR; fI Þ
qðx; yÞ ða1; a2Þ

� �
> 0

Similarly a is a negative simple root if a is a mixed-regular point for f and
msðf ; aÞ < 0. This is equivalent to

det
qð fR; fI Þ
qðx; yÞ ða1; a2Þ

� �
< 0:

Thus we have the criterion:

Proposition 15. (1) Assume that a is a mixed regular root of f . Then a is
a positive (resp. negative) simple root if and only if jaj > jbj. That is,

msðf ; aÞ ¼ 1 , qf

qz1
ða; aÞ

����
����> qf

qz1
ða; aÞ

����
����

msðf ; aÞ ¼ �1 , qf

qz1
ða; aÞ

����
����< qf

qz1
ða; aÞ

����
����

(2) If
qf

qz1
ða; aÞ

����
����¼ qf

qz1
ða; aÞ

����
����, a is a mixed singularity of f .

4.2. Bifurcation. Suppose that 0 is an isolated root of a mixed poly-
nomial f ðu; uÞ. Consider a bifurcation family ftðu; uÞ ¼ 0 and let fP1ðtÞ; . . . ;
PnðtÞg be the roots of ftðu; uÞ ¼ 0 which are bifurcating from u ¼ 0. Then we
have

Proposition 16.
Pn

i¼1 msðf t;PiðtÞÞ ¼ msðf ; 0Þ. In particular, if the roots
PiðtÞ are simple, msðf ; 0Þ is equal to the di¤erence of the number of positive
roots and the negative roots.

The proof is similar with that of Theorem 4. Note that n depends on the
chosen bifurcation.

Example 17. 1. Let f ðu; uÞ ¼ u2u. It is easy to see that u ¼ 0 is a
non-simple singularity and msðf ; 0Þ ¼ 1. (For a complex polynomial singular-
ity, msðf ; 0Þ ¼ 1 implies that 0 is a simple root.) Consider two bifurcation
families:

ftðu; uÞ ¼ ðu2 � tÞu; gsðu; uÞ ¼ uðuuþ sÞ for t; sb 0:

Note that ft ¼ 0 has two positive roots u ¼G
ffiffi
t

p
and a negative root u ¼ 0.

gs ¼ 0 has only one positive root u ¼ 0 for s > 0.
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Assertion 18. Let f ðu; uÞ ¼ un þ uþ u for any nb 2. Then u ¼ 0 is a
mixed singular root of f and

msðf ; 0Þ ¼
1 n : even

�1 n1 3 mod 4

1 n1 1 mod 4

8<
:

For the proof see the Appendix (§4.4.4).

4.3. Admissible mixed polynomial and the main theorem. We consider a
mixed polynomial f ðu; uÞ ¼

P
n;m cn;uu

num of one variable u. The maximal degree
of f is defined by d ¼ maxfnþ m j cn;m00g. We denote d ¼ dð f Þ. Similarly we
define the minimal degree of f at the origin by d :¼ minfnþ m j cn;m0 0g and we
denote d ¼ dð f Þ. Note that the minimal degree is a local invariant but the
maximal degree is a global invariant. That is, dð f Þ is invariant under the
change of coordinate v ¼ cðu� aÞ, a A C, c A C� and dð f Þ is invariant under a
local change of coordinates u 7! u 0 ¼ cu, c A C�.

For a positive integer l, we put

flðu; uÞ :¼
X
nþm¼l

cn;mu
num:

Then we can write

f ðu; uÞ ¼ f
d
ðu; uÞ þ f

d�1
ðu; uÞ þ � � � þ fdþ1ðu; uÞ þ fdðu; uÞ

¼ f
d
ðu; uÞ þ kðu; uÞ;

¼ fdðu; uÞ þ jðu; uÞ

with dðkÞ < d and dð jÞ > d. Note that we have a unique factorization of f
d
and

fd as follows.

f
d
ðu; uÞ ¼ cupuq

Ys
j¼1

ðuþ gjuÞ
nj ; pþ qþ

Xs

j¼1

nj ¼ d; c A C�ð6Þ

fdðu; uÞ ¼ c 0uaub
Ys 0
j¼1

ðuþ djuÞmj ; aþ bþ
Xs 0
j¼1

mj ¼ d; c 0 A C�ð7Þ

where g1; . . . ; gs (respectively d1; . . . ; ds 0 ) are mutually distinct non-zero complex
numbers. We say that f is admissible at infinity (respectively admissible at the
origin) if jgjj0 1 for j ¼ 1; . . . ; s (resp. jdjj0 1, j ¼ 1; . . . ; s 0). For non-zero
complex number x, we put

eðxÞ ¼
1 jxj < 1

0 jxj ¼ 1

�1 jxj > 1

8<
:
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and we consider the following integers:

bð f Þ :¼ p� qþ
Xs

j¼1

eðgjÞnj ; rð f ; 0Þ :¼ a� bþ
Xs 0
j¼1

eðdjÞmj:

Remark 19. Assume that f is not admissible at infinity and assume jg1j ¼ 1
for example. Put g1 ¼ expðiy1Þ. Then f

d
vanishes at u ¼ R expðiy1=2Þ for any

R > 0. Thus the behavior of f on the big circle juj ¼ R is not controlled by the
highest term f

d
. The same reason can be applied for fd for a small circle juj ¼ r

with rf 1, if there exists some j such that jdjj ¼ 1.

Our main result is the following.

Theorem 20. (1) Assume that f ðu; uÞ is an admissible mixed polynomial at
infinity. Then ms; totðfÞ ¼ bðfÞ.

(2) Assume that f ðu; uÞ is an admissible mixed polynomial at the origin.
Then msðf ; 0Þ ¼ rðf ; 0Þ.

Proof. Put d ¼ dð f Þ and assume that f
d
is factored as in (6). In the case

s ¼ 0, the proof is the same with that of Theorem 11, [4]. In the general case,
we first assume that

jg1ja � � �a jglj < 1 < jglþ1ja � � � a jgsj:

Let R be a positive number. First we observe that for any u A S1
R,

j f
d
ðu; uÞj ¼ jcjRd

Yl
j¼1

j1þ gju=uj
nj

Ys
j¼lþ1

ju=uþ gj j
nj

b jcjRd
Yl
j¼1

ð1� jgjjÞ
nj

Ys
j¼lþ1

ðjgjj � 1Þnj

bMRd

for some positive constant M > 0. We can choose a su‰ciently large R > 0 so
that

j f
d
ðu; uÞj > 2jkðu; uÞj; Eu; jujbR:

The rest of the argument is exactly the same as the proof of Theorem 11, [4].
Let Vð f Þ ¼ fa1; . . . ; amg and take a small positive number e so that DeðajÞVVð f Þ
¼ fajg where DeðaÞ :¼ fu j ju� aja eg. First, as f =j f j : S1

R ! S1 is extended to
DRðOÞn6m

i¼1
DeðajÞ, we have

mapping degree ð f =j f j : S1
R ! S1Þ ¼

Xm
j¼1

msðf ; ajÞ:
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To compute the mapping degree f =j f j : S1
R ! S1, we consider the family of

polynomials f ðu; u; tÞ :¼ f
d
ðu; uÞ þ ð1� tÞkðu; uÞ. This family is non-vanishing

on S1
R. Note that f ðu; u; 0Þ ¼ f ðu; uÞ and f ðu; u; 1Þ ¼ f

d
ðu; uÞ. As f =j f jF

f
d
=j f

d
j on S1

R, we have

Xm
j¼1

msðf ; ajÞ ¼ mapping degree of f =j f j : S1
R ! S1

¼ mapping degree of f
d
=j f

d
j:

Now we will show that the mapping degree of f
d
=j f

d
j is equal to the integer

bð f Þ. For this purpose, we write f
d
as

f
d
ðu; uÞ ¼ u p̂puq̂q

Yl
j¼1

1þ gj
u

u

� �nj Ys
k¼lþ1

u

u
þ gj

� �nk

where p̂p ¼ pþ
Xl

j¼1

nj ; q̂q ¼ qþ
Xs

j¼lþ1

nj:

Note that

bð f Þ ¼ p̂p� q̂q ¼ p� qþ
Xl

j¼1

nj �
Xs

j¼lþ1

nj

in the above notation. We observe that

1þ gj
u

u
A Djgj jð1Þ; 1a ja l; u A S1

R

u

u
þ gk A D1ðgkÞ; lþ 1a ka s; u A S1

R

where DeðhÞ ¼ fz A C j jz� hj < eg. It is easy to observe that

0 B Djgj jð1Þ ð ja lÞ; 0 B D1ðgkÞ ðkb lþ 1Þ:

Consider the family of polynomials

f
d
ðu; u; tÞ :¼ up̂puq̂q

Ys
j¼1

1þ tgj
u

u

� �nj Ys
k¼sþ1

t
u

u
þ gj

� �nk

; 0a ta 1:

Note that f
d
ðu; u; 1Þ ¼ f

d
ðu; uÞ and f

d
ðu; u; 0Þ ¼ u p̂puq̂q. As f

d
ðu; u; tÞ, 0a ta 1

give a homotopy on S1
R, the assertion follows from the fact that the mapping

degree of u p̂puq̂q is bð f Þ. This proves the first assertion (1).
The second assertion (2) is proved by the same argument:
– Take a su‰ciently small r > 0 so that

j fdðu; uÞjb 2j jðu; uÞj; Eu; juja r

where f ¼ fd þ j.
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– Observe that the homotopy f ðu; u; tÞ ¼ fdðu; uÞ þ tjðu; uÞ, 0a ta 1 is non-
vanishing on the circle S1

r .
– The normalization fd=j fd j of fdðu; u; 0Þ is homotopic to that of urð f ;0Þ.

r

4.4. Compactification

4.4.1. Generic line at infinity and a generic a‰ne chart. Let FðzÞ be a
strongly polar homogeneous polynomial of two variables z ¼ ðz0; z1Þ of radial
and polar degree d and q. We can write 2r ¼ d � q for some integer rb 0.
Then F is a linear combination of monomials znzm such that jnj þ jmj ¼ d and
jnj � jmj ¼ q. Assume that z0 ¼ 0 is generic so that this line does not contain any

root of F ¼ 0. This implies that F has a monomial za1z
b
1 where a ¼ d þ q

2
,

b ¼ d � q

2
. Then in the a‰ne coordinate z0 0 0 with the coordinate u ¼ z1=z0,

the mixed polynomial f ðu; uÞ ¼ F ð1; u; 1; uÞ can be written as

f ðu; uÞ ¼ cuaub þ
X
a;b

ca;bu
aub; c0 0; 0a a < a; 0a b < b:

Note also that Fðz; zÞ ¼ za0z
b
0 f ðz1=z0; z1=z0Þ and

fdðu; uÞ ¼ cuqþrur; f ¼ fd þ ðlower termsÞ; u ¼ z1=z0:

In this case, we have that ms; totðfÞ ¼ q in Theorem 11, [4]. Thus Theorem 11 [4]
is a special case of Theorem 20.

4.4.2. Polar homogeneous compactification. We consider now the oppo-
site situation. Suppose that we are given a mixed polynomial f ðu; uÞ ¼P

n;m cn;mu
num. Let d ¼ deg f and put

dþ ¼ maxfn j cn;m 0 0g; d� ¼ maxfm j cn;m 0 0g:
Define

Fðz0; z1; z0; z1Þ :¼ z
dþ
0 zd�0 f ðz1=z0; z1=z0Þ:

Fðz0; z1; z0; z1Þ is the mixed homogenization defined in §1. Put dh ¼ dþ þ d� and
qh ¼ dþ � d�. By the definition, we have the following assertion.

Proposition 21. Assume that f
d
ðu; uÞ be factorized as (2) and let Fðz0; z1;

z0; z1Þ be as above. F is a strongly polar homogeneous polynomial of radial degree
dh and polar degree qh and we have the inequality dh b d ¼ deg f .

(1) The equality dh ¼ d holds if and only if

p ¼ dþ; q ¼ d�; s ¼ 0:
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(2) Assume that dh > d. Then ð0 : 1Þ A VðFÞ. Namely each monomial in
Fðz0; z1; z0; z1Þ contains either z0 or z0.

4.4.3. Example. Consider the polynomial:

f ðu; uÞ ¼ u2uðu� 2uÞ þ 1:

VðkÞ consists of 4 points

u ¼G
ffiffiffiffiffiffiffiffi
1=34

p
i; G1:

The multiplicities with sign of the first two roots fG
ffiffiffiffiffiffiffiffi
1=34

p
ig are 1 and the latter

two roots fG1g are �1. This implies that ms; totðfÞ ¼ 0 as Theorem 20 asserts.
The mixed homogenization f ðz; zÞ is given by

F ðz; zÞ ¼ z21z1ðz1z0 � 2z1z0Þ þ z30z
2
0 :

We see that f ðz; zÞ is a strongly polar homogeneous polynomial of radial and
polar degrees 5 and 1 respectively. We observe that ð0 : 1Þ is on Vð f Þ and it has
multiplicity with sign 1. Now take the generic a‰ne coordinate chart U1 :¼
fz1 0 0g with the coordinate v ¼ z0=z1. Then the a‰ne equation of Vð f ÞVU1 is
given as

f 0ðvÞ ¼ v� 2vþ v3v2

and Vð f ÞVU1 consists of 5 points. Note that msðf 0; 0Þ ¼ 1.

4.4.4. Appendix: Proof of Assertion 18. Recall f ðu; uÞ ¼ un þ uþ u.
The proof follows the following observations.

1. ms; totðfÞ ¼ n by Theorem 20.
2. For any a A Vð f Þnf0g, a is a simple mixed root with msðf ; aÞ ¼ 1.
3. The number, say b, of non-zero mixed roots of f is given as follows:

b ¼
n� 1 n even

nþ 1 n1 3 mod 4

n� 1 n1 1 mod 4

8<
:

Let us show the observation 2. So assume that a A Vð f Þ and a0 0. Take the
coordinate v :¼ u� a. Then

f ðvþ aÞ ¼ an þ aþ aþ nan�1vþ vþ vþ ðhigher terms in vÞ

¼ ðnan�1 þ 1Þvþ vþ ðhigher terms in vÞ

¼ �ðn� 1Þ � n
a

a

� �
vþ vþ ðhigher terms in vÞ

Now we conclude the assertion by Proposition 9 as

ðn� 1Þ � n
a

a

����
����b n� ðn� 1Þ ¼ 1
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and by the equality takes place if and only if a ¼ �a, that is a is purely
imaginary. This does not happen by the following calculation.

Now we show the observation 3. As the calculation is easy, we only show
the result. Assume f ðuÞ ¼ 0 with u0 0. Put u ¼ r expðiaÞ, 0a a < 2p in the
polar coordinates. Then we have

rn sinðnaÞ ¼ 0; rn cosðnaÞ þ 2r cosðaÞ ¼ 0:

Thus the first equality says that

na ¼ jp; j ¼ 0; . . . ; 2n� 1

The second equality has a positive solution for r if and only if cosðnaÞ cosðaÞ < 0.
This implies that a is not a pure imaginary complex number. Assume n ¼ 4k for
example. Then the solution exists for the following.

a

p
¼ f1; 3; . . . ; 2k � 1; 2k þ 2; 2k þ 4; . . . ; 6k � 2; 6k þ 1; . . . ; 8k � 1g

b ¼ 4k � 1; msðf ; 0Þ ¼ 4k� b ¼ 1

For the case n ¼ 4k þ 2,

a

p
¼ f1; 3; . . . ; 2k � 1; 2k þ 2; 2k þ 4; . . . ; 6k þ 2; 6k þ 5; . . . ; 8k þ 3g

b ¼ 4k þ 1; msðf ; 0Þ ¼ 4kþ 2� b ¼ 1

For the case n ¼ 4k � 1, we have

a

p
¼ f1; 3; . . . ; 2k � 1; 2k; 2k þ 2; . . . ; 6k � 2; 6k � 1; . . . ; 8k � 3g

b ¼ 4k; msðf ; 0Þ ¼ 4k� 1� b ¼ �1

For n ¼ 4k þ 1, we have

a

p
¼ f1; 3; . . . ; 2k � 1; 2k þ 2; 2k þ 4; . . . ; 6k; 6k þ 3; . . . ; 8k þ 1g

b ¼ 4k; msðf ; 0Þ ¼ 4kþ 1� b ¼ 1

4.5. Figure. Let us consider the case n ¼ 2, f ðuÞ ¼ u2 þ uþ u. Note that
f ðuÞ has two mixed singular points, O and P ¼ ð�2; 0Þ.

The following figures shows the trace of f ðuðyÞ; uðyÞÞ, uðyÞ ¼ r expðiyÞ,
0a ya 2p for r ¼ 3=2; 2; 3 respectively.

265intersection theory on mixed curves



Case r ¼ 3=2. The next figure (Figure 1) shows that msðf ; 0Þ ¼ 1.

Case r ¼ 2. This figure (Figure 2) corresponds to the critical case that juj ¼ 2
passes through the mixed singular point ð�2; 0Þ.

Figure 1. n ¼ 2, r ¼ 3=2

Figure 2. n ¼ 2, r ¼ 2
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Case r ¼ 3. The disk juja 3 contains a mixed singular point ð�2; 0Þ and
ms; totðfÞ ¼ 2.
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