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BI-PARACONTACT STRUCTURES AND LEGENDRE FOLIATIONS
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Abstract

We study almost bi-paracontact structures on contact manifolds. We prove that if

an almost bi-paracontact structure is defined on a contact manifold ðM; hÞ, then under

some natural assumptions of integrability M carries two transverse bi-Legendrian

structures. Conversely, if two transverse bi-Legendrian structures are defined on a

contact manifold, then M admits an almost bi-paracontact structure. We define a

canonical connection on an almost bi-paracontact manifold and we study its curvature

properties, which resemble those of the Obata connection of a para-hypercomplex (or

complex-product) manifold. Further, we prove that any contact metric manifold whose

Reeb vector field belongs to the ðk; mÞ-nullity distribution canonically carries an almost

bi-paracontact structure and we apply the previous results to the theory of contact

metric ðk; mÞ-spaces.

1. Introduction

The study of Legendre foliations on contact manifolds is very recent in
literature, being initiated in the early 90’s by the work of Libermann, Pang et alt.
(cf. [16], [22]). Lately, the notion of ‘‘bi-Legendrian’’ structure has made its
appearance, especially with regard to its applications to Cartan geometry ([17])
and Monge-Ampère equations ([20]) and to other geometric structures associated
with a contact manifold, such as paracontact metrics. In particular, in [10] the
author studied the interplays between bi-Legendrian manifolds and paracontact
geometry, whereas in [11] the theory of bi-Legendrian structures was applied for
the study of a remarkable class of contact Riemannian manifolds, namely contact
metric ðk; mÞ-spaces. We recall that a contact metric ðk; mÞ-space is a contact
Riemannian manifold ðM; f; x; h; gÞ such that the Reeb vector field x belongs to
the ðk; mÞ-nullity distribution, i.e. the following condition holds

RgðX ;YÞx ¼ kðhðYÞX � hðX ÞY Þ þ mðhðYÞhX � hðXÞhY Þ;
for some real numbers k, m and for any X ;Y A GðTMÞ, where Rg denotes the
curvature tensor field of the Levi Civita connection and 2h is the Lie derivative of
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the structure tensor f in the direction of the Reeb vector field. This definition,
which has no analogue in even dimension, was introduced by Blair, Koufor-
giorgos and Papantoniou in [4], as a generalization both of the well-known
Sasakian condition RgðX ;Y Þx ¼ hðYÞX � hðX ÞY and of those contact metric
manifolds verifying RgðX ;YÞx ¼ 0 which were studied by Blair in [2]. A notable
class of examples of contact metric ðk; mÞ-spaces is given by the tangent sphere
bundle of Riemannian manifold of constant curvature.

One of the main results in [4] was that any non-Sasakian contact metric
ðk; mÞ-space is foliated by two mutually orthogonal Legendre foliations DhðlÞ and
Dhð�lÞ, given by the eigendistributions of the symmetric operator h correspond-
ing to the eigenvalues l and �l, respectively, where l :¼

ffiffiffiffiffiffiffiffiffiffiffi
1� k

p
. Thus any

contact metric ðk; mÞ-space is canonically a bi-Legendrian manifold.
In this paper we show that this is only a part of the story. In fact we prove

that also the operator fh is diagonalizable and admits the same eigenvalues as
h. Overall, the corresponding eigendistributions DfhðlÞ and Dfhð�lÞ are inte-
grable and define two mutually orthogonal Legendre foliations, as well. Thus
any contact metric ðk; mÞ-space carries two bi-Legendrian structures and, more-
over, any foliation of each bi-Legendrian structure is transversal to the foliations
of the other one. This geometrical structure resembles the concept, in even
dimension, of 3-web ([21]) together with its closely linked tensorial notion, para-
hypercomplex or complex-product structure ([1], [15], [18]). In fact, let f1, f2, f3
denote the ð1; 1Þ-tensor fields defined by

f1 :¼
1ffiffiffiffiffiffiffiffiffiffiffi
1� k

p fh; f2 :¼
1ffiffiffiffiffiffiffiffiffiffiffi
1� k

p h; f3 :¼ f:ð1:1Þ

Then one can check that f1 and f2 are anti-commuting almost paracontact
structures on M such that f1f2 ¼ f3.

Thus we are motivated in the study of this new geometric structure, which
we call almost bi-paracontact structure. An almost bi-paracontact structure on a
contact manifold ðM; hÞ is by definition any triplet ðf1; f2; f3Þ, where f1 and f2
are anti-commuting tensor fields satisfying f2

1 ¼ f3
2 ¼ I � hn x and f3 ¼ f1f2 is

an almost contact structure on ðM; hÞ. Then one can prove that f1 and f2 are
in fact almost paracontact structures and the eigendistributions corresponding to
G1 define, under some natural assumptions, four mutually transversal Legendre
foliations.

When the structure is normal, that is when the Nijenhuis tensors of f1, f2, f3
vanish, the leaves of such foliations admit an a‰ne structure. This is due to the
existence of a unique linear connection ‘c which preserves f1, f2, f3. ‘c is called
the canonical connection of the almost bi-paracontact manifold ðM; f1; f2; f3Þ and
it can be considered, in some sense, as the odd-dimensional counterpart of the
Chern connection of an almost para-hypercomplex manifold ([18]), as well as of
the connection studied by Andrada for a complex-product manifold ([1]), and of
the Obata connection of a manifold endowed with an almost quaternion struc-
ture of the second kind ([27]). In fact we prove that in any normal almost bi-
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paracontact manifold the 1-dimensional foliation Fx defined by the Reeb vector
field is transversely para-hypercomplex, i.e. the almost bi-paracontact structure
ðf1; f2; f3Þ is projectable to a local para-hypercomplex structure on the leaf space.

We further investigate the curvature properties of this connection, proving
that, under the assumption of normality, its curvature tensor field Rc is of
type ð1; 1Þ with respect to f1, f2, f3, i.e. Rcðf1X ; f1YÞ ¼ Rcðf2X ; f2YÞ ¼
�Rcðf3X ; f3YÞ ¼ �RcðX ;YÞ for all X ;Y A GðTMÞ.

In the second part of the paper we apply our general results on almost bi-
paracontact structures to the theory of contact metric ðk; mÞ-spaces. First, we
study the bi-Legendrian structure ðDfhðlÞ;Dfhð�lÞÞ. We prove that the Legen-
dre foliations DfhðlÞ and Dfhð�lÞ are either non-degenerate or flat, according to
the Pang’s classification of Legendre foliations (cf. [22]). In particular, DfhðlÞ
and Dfhð�lÞ are positive definite if and only if IM > 0, negative definite if and
only if IM < 0, flat if and only if IM ¼ 0, where

IM :¼
1� m

2ffiffiffiffiffiffiffiffiffiffiffi
1� k

p

is the invariant introduced by Boeckx for classifying contact metric ðk; mÞ-
structures. This provides a new geometrical interpretation of such invariant
in terms of Legendre foliations (another one was given in [11]).

Then we consider the almost bi-paracontact structure ðf1; f2; f3Þ defined by
(1.1) and prove that the semi-Riemannian metrics g1 and g2, given by

g1 :¼ dhð�; f1�Þ þ hn h; g2 :¼ dhð�; f2�Þ þ hn h;

define two associated paracontact metrics satisfying

RgaðX ;Y Þx ¼ kaðhðYÞX � hðXÞY Þ þ maðhðYÞhaX � hðXÞhaY Þ
where

k1 ¼ 1� m

2

� �2
� 1; m1 ¼ 2ð1�

ffiffiffiffiffiffiffiffiffiffiffi
1� k

p
Þ;

k2 ¼ k� 2þ 1� m

2

� �2
; m2 ¼ 2:

Mreover, IM ¼ 0 if and only if ðf1; x; h; g1Þ is para-Sasakian. Furthermore, we
prove that any contact metric ðk; mÞ-space such that IM 0G1 admits a supple-
mentary non-normal almost bi-paracontact structure, although one of the two
paracontact structures is normal (cf. Theorem 5.14). In this way we obtain a class
of examples of strictly non-normal, integrable almost bi-paracontact structures.

Finally, we deal with the following question, which generalizes the well-
known problem of finding conditions ensuring the existence of Sasakian structures
compatible with a given contact form: let ðM; hÞ be a contact manifold; then does
ðM; hÞ admit a compatible contact metric ðk; mÞ-structure? As a matter of fact,
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the answer to this question involves the standard almost bi-paracontact structure
(1.1) of contact metric ðk; mÞ-spaces. In particular, using the properties of the
canonical connection ‘c, we find necessary conditions for a contact manifold
ðM; hÞ endowed with an almost bi-paracontact structure to admit a compatible
contact metric ðk; mÞ-structure (cf. Theorem 5.13).

2. Preliminaries

2.1. Almost contact and paracontact structures. A contact manifold is a
ð2nþ 1Þ-dimensional smooth manifold M which carries a 1-form h, called contact
form, satisfying the condition h5ðdhÞn 0 0 everywhere on M. It is well known
that given h there exists a unique vector field x, called Reeb vector field, such that

ixh ¼ 1; ix dh ¼ 0:ð2:1Þ

From (2.1) it follows that Lx dh ¼ 0, i.e. the 1-dimensional foliation Fx defined
by the Reeb vector field is transversely symplectic. In the sequel we will denote
by D the 2n-dimensional distribution defined by kerðhÞ, called the contact distri-
bution. It is easy to see that the Reeb vector field is an infinitesimal auto-
morphism with respect to the contact distribution and the tangent bundle of M
splits as the direct sum TM ¼ DlRx.

Given a contact manifold ðM; hÞ one can consider two di¤erent geometric
structures associated with the contact form h, namely a ‘‘contact metric structure’’
and a ‘‘paracontact metric structure’’.

An almost contact structure on a ð2nþ 1Þ-dimensional smooth manifold M is
nothing but a triplet ðf; x; hÞ, where f is a tensor field of type ð1; 1Þ, h a 1-form
and x a vector field on M satisfying the following conditions

f2 ¼ �I þ hn x; hðxÞ ¼ 1;ð2:2Þ

where I is the identity mapping. From (2.2) it follows that fx ¼ 0, h � f ¼ 0 and
the ð1; 1Þ-tensor field f has constant rank 2n ([3]). Given an almost contact
manifold ðM; f; x; hÞ one can define an almost complex structure J on the

product M � R by setting J X ; f
d

dt

� �
¼ fX � f x; hðX Þ d

dt

� �
for any X A GðTMÞ

and f A CyðM � RÞ. Then the almost contact manifold is said to be normal if
the almost complex structure J is integrable. The computation of the Nijenhuis
tensor of J gives rise to the four tensors defined by

N
ð1Þ
f ðX ;Y Þ ¼ ½f; f�ðX ;Y Þ þ 2 dhðX ;Y Þx;ð2:3Þ

N
ð2Þ
f ðX ;Y Þ ¼ ðLfXhÞðYÞ � ðLfYhÞðX Þ;ð2:4Þ

N
ð3Þ
f ðXÞ ¼ ðLxfÞX ;ð2:5Þ

N ð4ÞðXÞ ¼ ðLxhÞðXÞ;ð2:6Þ
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where ½f; f� is the Nijenhuis tensor of f, defined by

½f; f�ðX ;Y Þ :¼ f2½X ;Y � þ ½fX ; fY � � f½fX ;Y � � f½X ; fY �;

and LX denotes the Lie derivative with respect to the vector field X . One finds
that the structure ðf; x; hÞ is normal if and only if N

ð1Þ
f vanishes identically; in

particular, if N
ð1Þ
f ¼ 0 then also the other tensors N

ð2Þ
f , N

ð3Þ
f and N

ð4Þ
f vanish (cf.

[24]). By a long but straightforward computation one can prove the following
lemma which will turn out very useful in the sequel.

Lemma 2.1. In any almost contact manifold ðM; f; x; hÞ for any X ;Y A
GðTMÞ,

fN
ð1Þ
f ðX ;YÞ þN

ð1Þ
f ðfX ;Y Þ ¼ N

ð2Þ
f ðX ;Y Þxþ hðX ÞN ð3Þ

f ðYÞ:ð2:7Þ

Any almost contact manifold ðM; f; x; hÞ admits a compatible metric, i.e. a
Riemannian metric g satisfying

gðfX ; fY Þ ¼ gðX ;Y Þ � hðX ÞhðY Þð2:8Þ
for all X ;Y A GðTMÞ. The manifold M is said to be an almost contact metric
manifold with structure ðf; x; h; gÞ. From (2.8) it follows immediately that
h ¼ gð�; xÞ and gð�; f�Þ ¼ �gðf�; �Þ. Then one defines the 2-form F on M by
FðX ;YÞ ¼ gðX ; fYÞ, called the fundamental 2-form of the almost contact metric
manifold. If F ¼ dh then h becomes a contact form, with x its corresponding
Reeb vector field, and ðM; f; x; h; gÞ is called contact metric manifold.

In a contact metric manifold one has

‘gx ¼ �f� fhð2:9Þ

N
ð1Þ
f ðX ;Y Þ ¼ ð‘g

fXfÞY � ð‘g
fYfÞX þ ð‘g

XfÞfYð2:10Þ

� ð‘g
YfÞfX � hðYÞ‘g

Xxþ hðX Þ‘g
Yx

where ‘g is the Levi Civita connection of ðM; gÞ and h :¼ 1
2N

ð3Þ
f . The tensor

field h is symmetric with respect to g and vanishes identically if and only if the
Reeb vector field is Killing, and in this case the contact metric manifold is said to
be K-contact. A normal contact metric manifold is called Sasakian manifold.
Any Sasakian manifold is also K-contact and the converse holds only in dimen-
sion 3. A contact metric manifold is said to be integrable if and only if the
following condition is fulfilled

ð‘g
XfÞY ¼ gðX þ hX ;YÞx� hðYÞðX þ hX Þ:ð2:11Þ

Any Sasakian manifold satisfies such condition. By replacing (2.11) and (2.9) in
(2.10) one can prove the following

Proposition 2.2. In an integrable contact metric manifold

N
ð1Þ
f ðX ;Y Þ ¼ 2ðhðYÞfhX � hðXÞfhY Þ:ð2:12Þ
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Corollary 2.3. Any integrable K-contact manifold is Sasakian.

On the other hand on a contact manifold ðM; hÞ one can consider also
compatible paracontact metric structures. We recall (cf. [14]) that an almost
paracontact structure on a ð2nþ 1Þ-dimensional smooth manifold M is given by
a ð1; 1Þ-tensor field ~ff, a vector field x and a 1-form h satisfying the following
conditions

(i) hðxÞ ¼ 1, ~ff2 ¼ I � hn x,
(ii) the tensor field ~ff induces an almost paracomplex structure on each fibre

on D ¼ kerðhÞ.
Recall that an almost paracomplex structure on a 2n-dimensional smooth manifold
is a tensor field ~JJ of type ð1; 1Þ such that ~JJ0 I , ~JJ 2 ¼ I and the eigendistributions
Tþ, T� corresponding to the eigenvalues 1, �1 of ~JJ, respectively, have dimension
n.

As an immediate consequence of the definition one has that ~ffx ¼ 0, h � ~ff ¼ 0
and the field of endomorphisms ~ff has constant rank 2n. As for the almost
contact case, one can consider the almost paracomplex structure on M � R

defined by ~JJ X ; f
d

dt

� �
¼ ~ffX þ f x; hðXÞ d

dt

� �
, where X is a vector field on M

and f a Cy function on M � R. By definition, if ~JJ is integrable, the almost
paracontact structure ð ~ff; x; hÞ is said to be normal. The computation of ~JJ in
terms of the tensors of the almost paracontact structure leads us to define four
tensors

N
ð1Þ
~ff
ðX ;Y Þ ¼ ½ ~ff; ~ff�ðX ;Y Þ � 2 dhðX ;Y Þx;ð2:13Þ

N
ð2Þ
~ff
ðX ;Y Þ ¼ ðL~ffXhÞðYÞ � ðL~ffYhÞðX Þ;ð2:14Þ

N
ð3Þ
~ff
ðXÞ ¼ ðLx

~ffÞX ;ð2:15Þ

N ð4ÞðXÞ ¼ ðLxhÞðXÞ;ð2:16Þ

The almost paracontact structure is then normal if and only if these four ten-
sors vanish. However, as it is shown in [28], the vanishing of N

ð1Þ
~ff

implies the
vanishing of the remaining tensors.

Any almost paracontact manifold admits a semi-Riemannian metric ~gg such
that

~ggð ~ffX ; ~ffYÞ ¼ �~ggðX ;Y Þ þ hðXÞhðY Þð2:17Þ
for all X ;Y A GðTMÞ. Then ðM; ~ff; x; h; ~ggÞ is called an almost paracontact met-
ric manifold. Notice that any such a semi-Riemannian metric is necessarily of
signature ðnþ 1; nÞ. Moreover, as in the almost contact case, from (2.17) it follows
easily that h ¼ gð�; xÞ and ~ggð�; ~ff�Þ ¼ �~ggð ~ff�; �Þ. Hence one defines the fundamental
2-form of the almost paracontact metric manifold by ~FFðX ;Y Þ ¼ ~ggðX ; ~ffYÞ. If
dh ¼ ~FF, h becomes a contact form and ðM; ~ff; x; h; ~ggÞ is said to be a paracontact
metric manifold.
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On a paracontact metric manifold ðM; ~ff; x; h; ~ggÞ one has

‘ ~ggx ¼ � ~ffþ ~ff~hhð2:18Þ

N
ð1Þ
~ff
ðX ;YÞ ¼ ð‘ ~gg

~ffX
~ffÞY � ð‘ ~gg

~ffY
~ffÞX þ ð‘ ~gg

X
~ffÞ ~ffYð2:19Þ

� ð‘ ~gg
Y
~ffÞ ~ffX þ hðY Þ‘ ~gg

Xx� hðXÞ‘ ~gg
Yx

where ~hh :¼ 1
2N

ð3Þ
~ff
. One proves (see [28]) that ~hh is symmetric with respect to ~gg

and ~hh vanishes identically if and only if x is a Killing vector field and in such case
ðM; ~ff; x; h; ~ggÞ is called a K-paracontact manifold. By using (2.18) one can prove
(cf. [12]) the formula

R~ggðX ;YÞx ¼ �ð‘ ~gg
X
~ffÞY þ ð‘ ~gg

Y
~ffÞX þ ð‘ ~gg

X
~ffÞ~hhYð2:20Þ

þ ~ffðð‘ ~gg
X
~hhÞYÞ � ð‘ ~gg

Y
~ffÞ~hhX � ~ffðð‘ ~gg

Y
~hhÞXÞ:

A normal paracontact metric manifold is said to be a para-Sasakian manifold.
Also in this context the para-Sasakian condition implies the K-paracontact
condition and the converse holds in dimension 3. In terms of the covariant
derivative of ~ff the para-Sasakian condition may be expressed by

ð‘ ~gg
X
~ffÞY ¼ �~ggðX ;YÞxþ hðYÞX :ð2:21Þ

In any paracontact metric manifold Zamkovoy introduced a canonical con-
nection which plays the same role in paracontact geometry of the generalized
Tanaka-Webster connection ([25]) in a contact metric manifold. In fact the fol-
lowing result holds.

Theorem 2.4 ([28]). On a paracontact metric manifold there exists a unique
connection ‘pc, called the canonical paracontact connection, satisfying the fol-
lowing properties:

(i) ‘pch ¼ 0, ‘pcx ¼ 0, ‘pc~gg ¼ 0,

(ii) ð‘pc
X
~ffÞY ¼ ð‘ ~gg

X
~ffÞY � hðY ÞðX � ~hhXÞ þ ~ggðX � ~hhX ;Y Þx,

(iii) T pcðx; ~ffY Þ ¼ � ~ff ~TT pcðx;YÞ,
(iv) T pcðX ;Y Þ ¼ 2 dhðX ;YÞx for all X ;Y A GðDÞ.

The explicit expression of this connection is the following

‘
pc
X Y ¼ ‘

~gg
XY þ hðX Þ ~ffY þ hðY Þð ~ffX � ~ff~hhXÞ þ ~ggðX � ~hhX ; ~ffYÞx:ð2:22Þ

Moreover, the torsion tensor field is given by

T pcðX ;Y Þ ¼ hðXÞ ~ff~hhY � hðYÞ ~ff~hhX þ 2~ggðX ; ~ffYÞx:ð2:23Þ

If the paracontact metric connection preserves the structure tensor ~ff, that is
the Levi Civita connection satisfies

ð‘ ~gg
X
~ffÞY ¼ hðYÞðX � ~hhXÞ � ~ggðX � ~hhX ;YÞxð2:24Þ
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for any X ;Y A GðTMÞ, then the paracontact metric structure ð ~ff; x; h; ~ggÞ is said to
be integrable. This is the case, in particular, when the eigendistributions TG of
~ff associated to the eigenvalues G1 are involutive. Moreover, from (2.24) and
(2.21) it follows that any para-Sasakian manifold is integrable. By replacing (2.24)
and (2.18) in (2.19) one can straightforwardly prove the following proposition.

Proposition 2.5. In an integrable paracontact metric manifold

N
ð1Þ
~ff
ðX ;YÞ ¼ 2ðhðYÞ ~ff~hhX � hðXÞ ~ff~hhYÞ:ð2:25Þ

Corollary 2.6. Any integrable K-paracontact manifold is para-Sasakian.

2.2. Bi-Legendrian manifolds. Let ðM; hÞ be a ð2nþ 1Þ-dimensional con-
tact manifold. It is well known that the contact condition h5ðdhÞn 0 0 geo-
metrically means that the contact distribution D is as far as possible from being
integrable. In fact one can prove that the maximal dimension of an involutive
subbundle of D is n. Such n-dimensional integrable distributions are called
Legendre foliations of ðM; hÞ. More generally a Legendre distribution on a con-
tact manifold ðM; hÞ is an n-dimensional subbundle L of the contact distribution
not necessarily integrable but verifying the weaker condition that dhðX ;X 0Þ ¼ 0
for all X ;X 0 A GðLÞ. The theory of Legendre foliations has been extensively
investigated in recent years from various points of views. In particular Pang
([22]) provided a classification of Legendre foliations by using a bilinear sym-
metric form PF on the tangent bundle of the foliation F, defined by

PFðX ;X 0Þ ¼ �ðLXLX 0hÞðxÞ ¼ 2 dhð½x;X �;X 0Þ:ð2:26Þ

He called a Legendre foliation positive (negative) definite, non-degenerate, degen-
erate or flat according to the circumstance that the bilinear form PF is positive
(negative) definite, non-degenerate, degenerate or vanishes identically, respec-
tively. By (2.26) it follows that F is flat if and only if x is ‘‘foliate’’, i.e.
½x;X � A GðTFÞ for any X A GðTFÞ.

If ðM; hÞ is endowed with two transversal Legendre distributions L1 and L2,
we say that ðM; h;L1;L2Þ is an almost bi-Legendrian manifold. Thus, in par-
ticular, the tangent bundle of M splits up as the direct sum TM ¼ L1 lL2 lRx.
When both L1 and L2 are integrable we refer to a bi-Legendrian manifold. An
(almost) bi-Legendrian manifold is said to be flat, degenerate or non-degenerate if
and only if both the Legendre distributions are flat, degenerate or non-degenerate,
respectively. Any contact manifold ðM; hÞ endowed with a Legendre distribu-
tion L admits a canonical almost bi-Legendrian structure. Indeed let ðf; x; h; gÞ
be a compatible contact metric structure. Then the relation dhðfX ; fY Þ ¼
FðfX ; fY Þ ¼ dhðX ;YÞ easily implies that Q :¼ fL is a Legendre distribution
on M which is g-orthogonal to L. Q is usually referred as the conjugate
Legendre distribution of L and in general is not involutive, even if L is. In [7]
the existence of a canonical connection on an almost bi-Legendrian manifold has
been proven:
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Theorem 2.7 ([7]). Let ðM; h;L1;L2Þ be an almost bi-Legendrian manifold.
There exists a unique linear connection ‘bl called the bi-Legendrian connection,
satisfying the following properties:

(i) ‘blL1 HL1, ‘blL2 HL2,
(ii) ‘blx ¼ 0, ‘bl dh ¼ 0,
(iii) T blðX ;YÞ ¼ 2 dhðX ;Y Þx for all X A GðL1Þ, Y A GðL2Þ, T blðX ; xÞ ¼

½x;XL1
�L2

þ ½x;XL2
�L1

for all X A GðTMÞ,
where XL1

and XL2
denote the projections of X onto the subbundles L1 and L2

of TM, respectively. Furthermore, the torsion tensor field T bl of ‘bl is explicitly
given by

T blðX ;Y Þ ¼ �½XL1
;YL1

�L2lRx � ½XL2
;YL2

�L1lRx þ 2 dhðX ;Y Þxð2:27Þ

þ hðYÞð½x;XL1
�L2

þ ½x;XL2
�L1

Þ � hðXÞð½x;YL1
�L2

þ ½x;YL2
�L1

Þ:

In [10] the interplays between paracontact geometry and the theory of bi-
Legendrian structures have been studied. More precisely it has been proven the
existence of a biunivocal correspondence C : B ! P between the set B of almost
bi-Legendrian structures and the set P of paracontact metric structures on the
same contact manifold ðM; hÞ. This bijection maps bi-Legendrian structures
onto integrable paracontact structures, flat almost bi-Legendrian structures onto
K-paracontact structures and flat bi-Legendrian structures onto para-Sasakian
structures. For the convenience of the reader we recall more explicitly how
the above biunivocal correspondence is defined. If ðL1;L2Þ is an almost bi-
Legendrian structure on ðM; hÞ, the corresponding paracontact metric structure
ð ~ff; x; h; ~ggÞ ¼ CðL1;L2Þ is given by

~ffjL1
¼ I ; ~ffjL2

¼ �I ; ~ffx ¼ 0; ~gg :¼ dhð�; ~ff�Þ þ hn h:ð2:28Þ
Moreover, the relationship between the bi-Legendrian and the canonical para-
contact connections has been investigated, proving that in the integrable case they
in fact coincide:

Theorem 2.8 ([10]). Let ðM; h;L1;L2Þ be an almost bi-Legendrian manifold
and let ð ~ff; x; h; ~ggÞ ¼ CðL1;L2Þ be the paracontact metric structure induced on M
by (2.28). Let ‘bl and ‘pc be the corresponding bi-Legendrian and canonical
paracontact connections. Then

(a) ‘bl ~ff ¼ 0, ‘bl ~gg ¼ 0,
(b) the bi-Legendrian and the canonical paracontact connections coincide if

and only if the induced paracontact metric structure is integrable.

3. Almost bi-paracontact structures on contact manifolds

Definition 3.1. Let ðM; hÞ be a contact manifold. An almost bi-
paracontact structure on ðM; hÞ is a triplet ðf1; f2; f3Þ where f3 is an almost
contact structure compatible with h, and f1, f2 are two anti-commuting tensors
on M such that f2

1 ¼ f2
2 ¼ I � hn x and f1f2 ¼ f3.
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The manifold M endowed with such a geometrical structure is called an
almost bi-paracontact manifold. From the definition it easily follows that f1f3 ¼
�f3f1 ¼ f2 and f3f2 ¼ �f2f3 ¼ f1.

For each a A f1; 2; 3g let Dþ
a and D�

a denote the eigendistributions of
fa corresponding, respectively, to the eigenvalues 1 and �1. Notice that, as
fax ¼ 0, Dþ

a and D�
a are in fact subbundles of the contact distribution. In the

following proposition we collect some properties of those distributions.

Proposition 3.2. Let ðM; h; f1; f2; f3Þ be an almost bi-paracontact manifold.
Then

1. f1ðDþ
2 Þ ¼ D�

2 , f1ðD�
2 Þ ¼ Dþ

2 ,

2. f2ðDþ
1 Þ ¼ D�

1 , f2ðD�
1 Þ ¼ Dþ

1 ,

3. f3ðDþ
a Þ ¼ D�

a , f3ðD�
a Þ ¼ Dþ

a for each a A f1; 2g,
4. f1 : D

þ
2 ! D�

2 and f2 : D
þ
1 ! D�

1 are isomorphisms,
5. the tangent bundle of M splits up as the direct sum TM ¼ Dþ

a lD�
a l

Rx ¼ DG
a lDG

b lRx for all a; b A f1; 2g, a0 b,

6. dimðDþ
1 Þ ¼ dimðD�

1 Þ ¼ dimðDþ
2 Þ ¼ dimðD�

2 Þ ¼ n. In particular, f1 and
f2 are almost paracontact structures.

Proof. For any X A GðDþ
2 Þ one has f2f1X ¼ �f1f2X ¼ �f1X , so that

f1ðDþ
2 ÞHD�

2 . On the other hand, let Y be a vector field tangent to D�
2 and

set X :¼ f1Y . Then f1X ¼ f2
1Y ¼ Y , so that it remains only to prove that

X A GðDþ
2 Þ. Indeed, f2X ¼ f2f1Y ¼ �f1f2Y ¼ f1Y ¼ X . Thus f1ðDþ

2 Þ ¼ D�
2

and analogously one can prove that f1ðD�
2 Þ ¼ Dþ

2 . In a similar way one proves
the other identities, as well as the fourth property. In order to prove the fifth
property it is enough to show that D ¼ Dþ

a lD�
a ¼ DG

a lDG
b for all a; b A f1; 2g.

Let us consider the case a ¼ 1. Then we can decompose every X A GðDÞ as X ¼
1
2 ðX � f1X Þ þ 1

2 ðX þ f1X Þ. An immediate computation shows that 1
2 ðX � f1X Þ

A D�
1 and 1

2 ðX þ f1X Þ A Dþ
1 . Next, if X A Dþ

1 VD�
1 then f1X ¼ X ¼ �f1X ,

from which it follows that f2
1X ¼ �f2

1X , hence X ¼ 0. Thus D ¼ Dþ
1 lD�

1 .
In a similar way one can prove that D ¼ Dþ

2 lD�
2 . Now we prove the identity

D ¼ Dþ
1 lDþ

2 . If X A Dþ
1 VDþ

2 then f1X ¼ X ¼ f2X , hence X ¼ f1f2X ¼ f3X
and this implies that X ¼ 0. On the other hand, note that from 4, since D ¼
Dþ

a lD�
a , a A f1; 2g, it follows that, for each a A f1; 2g, dimðDþ

a Þ ¼ dimðD�
a Þ ¼ n.

Hence dimðDþ
1 þDþ

2 Þ ¼ 2n and we conclude that D ¼ Dþ
1 lDþ

2 . The other
identities can be proven similarly. r

Proposition 3.3. In any almost bi-paracontact manifold one has
DG

1 ¼ fX þ f3X jX A DG
2 g and DG

2 ¼ fX þ f3X jX A DH
1 g.

Proof. We show that Dþ
1 ¼ fX þ f3X jX A Dþ

2 g by proving the two in-
clusions. Let Y A Dþ

1 . We have to prove the existence of X A Dþ
2 such that

Y ¼ X þ f3X . We put X :¼ 1
2 ðY � f3Y Þ. Firstly we verify that in fact X A Dþ

2 .
We have f2X ¼ 1

2 ðf2Y � f2f3YÞ ¼ 1
2 ðf2Y þ f1YÞ ¼ 1

2 ðf2Y þ YÞ ¼ 1
2 ðY þ f2f1Y Þ
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¼ 1
2 ðY � f1f2YÞ ¼ X , hence X A Dþ

2 . Next, one can easily check that Y ¼
X þ f3X . Conversely, let X be a vector field belonging to Dþ

2 . Then
f1ðX þ f3X Þ ¼ f1X þ f1f3X ¼ f1X þ f2X ¼ f3f2X þ X ¼ f3X þ X , so that
X þ f3X A Dþ

1 . In a similar manner one can prove the other equality. r

Example 3.4. Consider R2nþ1 with global coordinates fx1; . . . ; xn; y1; . . . ;
yn; zg and the standard contact form h ¼ dz�

Pn
i¼1 yi dxi. Put, for each i A

f1; . . . ; ng, Xi :¼
q

qyi
and Yi :¼

q

qxi
þ yi

q

qz
. Then the contact distribution D is

spanned by the vector fields X1; . . . ;Xn, Y1; . . . ;Yn. We define three tensor fields
f1, f2, f3 by setting

f1Xi :¼ Xi; f1Yi :¼ �Yi; f1x :¼ 0;

f2Xi :¼ �Yi; f2Yi :¼ �Xi; f2x :¼ 0;

f3Xi :¼ Yi; f3Yi :¼ �Xi; f3x :¼ 0;

for all i A f1; . . . ; ng. Some straightforward computations show that ðf1; f2; f3Þ
defines a bi-paracontact structure on the contact manifold ðR2nþ1; hÞ. In this
case the canonical distributions Dþ

1 , D�
1 , Dþ

2 , D�
2 are given by

Dþ
1 ¼ spanfX1; . . . ;Xng; D�

1 ¼ spanfY1; . . . ;Yng;
Dþ

2 ¼ spanfX1 � Y1; . . . ;Xn � Yng; D�
2 ¼ spanfX1 þ Y1; . . . ;Xn þ Yng:

In order to find some more examples we prove the following proposition.

Proposition 3.5. Let ðM; f; x; h; gÞ be a contact metric manifold endowed
with a Legendre distribution L. Then M admits a canonical almost bi-paracontact
structure.

Proof. Let Q be the conjugate Legendre distribution of L, i.e. the Legendre
distribution on M defined by Q :¼ fðLÞ (see §2.2). We define the ð1; 1Þ-tensor
field c on M by setting cjL ¼ I , cjQ ¼ �I , cx ¼ 0. Then if we put f1 :¼ fc,
f2 :¼ c, f3 :¼ f, it is not di‰cult to check that ðf1; f2; f3Þ is in fact an almost bi-
paracontact structure on ðM; hÞ. r

As a consequence of Proposition 3.5 we obtain a canonical almost bi-
paracontact structure on the cotangent sphere bundle of a Riemannian mani-
fold ðM; gÞ and on any contact metric ðk; mÞ-space ([4]). We will examine
carefully this last example in the last section of the paper.

Definition 3.6. An almost bi-paracontact structure such that DG
1 and

DG
2 are Legendre distributions is called a Legendrian bi-paracontact structure. If

DG
1 and DG

2 define Legendre foliations of ðM; hÞ then the almost bi-paracontact
structure is called integrable.
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We present some characterizations of the integrability of an almost bi-
paracontact manifold.

Proposition 3.7. An almost bi-paracontact structure ðf1; f2; f3Þ is Legen-
drian if and only if for each a A f1; 2g the tensor field N

ð2Þ
fa

vanishes identically.
Furtheremore, in any Legendrian almost bi-paracontact structure also the tensor
field N

ð2Þ
f3

vanishes identically. In particular, one has, for any X ;Y A GðTMÞ,

dhðf1X ; f1YÞ ¼ dhðf2X ; f2Y Þ ¼ �dhðf3X ; f3YÞ ¼ �dhðX ;Y Þð3:1Þ

Proof. First of all we have, for all X A GðDÞ, N ð2Þ
fa

ðx;X Þ ¼ �hð½x; faX �Þ ¼
2 dhðx; faXÞ ¼ 0 by (2.1). Next, in order to prove that N

ð2Þ
fa

vanishes on D, we

distinguish the cases X ;Y A GðDþ
a Þ, X ;Y A GðD�

a Þ and X A GðDG
a Þ, Y A GðDH

a Þ.
In the first case we have N

ð2Þ
fa

ðX ;Y Þ ¼ faXðhðYÞÞ � hð½faX ;Y �Þ � faY ðhðX ÞÞþ
hð½faY ;X �Þ ¼ 2 dhðfaX ;Y Þ þ 2 dhðX ; faYÞ ¼ 4 dhðX ;Y Þ ¼ 0, where the last
equality is due to the fact that Dþ

a is a Legendre distribution. The case
X ;Y A GðD�

a Þ is similar. Next, for any X A GðDG
a Þ, Y A GðDH

a Þ, we have

N
ð2Þ
fa

ðX ;Y Þ ¼ �hð½faX ;Y �Þ þ hð½faY ;X �Þ ¼ Hhð½X ;Y �Þ G hð½X ;Y �Þ ¼ 0. Con-

versely, if N
ð2Þ
a 1 0 then, for any X ;Y A GðDþ

a Þ, 0 ¼ N
ð2Þ
a ðX ;YÞ ¼ 2 dhðfaX ;Y Þþ

2hðX ; faYÞ ¼ 4 dhðX ;YÞ, so that dhðX ;Y Þ ¼ 0. Consequently, as, by Proposi-
tion 3.2, Dþ

a is n-dimensional, it is a Legendre distribution. In a similar way
one can prove that also D�

a is a Legendre distribution. In order to prove the
second part of the proposition, notice that since N

ð2Þ
f1

and N
ð2Þ
f2

vanish, for each

a A f1; 2g, dhðfa�; �Þ ¼ �dhð�; fa�Þ. Now, for any X ;Y A GðTMÞ, dhðf3X ;YÞ ¼
dhðf1f2X ;YÞ ¼ �dhðf2X ; f1YÞ ¼ dhðX ; f2f1YÞ ¼ �dhðX ; f3YÞ. Hence,

N
ð2Þ
f3

ðX ;YÞ ¼ f3XðhðY ÞÞ � hð½f3X ;Y �Þ � f3Y ðhðX ÞÞ þ hð½f3Y ;X �Þ

¼ 2 dhðf3X ;YÞ � 2 dhðf3Y ;X Þ ¼ 0: r

Proposition 3.8. An almost bi-paracontact structure ðf1; f2; f3Þ is Legen-
drian (respectively, integrable) if and only if, for each a A f1; 2g, N

ð1Þ
fa

ðX ;X 0Þ A
GðDH

a Þ (respectively, N
ð1Þ
fa

ðX ;X 0Þ ¼ 0) for any X ;X 0 A GðDG
a Þ.

Proof. By (2.13) we have, for any X ;X 0 A GðDþ
a Þ,

N
ð1Þ
fa

ðX ;X 0Þ ¼ ½X ;X � þ ½X ;X � � fa½X ;X 0� � fa½X ;X 0�ð3:2Þ

¼ 2½X ;X 0� � 2fa½X ;X 0�:

Hence, applying fa one obtains

faN
ð1Þ
fa

ðX ;X 0Þ ¼ 2fa½X ;X 0� � 2½X ;X 0� þ 2hð½X ;X 0�Þxð3:3Þ

¼ �N
ð1Þ
fa

ðX ;X 0Þ � 4 dhðX ;X 0Þx
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Then (3.3) implies that dhðX ;X 0Þ ¼ 0 if and only if N
ð1Þ
fa

ðX ;X 0Þ A GðD�
a Þ and

(3.2) that Dþ
a is involutive if and only if N

ð1Þ
fa

ðX ;X 0Þ ¼ 0. Analogous arguments
work for D�

a . r

Corollary 3.9. An almost bi-paracontact structure ðf1; f2; f3Þ is integrable

if and only if the tensor fields N
ð1Þ
f1

, N
ð1Þ
f2

vanish on the contact distribution D.
Furthermore, in an integrable almost bi-paracontact manifold also the tensor field
N

ð1Þ
f3

vanishes on D.

Proof. The proof is trivial in one direction. Conversely, notice that,
for any X A GðDþ

a Þ, Y A GðD�
a Þ, N

ð1Þ
fa

ðX ;Y Þ ¼ ½X ;Y � þ ½X ;�Y � � fa½X ;Y � �
fa½X ;�Y � ¼ 0. Then by Proposition 3.8 we have that N

ð1Þ
f1

and N
ð1Þ
f2

vanish on

D. Now for ending the proof it remains to demonstrate that if N
ð1Þ
f1

and N
ð1Þ
f2

vanish on D then also N
ð1Þ
f3

vanishes on D. Let X , X 0 be sections of Dþ
1 . By

Proposition 3.2, f2X and f2X
0 are sections of D�

1 . Then the integrability of Dþ
1

and D�
1 yields

0 ¼ f1N
ð1Þ
f2

ðX ;X 0Þð3:4Þ

¼ f1½X ;X 0� þ f1½f2X ; f2X
0� � f3½f2X ;X 0� � f3½X ; f2X

0�
¼ ½X ;X 0� � ½f2X ; f2X

0� � f3½f2X ;X 0� � f3½X ; f2X
0�:

Using (3.4) we have that

N
ð1Þ
f3

ðX ;X 0Þ ¼ �½X ;X 0� þ ½f3f1X ; f3f1X
0� � f3½f3f1X ;X 0� � f3½X ; f3f1X

0�

¼ �½X ;X 0� þ ½f2X ; f2X
0� þ f3½f2X ;X 0� þ f3½X ; f2X

0� ¼ 0:

Arguing in the same way one can prove that N
ð1Þ
f3

ðY ;Y 0Þ ¼ 0 for all Y ;Y 0 A

GðD�
1 Þ. Next, for any X A GðDþ

1 Þ and X A GðD�
1 Þ, by (2.7) we get

f3N
ð1Þ
f3

ðX ;YÞ ¼ �N
ð1Þ
f3

ðf3X ;YÞ þ 2ðdhðf3X ;Y Þ þ dhðX ; f3Y ÞÞx ¼ 0;

because f3D
G
1 ¼ DH and by (3.1). On the other hand, since the almost bi-

paracontact structure ðf1; f2; f3Þ is integrable, in particular Legendrian,

hðN ð1Þ
f3

ðX ;Y ÞÞ ¼ �hð½X ;Y �Þ þ hð½f3X ; f3Y �Þ ¼ N
ð2Þ
f3

ðX ; f3Y Þ ¼ 0 by Proposition

3.7. Therefore, as D ¼ Dþ
1 lD�

1 , we conclude that N
ð1Þ
f3

ðZ;Z 0Þ ¼ 0 for any
Z;Z 0 A GðDÞ. r

A notion stronger than integrability is that of ‘‘normal almost bi-paracontact
structure’’.

Definition 3.10. Let ðM; h; f1; f2; f3Þ be an almost bi-paracontact man-
ifold. If the almost paracontact structures ðf1; x; hÞ, ðf2; x; hÞ and the almost

contact structure ðf3; x; hÞ are normal, i.e. N
ð1Þ
fa

¼ 0 for each a A f1; 2; 3g,
ðf1; f2; f3Þ is called a normal almost bi-paracontact structure.
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By arguing as in Corollary 3.9 one can prove that if N
ð1Þ
f1

and N
ð1Þ
f2

vanish

identically, then also N
ð1Þ
f3

¼ 0 and the almost bi-paracontact structure is normal.

Moreover, since, for each a A f1; 2g and any X A GðDÞ, N ð1Þ
fa

ðx;XÞ ¼ N
ð3Þ
fa

ðfaX Þ,
using Corollary 3.9 one can prove the following proposition.

Proposition 3.11. An almost bi-paracontact structure is normal if and only
if it is integrable and N

ð3Þ
f1

and N
ð3Þ
f2

vanish identically.

As a consequence we are able to give a geometrical interpretation to nor-
mality in terms of Legendre foliations.

Corollary 3.12. An almost bi-paracontact structure is normal if and only,
for each a A f1; 2g, both Dþ

a and D�
a are flat Legendre foliations.

Proof. Taking the definition of N
ð3Þ
fa

into account, one can easily prove that

x is foliate with respect both to Dþ
a and D�

a if and only if N
ð3Þ
fa

¼ 0. Then the
assertion follows from this remark and Proposition 3.11. r

Thus we have seen that, under some natural assumptions, an almost bi-
paracontact structure on a contact manifold gives rise to a pair of transverse
(almost) bi-Legendrian structures ðDþ

1 ;D
�
1 Þ and ðDþ

2 ;D
�
2 Þ. Conversely we have

the following result.

Proposition 3.13. Let ðL;QÞ and ðL 0;Q 0Þ be two transverse almost bi-
Legendrian structures on the contact manifold ðM; hÞ. Then there exists a Legen-
drian almost bi-paracontact structure ðf1; f2; f3Þ such that L, Q and L 0, Q 0 are,
respectively, the eigendistributions of f1 and f2.

Proof. We define f1jL ¼ I , f1jQ ¼ �I , f1x ¼ 0 and f2jL 0 ¼ I , f2jQ 0 ¼ �I ,

f2x ¼ 0. Then we set f3 :¼ f1f2. One can easily check that ðf1; f2; f3Þ is in
fact an almost bi-paracontact structure on ðM; hÞ such that, by construction,
Dþ

1 ¼ L, D�
1 ¼ Q and Dþ

2 ¼ L 0, D�
2 ¼ Q 0. In particular, ðf1; f2; f3Þ is Legen-

drian and it is integrable if and only if L, Q, L 0, Q 0 are involutive. r

4. Canonical connections on bi-paracontact manifolds

In this section we attach to any almost bi-paracontact manifold some canon-
ical connections and then we study their nice properties. To this end, we prove
the following preliminary lemma.

Lemma 4.1. Let ðf1; f2; f3Þ be an almost bi-paracontact structure on the
contact manifold ðM; hÞ. For each a A f1; 2; 3g let ha be the operator defined by

ha :¼ 1
2Lxfa ¼ 1

2N
ð3Þ
fa

. Then
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(a) hafa ¼ �faha for each a A f1; 2; 3g,
(b) f1h2 þ h1f2 ¼ h3 ¼ �h2f1 � f2h1, f1h3 þ h1f3 ¼ h2 ¼ �h3f1 � f3h1,

f2h3 þ h2f3 ¼ �h1 ¼ �h3f2 � f3h2.

Proof. (a) Let us assume that a A f1; 2g. Then ðLxfaÞ � fa þ fa � ðLxfaÞ
¼ Lxðf2

aÞ ¼ LxðI � hn xÞ ¼ �ðLxhÞn x� hn ðLxxÞ ¼ 0, since Lxh ¼ ix dhþ
dixh ¼ 0 by (2.1). Thus ha � fa ¼ �fa � ha. The case a ¼ 3 is similar.

(b) 2h3 ¼ Lxf3 ¼ Lxðf1f2Þ ¼ ðLxf1Þf2 þ f1ðLxf2Þ ¼ 2h1f2 þ 2f1h2. The
other equalities can be proved in a similar way. r

Theorem 4.2. Let ðf1; f2; f3Þ be an almost bi-paracontact structure on the
contact manifold ðM; hÞ. For each a A f1; 2; 3g there exists a unique linear con-
nection ‘a on M satisfying the following properties:

(i) ‘ax ¼ 0,
(ii) ‘1f1 ¼ 0, ‘1f2 ¼ hn ð2h2 � h1f3 þ f3h1Þ, ‘1f3 ¼ hn ð2h3 � h1f2 þ

f2h1Þ, ‘2f1 ¼ hn ð2h1 þ h2f3 � f3h2Þ, ‘2f2 ¼ 0, ‘2f3 ¼ hn ð2h3 þ
h2f1 � f1h2Þ, ‘3f1 ¼ hn ð2h1 � h3f2 þ f2h3Þ, ‘3f2 ¼ hn ð2h2 þ h3f1 �
f1h3Þ, ‘3f3 ¼ 0,

(iii) T aðfaX ;YÞ � T aðX ; faY Þ ¼ 2ðdhðfaX ;Y Þ � dhðX ; faY ÞÞxþ hðYÞhaX þ
hðXÞhaY for any X ;Y A GðTMÞ,

where T a denotes the torsion tensor field of ‘a. ‘1, ‘2, ‘3 are explicitly given by

‘1
XY ¼ 1

4
ð½X ;Y � � ½f1X ; f1Y � þ f1½X ; f1Y � � f1½f1X ;Y � þ f2½X ; f2Y �ð4:1Þ

� f3½X ; f3Y � þ f3½f1X ; f2Y � � f2½f1X ; f3Y �
þ 2hðXÞð�h1f1Y þ h2f2Y � h3f3YÞ þ 2hðYÞh1f1X
� hð½X ;Y �Þxþ hð½f1X ; f1Y �ÞxÞ þ XðhðYÞÞx;

‘2
XY ¼ 1

4
ð½X ;Y � � ½f2X ; f2Y � þ f2½X ; f2Y � � f2½f2X ;Y � þ f1½X ; f1Y �ð4:2Þ

� f3½X ; f3Y � � f3½f2X ; f1Y � þ f1½f2X ; f3Y �
þ 2hðXÞðh1f1Y � h2f2Y � h3f3Y Þ þ 2hðY Þh2f2X
� hð½X ;Y �Þxþ hð½f2X ; f2Y �ÞxÞ þ XðhðYÞÞx;

‘3
XY ¼ 1

4
ð½X ;Y � þ ½f3X ; f3Y � þ f1½X ; f1Y � þ f2½X ; f2Y � � f3½X ; f3Y �ð4:3Þ

þ f3½f3X ;Y � þ f2½f3X ; f1Y � � f1½f3X ; f2Y �
þ 2hðXÞðh1f1Y þ h2f2Y þ h3f3Y Þ � 2hðY Þh3f3X
� hð½X ;Y �Þx� hð½f3X ; f3Y �ÞxÞ þ XðhðYÞÞx:

Proof. First of all we prove the uniqueness. Fix an a A f1; 2; 3g and
suppose that ‘ and ‘ 0 are two linear connections satisfying (i), (ii) and (iii). Let
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us define the tensor A :¼ ‘� ‘ 0. For any X ;Y A GðDÞ, since both ‘ and ‘ 0

preserve the almost bi-paracontact structure, one has

AðX ; fbYÞ ¼ fbAðX ;YÞð4:4Þ
for each b A f1; 2; 3g. Because of (i), we have AðX ; xÞ ¼ 0 for all X A GðTMÞ.
Next, for all Y A GðDÞ,

Aðx;YÞ ¼ ‘xY � ‘ 0
xY

¼ ‘Yxþ Tðx;Y Þ þ ½x;Y � � ‘ 0
Yx� T 0ðx;YÞ � ½x;Y �

¼ eðTðx; f2
aY Þ � T 0ðx; f2

aYÞÞ

¼ eðTðfax; faY Þ � 2ðdhðfax; faY Þ � dhðx; f2
aYÞÞx� hðf2

aYÞhax

� hðxÞhaf2
aY � T 0ðfax; faYÞ þ 2ðdhðfax; faYÞ

� dhðx; f2
aY ÞÞxþ hðf2

aYÞhaxþ hðxÞhaf2
aYÞ ¼ 0;

where we have applied (ii) and (iii), and we have put e ¼ 1 if a A f1; 2g, e ¼ �1 if
a ¼ 3. Further, from (iii) it follows that TðfaX ;YÞ � TðX ; faYÞ ¼ T 0ðfaX ;Y Þ�
T 0ðX ; faYÞ, that is ‘faXY � ‘YfaX � ‘XfaY þ ‘faYX ¼ ‘ 0

faX
Y � ‘ 0

YfaX �
‘ 0
XfaY þ ‘ 0

faY
X . Consequently,

AðfaX ;YÞ � AðY ; faX Þ � AðX ; faYÞ þ AðfaY ;XÞ ¼ 0:ð4:5Þ
If in (4.5) we take X A GðDþ

a Þ and Y A GðD�
a Þ we obtain

AðX ;Y Þ ¼ AðY ;XÞ:ð4:6Þ
By virtue of (ii), for each Z A GðDÞ, ‘Z and ‘ 0

Z preserve the distributions DG
a .

Thus AðX ;Y Þ A GðD�
a Þ and AðY ;XÞ A GðDþ

a Þ. This together with (4.6) and 5.
of Proposition 3.2 imply that

AðX ;YÞ ¼ AðY ;XÞ ¼ 0:ð4:7Þ
Now let us consider X ;X 0 A GðDþ

a Þ and let b A f1; 2g, b0 a. Note that, by
1.–2. of Proposition 3.2, fbX

0 A GðD�
a Þ. Then, by (4.4) and (4.7), AðX ;X 0Þ ¼

AðX ; f2
bX

0Þ ¼ fbAðX ; fbX
0Þ ¼ 0. In a similar way one can prove that AðX 0;X Þ

¼ 0. Thus the tensor A vanishes identically and so ‘ and ‘ 0 coincide.
In order to prove the existence, for each a A f1; 2; 3g, of a connection ‘a

satisfying (i), (ii), (iii), we distinguish the cases a A f1; 2g and a ¼ 3. Let us
consider a A f1; 2g. First of all, we put, by definition, ‘ax :¼ 0. Next, notice
that by (iii) we have that T aðfaX ; xÞ ¼ haX , for all X A GðTMÞ. In particular,

for any X A GðDÞ, T aðX ; xÞ ¼ Tðf2
aX ; xÞ ¼ hafaX . It follows that necessarily

‘a
xX ¼ �hafaX þ ½x;X �ð4:8Þ

for all X A GðDÞ. In particular,

‘a
xX ¼

½x;X �Dþ
a
; if X A GðDþ

a Þ;
½x;X �D�

a
; if X A GðD�

a Þ:

(
ð4:9Þ
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Further, for any X A GðDþ
a Þ and Y A GðD�

a Þ,

T aðX ;YÞ ¼ T aðfaX ;Y Þ
¼ T aðX ; faY Þ þ 2ðdhðfaX ;YÞ � dhðX ; faYÞÞx
¼ �T aðX ;Y Þ þ 4 dhðX ;YÞx;

from which it follows that T aðX ;Y Þ ¼ 2 dhðX ;Y Þx. Hence, 2 dhðX ;Y Þx ¼
‘a
XY � ‘a

YX � ½X ;Y �Dþ
a
� ½X ;Y �D�

a
� hð½X ;Y �Þx, that is

‘a
XY � ½X ;Y �D�

a
¼ ‘a

YX � ½X ;Y �Dþ
a
:ð4:10Þ

Since, due to (ii), ‘a
XY A GðD�

a Þ and ‘a
YX A GðDþ

a Þ, both the sides of (4.10) must
vanish and we conclude that

‘a
XY ¼ ½X ;Y �D�

a
; ‘a

YX ¼ ½Y ;X �Dþ
a
:ð4:11Þ

Moreover, taking 1.–2. of Proposition 3.2 into account, for any X ;X 0 A GðDþ
a Þ

we have

‘a
XX

0 ¼ ‘a
Xf

2
bX

0 ¼ fb‘
a
XfbX

0 ¼ fb½X ; fbX
0�D�

a
ð4:12Þ
and, for any Y ;Y 0 A GðD�

a Þ,
‘a
YY

0 ¼ ‘a
Yf

2
bY

0 ¼ fb‘
a
YfbY

0 ¼ fb½Y ; fbY
0�Dþ

a
;ð4:13Þ

where b A f1; 2g, b0 a. Now we decompose any X ;Y A GðTMÞ as X ¼ Xþ þ
X� þ hðXÞx and Y ¼ Yþ þ Y� þ hðYÞx, where Xþ, Yþ and X�, Y� denote the
projections onto the subbundles Dþ

a and D�
a of TM, respectively. Then by

(4.10), (4.11), (4.12) and (4.13) we get

‘a
XY ¼ fb½Xþ; faYþ�D�

a
þ ½Xþ;Y��D�

a
þ ½X�;Yþ�Dþ

a
þ fb½X�; faY��Dþ

a
ð4:14Þ

þ XðhðYÞÞxþ hðXÞ½x;Yþ�Dþ
a
þ hðX Þ½x;Y��D�

a
:

Notice that, as one can easily check,

Xþ ¼ 1

2
ðX þ faX � hðXÞxÞ; X� ¼ 1

2
ðX � faX � hðX ÞxÞ:ð4:15Þ

Then, applying (4.15) to (4.14), after some very long but straightforward compu-
tations, we get

‘a
XY ¼ X ðhðYÞÞxþ 1

4
ð½X ;Y � � ½faX ; faY � � fa½faX ;Y � þ fa½X ; faY �ð4:16Þ

þ fb½X ; fbY � � fbfa½X ; fbfaY � � fbfa½faX ; fbY �

þ fb½faX ; fbfaY � þ hðXÞfa½x; faY � � hðYÞfa½x; faX �

� hðXÞfb½x; fbY � þ hðXÞfbfa½x; fbfaY � þ hðYÞ½x;X �

þ hðXÞ½x;Y � � hð½X ;Y �Þxþ hð½faX ; faY �Þx
� hðYÞhð½x;X �Þx� hðXÞhð½x;Y �ÞxÞ:
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Then we can take (4.16) as a definition and one can easily check that, for each
a A f1; 2g, ‘a satisfies (i), (ii) and (iii). Moreover, taking the definition of the
operators h1, h2, h3 into account, it is not di‰cult to verify that (4.16) implies
(4.1)–(4.2). It remains to prove the theorem for a ¼ 3. In that case the same
construction as for a A f1; 2g can be repeated, but now arguing on the eigendis-
tributions Dþ

3 and D�
3 of f3 corresponding to i and �i, respectively, and

replacing (4.15) with

pDþ
3
¼ 1

2
ðI � if3 � hn xÞ; pD�

3
¼ 1

2
ðI þ if3 � hn xÞ:

Then after very long computations one obtains

‘3
XY ¼ XðhðY ÞÞxþ 1

4
ð½X ;Y � þ ½f3X ; f3Y � þ f1½X ; f1Y � þ f2½X ; f2Y �

� f3½X ; f3Y � þ f3½f3X ;Y � þ f2½f3X ; f1Y � � f1½f3X ; f2Y �
� hðXÞf1½x; f1Y � þ hðYÞf3½x; f3X � � hðX Þf2½x; f2Y � � hðXÞf3½x; f3Y �

� hðYÞ½x; f2
3X � þ hðXÞ½x; f2

1Y � � hð½X ;Y �Þx� hð½f3X ; f3Y �ÞxÞ;
from which (4.3) follows. r

Proposition 4.3. The torsion tensor fields of the linear connections ‘1, ‘2,
‘3 stated in Theorem 4.2 are given by

T 1ðX ;Y Þ ¼ 1

4
ððN ð1Þ

f3
�N

ð1Þ
f2

ÞðX ;YÞ þ ðN ð1Þ
f3

�N
ð1Þ
f2

Þðf1X ; f1YÞÞð4:17Þ

þ ðdhðX ;YÞ � dhðf1X ; f1Y ÞÞx

þ 1

2
ðhðXÞð�2h1f1Y þ h2f2Y � h3f3YÞ

� hðYÞð�2h1f1X þ h2f2X � h3f3XÞÞ;

T 2ðX ;Y Þ ¼ 1

4
ððN ð1Þ

f3
�N

ð1Þ
f1

ÞðX ;YÞ þ ðN ð1Þ
f3

�N
ð1Þ
f1

Þðf2X ; f2YÞÞð4:18Þ

þ ðdhðX ;YÞ � dhðf2X ; f2Y ÞÞx

þ 1

2
ðhðXÞðh1f1Y � 2h2f2Y � h3f3Y Þ

� hðYÞðh1f1X � 2h2f2X � h3f3XÞÞ;

T 3ðX ;Y Þ ¼ � 1

4
ððN ð1Þ

f1
þN

ð1Þ
f1

ÞðX ;YÞ � ðN ð1Þ
f1

þN
ð1Þ
f2

Þðf3X ; f3YÞÞð4:19Þ

þ ðdhðX ;YÞ þ dhðf3X ; f3Y ÞÞx

þ 1

2
ðhðXÞðh1f1Y þ h2f2Y þ 2h3f3Y Þ

� hðYÞðh1f1X þ h2f2X þ 2h3f3XÞÞ:
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Proof. The proof follows from (4.1)–(4.3) by a straightforward computa-
tion. r

The connections stated in Theorem 4.2 give rise to a canonical connection on
an almost bi-paracontact manifold that can be considered as an odd-dimensional
counterpart of the Obata connection of an para-hypercomplex (or complex-
product) manifold (cf. [1], [15], [18], [23], [27]).

Theorem 4.4. Let ðM; h; f1; f2; f3Þ be an almost bi-paracontact manifold.
There exists a unique linear connection ‘c on M such that

(i) ‘cx ¼ 0,
(ii) ‘cfa ¼ 2

3 hn ha for each a A f1; 2; 3g,
(iii) T c ¼ dhþ 1

3 ð�dhðf1�; f1�Þ � dhðf2�; f2�Þ þ dhðf3�; f3�ÞÞ þ 1
6 ð�N

ð1Þ
f1

�N
ð1Þ
f2þN

ð1Þ
f3

Þ.

Proof. We first prove the uniqueness of a linear connection satisfying the
conditions (i), (ii) and (iii). Let ‘ and ‘ 0 be two linear connections satisfying (i),
(ii), (iii). Let us define the tensor A :¼ ‘� ‘ 0. Because the expressions of the
torsion tensor fields of ‘ and ‘ 0 coincide, one has immediately that AðX ;YÞ ¼
AðY ;X Þ for all X ;Y A GðTMÞ. Hence A is symmetric. Then, due to (ii), one
has AðX ; f1Y Þ ¼ f1AðX ;Y Þ ¼ f1AðY ;XÞ ¼ AðY ; f1XÞ ¼ Aðf1X ;YÞ and, analo-
gously, AðX ; f2Y Þ ¼ f2AðX ;Y Þ ¼ Aðf2X ;YÞ. Therefore

Aðf1X ; f2Y Þ ¼ f1AðX ; f2Y Þ ¼ f1f2AðX ;YÞ ¼ f3AðX ;Y Þ:ð4:20Þ

On the other hand

Aðf1X ; f2Y Þ ¼ f2Aðf1X ;Y Þ ¼ f2f1AðX ;Y Þ ¼ �f3AðX ;YÞ:ð4:21Þ

Thus comparing (4.20) and (4.21) we get f3AðX ;Y Þ ¼ �f3AðX ;Y Þ. Applying
f3 to both the sides of the previous identity we obtain

�AðX ;Y Þ þ hðAðX ;Y ÞÞx ¼ AðX ;Y Þ � hðAðX ;Y ÞÞx:ð4:22Þ

Notice that as, for each Z A GðDÞ, ‘Z and ‘ 0
Z preserve f1, they also preserve

the eigendistributions DG
1 and hence the contact distribution D ¼ Dþ

1 lD�
1 .

This implies that hðAðX ;Y ÞÞ ¼ 0 whenever X ;Y A GðDÞ. Moreover, AðX ; xÞ ¼ 0

and Aðx;YÞ ¼ Aðx; f2
1YÞ ¼ Aðf1x; f1Y Þ ¼ 0. Consequently (4.22) yields that A

is anti-symmetric. Since it is also symmetric, it necessarily vanishes identically.
This proves that ‘ ¼ ‘ 0.

In order to define a (necessarily unique) linear connection satisfying the
conditions (i), (ii), (iii), we consider the barycenter of the canonical connections
‘1, ‘2, ‘3 stated in Theorem 4.2. Thus we define, for all X ;Y A GðTMÞ,

‘c
XY :¼ 1

3
ð‘1

XY þ ‘2
XY þ ‘3

XY Þ:
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We have immediately that ‘cx ¼ 0. By the expressions in (ii) of Theorem 4.2
and by (b) of Lemma 4.1 we have

‘cf1 ¼
1

3
ð‘2f1 þ ‘3f1Þ ¼

1

3
hn ð2h1 þ h2f3 � f3h2 þ 2h1 � h3f2 þ f2h3Þ

¼ 2

3
hn h1

and, analogously, ‘cf2 ¼ 2
3 hn h2, ‘

cf3 ¼ 2
3 hn h3. Using (4.17)–(4.19) we can

easily find the expression of the torsion of ‘c:

T cðX ;YÞ ¼ T 1ðX ;Y Þ þ T 2ðX ;Y Þ þ T 3ðX ;Y Þð4:23Þ
¼ dhðX ;Y Þx

þ 1

3
ð�dhðf1X ; f1Y Þ � dhðf2X ; f2YÞ þ dhðf3X ; f3Y ÞÞx

þ 1

6
ð�N

ð1Þ
f1

ðX ;YÞ �N
ð1Þ
f2

ðX ;Y Þ þN
ð1Þ
f3

ðX ;YÞÞ: r

The unique connection ‘c stated in Theorem 4.4 will be called the canonical
connection of the almost bi-paracontact manifold ðM; h; f1; f2; f3Þ. Using (4.1)–
(4.3), after a long computation, one finds that the explicit expression of ‘c is the
following:

‘c
XY ¼ 1

12
ð3½X ;Y � � ½f1X ; f1Y � � ½f2X ; f2Y � þ ½f3X ; f3Y �

þ 3f1½X ; f1Y � þ 3f2½X ; f2Y � � 3f3½X ; f3Y � � f1½f1X ;Y �
� f2½f2X ;Y � þ f3½f3X ;Y � þ f1½f2X ; f3Y � � f1½f3X ; f2Y �
� f2½f1X ; f3Y � þ f2½f3X ; f1Y � þ f3½f1X ; f2Y � � f3½f2X ; f1Y �
þ 2hðX Þðh1f1Y þ h2f2Y � h3f3Y Þ þ 2hðY Þðh1f1X þ h2f2X � h3f3XÞ
þ ðhð½f1X ; f1Y �Þ þ hð½f2X ; f2Y �Þ � hð½f3X ; f3Y �Þ
� 3hð½X ;Y �ÞÞxÞ þ XðhðYÞÞx:

Corollary 4.5. Let ðM; h; f1; f2; f3Þ be a normal almost bi-paracontact
manifold.

1. There exists a unique linear connection ‘c on M preserving the almost bi-
paracontact structure and whose torsion is given by

T c ¼ 2 dhn x:ð4:24Þ

2. The curvature tensor field of ‘c satisfies

Rcðf1�; f1�Þ ¼ Rcðf2�; f2�Þ ¼ �Rcðf3�; f3�Þ ¼ �Rc:ð4:25Þ
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In particular, for all X A GðTMÞ

RcðX ; xÞ ¼ 0ð4:26Þ

3. The Ricci tensor of ‘c, defined as RiccðX ;YÞ :¼ traceðZ 7! RcðZ;X ÞYÞ,
is given by

RiccðX ;Y Þ ¼ � 1

2
traceðRcðX ;Y ÞÞ:ð4:27Þ

In particular, the Ricci tensor is skew-symmetric and Riccðf1�; f1�Þ ¼
Riccðf2�; f2�Þ ¼ �Riccðf3�; f3�Þ ¼ Ricc.

4. The connection ‘c and the connections ‘1, ‘2, ‘3 coincide.

Proof. 1. As in any normal almost bi-paracontact manifold the tensor fields
h1, h2, h3 vanish identically, by (ii) of Theorem 4.4, ‘c preserves the tensor fields
f1, f2, f3. Moreover, by (3.1) the expression (4.23) of the torsion simplifies in
(4.24).

2. First of all notice that, since ‘cfa ¼ 0, for each a A f1; 2; 3g we have

RcðX ;Y Þ � fa ¼ fa � RcðX ;Y Þ:ð4:28Þ

for all X ;Y A GðTMÞ. Now the Bianchi identity yields

RcðX ;YÞZ þ RcðY ;ZÞX þ RcðZ;X ÞYð4:29Þ
¼ T cðT cðX ;Y Þ;ZÞ þ ð‘c

XT
cÞðY ;ZÞ þ T cðT cðY ;ZÞ;XÞ

þ ð‘c
YT

cÞðZ;X Þ þ T cðT cðZ;XÞ;YÞ þ ð‘c
ZT

cÞðX ;YÞ:

We examine the terms in the right-hand-side of (4.29). Notice that, by (4.24),
T cðT cðX ;YÞ;ZÞ ¼ 4 dhðX ;YÞ dhðx;ZÞx ¼ 0 and

ð‘c
XT

cÞðY ;ZÞ ¼ ‘c
X ð2 dhðY ;ZÞxÞ � 2 dhð‘c

XY ;ZÞx� 2 dhðY ;‘c
XZÞx

¼ 2XðdhðY ;ZÞÞxþ 2 dhðY ;ZÞ‘c
Xx

� 2 dhð‘c
XY ;ZÞx� 2 dhðY ;‘c

XZÞx
¼ 2ð‘c

X dhÞðY ;ZÞx:

Hence (4.29) simplifies in

RcðX ;YÞZ þ RcðY ;ZÞX þ RcðZ;XÞYð4:30Þ
¼ 2ðð‘c

X dhÞðY ;ZÞ þ ð‘c
Y dhÞðZ;X Þ þ ð‘c

Z dhÞðX ;Y ÞÞx:

Now in (4.30) consider X ;Y A GðDþ
a Þ and Z A GðD�

a Þ, a A f1; 2g. Then, as ‘c

preserves the contact distribution, the left-hand-side of (4.30) is tangent to D
whereas the right-hand-side is transversal to D. Hence they both vanish. Thus,
in particular

RcðX ;YÞZ ¼ �RcðY ;ZÞX � RcðZ;X ÞY :ð4:31Þ
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But the left-hand-side of (4.31) is a section of D�
a , whereas the right-hand-side

is a section of Dþ
a . Consequently, RcðX ;YÞZ ¼ 0 for all X ;Y A GðDþ

a Þ and
Z A GðD�

a Þ. Since by Proposition 3.2, for any b0 a, fb maps D�
a onto Dþ

a ,
applying (4.28) we get that RcðX ;YÞZ ¼ 0 also for Z A GðDþ

a Þ. Moreover,
obviously, RcðX ;YÞx ¼ 0, so that we can conclude that

RcðX ;YÞ ¼ 0ð4:32Þ
for any X ;Y A GðDþ

a Þ. In a similar way one can prove that (4.32) holds for
X ;Y A GðD�

a Þ. Thus in both cases the relation RcðfaX ; faY Þ ¼ �RcðX ;Y Þ,
a A f1; 2g, is trivially satisfied. Moreover, if X A GðDþ

a Þ and Y A GðD�
a Þ,

RcðfaX ; faYÞ ¼ RcðX ;�YÞ ¼ �RcðX ;YÞ. In order to complete the proof in
the case a A f1; 2g it remains to prove that RcðX ; xÞ ¼ 0 for any X A GðDÞ. No-
tice that, as ‘cx ¼ 0 and T cðX ; xÞ ¼ 2 dhðX ; xÞ ¼ 0, ‘c

xX ¼ ½x;X �. By applying

again the Bianchi identity (4.29) we obtain, for all Z A GðDÞ,
RcðX ; xÞZ þ Rcðx;ZÞX ¼ ð‘c

xT
cÞðZ;XÞ

¼ ‘c
xðT cðZ;XÞÞ � T cð½x;Z�;X Þ � T cðZ; ½x;X �Þ

¼ 2ðLx dhÞðZ;XÞx ¼ 0:

Consequently RcðX ; xÞZ ¼ �Rcðx;ZÞX . If in the last equality we take
X A GðDþ

a Þ and Z A GðD�
a Þ, the left-hand-side is a section of D�

a while the
right-hand-side is a section of Dþ

a . Thus they both vanish and taking (4.28)
into account we conclude that RcðX ; xÞ ¼ 0 for all X A GðDÞ. Finally, for any
X ;Y A GðTMÞ, Rcðf3X ; f3YÞ ¼ Rcðf1f2X ; f1f2YÞ ¼ �Rcðf2X ; f2YÞ ¼ RcðX ;Y Þ.

3. For simplifying the notation, let rXY denote the endomorphism Z 7!
RcðZ;XÞY , so that RiccðX ;YÞ ¼ traceðrXY Þ. From (4.25) it follows immedi-
ately that rXY ðxÞ ¼ 0. Let fE1; . . . ;En;Enþ1; . . . ;E2n; xg be a local basis such
that, for each i A f1; . . . ; ng, Ei A GðDþ

1 Þ and Enþi ¼ f2Ei A GðD�
1 Þ. In order to

prove (4.27) we distinguish the cases (i) X ;Y A GðDþ
1 Þ, (ii) X ;Y A GðD�

1 Þ, (iii)
X A GðDþ

1 Þ, Y A GðD�
1 Þ, (iv) X A GðTMÞ, Y ¼ x. In the first case, due to (4.32),

rXY ðEiÞ ¼ RcðEi;XÞY ¼ 0. Moreover, rXY ðEnþiÞ ¼ RcðEnþi;XÞY A GðDþ
1 Þ so

that it has no components along the direction of Enþ1; . . . ;E2n; x. Hence
RiccðX ;Y Þ ¼ traceðrXY Þ ¼ 0. On the other hand, since RcðX ;YÞ ¼ 0, also the
right-hand-side of (4.27) vanishes. The case (ii) being analogous, we pass to
the case (iii). First of all, by (4.32), rXY ðEiÞ ¼ RcðEi;X ÞY ¼ 0. Next, by the
Bianchi identity used before,

rXY ðEnþiÞ ¼ RcðEnþi;X ÞY ¼ �RcðX ;YÞEnþi � RcðY ;EnþiÞX
¼ �RcðX ;YÞEnþi;

as RcðY ;EnþiÞ ¼ 0.
Since RcðX ;Y ÞEnþi ¼ RcðX ;YÞf1Ei ¼ f1ðRcðX ;YÞEiÞ, we conclude that

traceðrXY Þ ¼ � 1
2 trace RcðX ;YÞ. The last case is obvious since, due to (4.25),

RiccðX ; xÞ ¼ 0 ¼ � 1
2 traceðRcðX ; xÞÞ.

4. Proposition 4.3, (4.24) and the normality of the almost bi-paracontact
structure imply that T 1ðX ;YÞ ¼ T 2ðX ;YÞ ¼ T 3ðX ;YÞ ¼ 2 dhðX ;Y Þx¼ T cðX ;Y Þ
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for all X ;Y A GðTMÞ. Moreover, according to (ii) of Theorem 4.2, because of
the vanishing of the tensor fields h1, h2, h3, each connection ‘1, ‘2, ‘3 preserves
the tensor fields f1, f2, f3. Consequently, for each a A f1; 2; 3g, ‘a fulfils all the
conditions of Theorem 4.4 and hence coincides with ‘c. r

Corollary 4.6. Every normal almost bi-paracontact manifold carries four
mutually transverse Legendre foliations whose leaves are totally geodesic and admit
an a‰ne structure.

Proof. Since the almost bi-paracontact structure is normal, it is in particular
integrable, so that the eigendistributions Dþ

1 , D
�
1 , D

þ
2 , D

�
2 define four mutually

transverse Legendre foliations on the manifold. The leaves of these foliations are
auto-parallel with respect to the canonical connection ‘c, so that they are totally
geodesic. Finally, for each a A f1; 2g, for any X ;X 0 A GðDG

a Þ we have, by (4.24),
T cðX ;X 0Þ ¼ 0 and, by (4.25), RcðX ;X 0Þ ¼ 0. Thus ‘c induces a flat, torsion-
free connection on the leaves of the foliations Dþ

1 , D�
1 , Dþ

2 , D�
2 . r

We conclude the section by studying the transverse geometry of a normal
almost bi-paracontact manifold with respect to the Reeb foliation. We show in
fact that the space of leaves of a normal almost bi-paracontact manifold is para-
hypercomplex (see [13] or, with di¤erent names, [1], [15], [18] [23], [27]). We
recall that a para-hypercomplex structure on an even dimensional manifold is
given by two anti-commuting product structures I , J and a complex structure K
such that IJ ¼ K . Then one can prove that the manifold admits a canonical
connection, usually called the Obata connection, defined as the unique torsion-free
connection preserving the para-hypercomplex structure.

Theorem 4.7. Let ðM; f1; f2; f3Þ be a normal almost bi-paracontact manifold.
Then the 1-dimensional foliation defined by the Reeb vector field x is transversely
para-hypercomplex. Furthermore, the canonical connection ‘c is (locally) project-
able to the Obata connection defined on the leaf space.

Proof. First of all we have to prove that the tensor fields f1, f2, f3 are
‘‘foliated’’ objects, i.e. they are constant along the leaves of the Reeb foliation
Fx. Thus we have to show that Lxfa ¼ 0 for each a A f1; 2; 3g. In fact this
condition is satisfied because, by assumption, N

ð1Þ
fa

¼ 0, so that also N
ð3Þ
fa

¼
Lxfa ¼ 0. Thus the tensor fields f1, f2, f3 are projectable. We prove that they
(locally) project onto a para-hypercomplex structure. Let p be a local submer-
sion defining the Reeb foliation. For each a A f1; 2; 3g let Ja be the tensor field
defined by p� � fa ¼ Ja � p�. Then it is clear that ðJ1; J2; J3Þ is an almost para-
hypercomplex structure. Moreover, for any two (local) vector fields X 0 and Y 0

in the leaf space, denoting by X and Y the unique basic vector fields on M such
such that p�X ¼ X 0 and p�Y ¼ Y 0, we have

½Ja; Ja�ðX 0;Y 0Þ ¼ p�ðN ð1Þ
fa

ðX ;Y ÞÞ ¼ 0;
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so that the structure is integrable. For concluding the proof we prove that the
canonical connection ‘c projects onto the the Obata connection ‘Ob. First we
prove that ‘c is projectable, i.e. it projects to connections of the local slice spaces
of Fx. The conditions for this are: a) for any basic vector fields X A GðDÞ and
for any V A GðTFxÞ one has ‘c

VX ¼ 0, b) if X and Y are basic vector fields then
also ‘c

XY is a basic vector field ([19]). Here, by ‘‘basic vector field’’ we mean
a vector field X transverse to the foliation Fx which is locally projectable to a
vector field on the leaf space by means a local submersion defining Fx; one can
see that this is equivalent to require that ½X ;V � is still tangent to the foliation for
any V A GðTFxÞ (cf. [19], [26]). Now the condition (a) is easily verified since
‘c
xX ¼ ½x;X � ¼ 0 because ½x;X � is tangent both to D and to Fx (X being basic).

Also the second condition holds. Indeed first recall that, by construction, ‘c

preserves the contact distribution; next, by (4.26),

0 ¼ RcðX ; xÞY ¼ ‘c
X‘

c
xY � ‘c

x‘
c
XY � ‘c

½X ;x�Yð4:33Þ

¼ ‘c
X ½x;Y � � ‘c

x‘
c
XY ¼ �‘c

x‘
c
XY

since ½X ; x� ¼ ½Y ; x� ¼ 0, X , Y being basic. Thus, by (4.33), ½x;‘c
XY � ¼ ‘c

x‘
c
XY

¼ 0 and hence ‘c
XY is basic. Therefore ‘c locally projects along the leaves of

Fx to a linear connection ‘ 0 which parallelizes the induced complex and product
structures, since ‘cfa ¼ 0 for each a A f1; 2; 3g. It remains to prove that ‘ 0 is
symmetric. Let X 0, Y 0 be any local vector fields on the leaf space and let X ,
Y be the corresponding basic vector fields such that p�X ¼ X 0 and p�Y ¼ Y 0.
Then T 0ðX 0;Y 0Þ ¼ p�T

cðX ;YÞ ¼ p�ð2 dhðX ;YÞxÞ ¼ 0. Thus ‘ 0 coincides with
the Obata connection. r

5. The standard bi-paracontact structure of a contact metric (k, m)-space

In this section we study one of the main examples of almost bi-paracontact
manifolds, namely we show that any (non-Sasakian) contact metric ðk; mÞ-space
admits a canonical almost bi-paracontact structure which satisfies very interesting
properties.

Recall that a contact metric ðk; mÞ-space is a contact metric manifold
ðM; f; x; h; gÞ such that the Reeb vector field x belongs to the ‘‘ðk; mÞ-nullity
distribution’’ i.e.

RgðX ;YÞx ¼ kðhðYÞX � hðX ÞY Þ þ mðhðYÞhX � hðXÞhY Þ;ð5:1Þ
This notion was introduced by Blair, Koufogiorgos and Papantoniou in [4], who
proved the following fundamental results.

Theorem 5.1 ([4]). Let ðM; f; x; h; gÞ be a contact metric ðk; mÞ-space. Then
necessarily ka 1. If k ¼ 1 then h ¼ 0 and ðM; f; x; h; gÞ is Sasakian; if k < 1, the
contact metric structure is not Sasakian and M admits three mutually orthogonal
totally geodesic distributions Dð0Þ ¼ Rx, DhðlÞ and Dhð�lÞ ¼ fðDhðlÞÞ corre-

sponding to the eigenspaces of h, where l ¼
ffiffiffiffiffiffiffiffiffiffiffi
1� k

p
.
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Furthermore, in [4] it is proved that any contact metric ðk; mÞ-space satisfies
(2.11), hence it is integrable, and for any X A GðDhðlÞÞ, Y A GðDhð�lÞÞ, ‘g

XY A
GðDhð�lÞlRxÞ and ‘g

YX A GðDhðlÞlRxÞ.
Given a non-Sasakian contact metric ðk; mÞ-manifold ðM; f; x; h; gÞ, Boeckx

[5] proved that the number IM :¼
1� m

2ffiffiffiffiffiffiffiffiffiffiffi
1� k

p , is an invariant of the contact metric

ðk; mÞ-structure, and he proved that two non-Sasakian contact metric ðk; mÞ-
manifolds ðM1; f1; x1; h1; g1Þ and ðM2; f2; x2; h2; g2Þ are locally isometric as con-
tact metric manifolds if and only if IM1

¼ IM2
. Then the invariant IM has been

used by Boeckx for providing a local classification of contact metric ðk; mÞ-spaces.
An interpretation of the Boeckx invariant in terms of Legendre foliations is given
in [11].

The standard example of contact metric ðk; mÞ-manifolds is given by the
tangent sphere bundle T1N of a Riemannian manifold N of constant curvature
c endowed with its standard contact metric structure. In this case k ¼ cð2� cÞ,

m ¼ �2c and IT1N ¼ 1þ c

j1� cj .

The link between contact metric ðk; mÞ-spaces with the theory of Legendre
foliations was pointed out in [9] and [11]. In fact any contact metric ðk; mÞ-space
ðM; f; x; h; gÞ is canonically a bi-Legendrian manifold with bi-Legendrian struc-
ture given by ðDhðlÞ;Dhð�lÞÞ, and the corresponding bi-Legendrian connection
preserves the tensors f, h, g ([8], [9]). We prove now that a contact metric
ðk; mÞ-space admits a further bi-Legendrian structure which is transverse to
ðDhðlÞ;Dhð�lÞÞ.

Theorem 5.2. In any non-Sasakian contact metric ðk; mÞ-manifold the oper-
ator fh admits three eigenvalues, 0, of multiplicity 1, and l, �l, each of multiplicity
n, where l :¼

ffiffiffiffiffiffiffiffiffiffiffi
1� k

p
. The corresponding eigendistributions are given by Dfhð0Þ ¼

Rx and

DfhðlÞ ¼ fX þ fX jX A GðDhðlÞg;ð5:2Þ
Dfhð�lÞ ¼ fY þ fY jY A GðDhð�lÞg:ð5:3Þ

Furthermore, DfhðlÞ and Dfhð�lÞ define two mutually orthogonal Legendre folia-
tions which are transversal to the canonical bi-Legendrian structure ðDhðlÞ;Dhð�lÞÞ.

Proof. That fh admits the eigenvalues 0 and G
ffiffiffiffiffiffiffiffiffiffiffi
1� k

p
follows from the

relation h2 ¼ ðk� 1Þf2 ([4]). Since the operator h is symmetric and f anti-
commutes with h, also fh is symmetric and hence it is diagonalizable. Now,
since the kernel of fh is generated by the Reeb vector field, we have that
Dfhð0Þ ¼ Rx. Moreover, if X A GðDfhðlÞÞ, then fhfX ¼ �ffhX ¼ �lfX , so
that fX A GðDfhð�lÞÞ. This implies that DfhðlÞ and Dfhð�lÞ have equal
dimension n, if 2nþ 1 is the dimension of M. DfhðlÞ and Dfhð�lÞ are in
fact mutually orthogonal. Indeed, for any X A GðDfhðlÞÞ and Y A GðDfhð�lÞÞ,
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since the operator fh is symmetric, we have lgðX ;YÞ ¼ gðfhX ;YÞ ¼ gðX ; fhY Þ
¼ �lgðX ;Y Þ, so that gðX ;Y Þ ¼ 0. In order to prove (5.2) first notice that, for
any X A GðDhðlÞÞ, fhðX þ fX Þ ¼ lfX � f2hX ¼ lðX þ fX Þ so that X þ fX A
GðDfhðlÞÞ. Thus it remains to show that, given Y A GðDfhðlÞÞ, there exists X A
GðDhðlÞÞ such that Y ¼ X þ fX . One can verify that X :¼ 1

2 ðY � fYÞ has the
required properties. In a similar way one proves (5.3). Now we are able to
demonstrate the integrability of the distributions DfhðlÞ and Dfhð�lÞ. Any two
sections of DfhðlÞ can be written as X þ fX and X 0 þ fX 0, for some X ;X 0 A
GðDhðlÞÞ. Then, by (2.11)

‘g
XþfX ðX

0 þ fX 0Þ ¼ ‘g
XX

0 þ ‘g
fXX

0 þ f‘g
XX

0 þ gðX þ hX ;X 0Þxð5:4Þ

þ f‘g
fXX

0 þ gðfX þ hfX ;X 0Þx

¼ ‘g
XX

0 þ f‘g
XX

0 þ ‘g
fXX

0

þ f‘g
fXX

0 þ ð1þ lÞgðX ;X 0Þx:

Now, ‘g
fXX

0 A GðDhðlÞlRxÞ, so that we can decompose ‘g
fXX

0 along its com-
ponent tangent to DhðlÞ and the one tangent to Rx, given by hð‘g

fXX
0Þx ¼

gð‘g
fXX

0; xÞx. But, by (2.9), gð‘g
fXX

0; xÞ ¼ �gðX 0;‘g
fXxÞ ¼ ðl� 1ÞgðX ;X 0Þ, so

that (5.4) becomes

‘g
XþfX ðX

0 þ fX 0Þ ¼ ‘g
XX

0 þ f‘g
XX

0 þ ð‘g
fXX

0ÞDhðlÞð5:5Þ

þ fð‘g
fXX

0ÞDhðlÞ þ 2lgðX ;X 0Þx:
Therefore

½X þ fX ;X 0 þ fX 0� ¼ ½X ;X 0� þ f½X ;X 0� þ ð‘g
fXX

0ÞDhðlÞ � fð‘g
fXX

0ÞDhðlÞð5:6Þ

� ð‘g
fX 0XÞDhðlÞ þ fð‘g

fX 0XÞDhðlÞ:

Due to (5.2) each of the three terms ½X ;X 0� þ f½X ;X 0�, ð‘g
fXX

0ÞDhðlÞ þ
fð‘g

fXX
0ÞDhðlÞ and ð‘g

fX 0X ÞDhðlÞ þ fð‘g
fX 0X ÞDhðlÞ in the right-hand-side of (5.6) is

a section of DfhðlÞ. Thus we conclude that DfhðlÞ is involutive. In particular,
being DfhðlÞ an integrable subbundle of D, it defines a Legendre foliation of
M. Analogous arguments work also for Dfhð�lÞ. It remains to prove that
DfhðlÞ and Dfhð�lÞ are transverse to each foliation of the bi-Legendrian struc-
ture ðDhðlÞ;Dhð�lÞÞ. For instance we show that TM ¼ DfhðlÞlDhð�lÞlRx,
the other cases being similar. If X is a vector field tangent both to DfhðlÞ and
to Dhð�lÞ then lX ¼ fhX ¼ �lfX so that X ¼ �fX . By applying f we get
X ¼ fX , hence X ¼ 0. Next, let Z be a vector field on M. Then there exist
X A GðDhðlÞÞ and Y A GðDhð�lÞÞ such that Z ¼ X þ Y þ hðZÞx. Adding and
subtracting fX A GðDhð�lÞÞ we obtain Z ¼ ðX þ fXÞ þ ðY � fXÞ þ hðZÞx,
where X þ fX A GðDfhðlÞÞ and Y � fX A GðDhð�lÞÞ. r

Theorem 5.2 implies that any (non-Sasakian) contact metric ðk; mÞ-space
is endowed with two transverse bi-Legendrian structures ðDhðlÞ;Dhð�lÞÞ and
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ðDfhðlÞ;Dfhð�lÞÞ defined by the eigenspaces of the operators h and fh corre-
sponding to the eigenvaluesGl. Thus by Proposition 3.13 we conclude that any
(non-Sasakian) contact metric ðk; mÞ-space M admits an integrable almost bi-
paracontact structure which we call the standard almost bi-paracontact structure
of the contact metric ðk; mÞ-space M. One can easily prove the following result.

Theorem 5.3. Let ðM; f; x; h; gÞ be a non-Sasakian contact metric ðk; mÞ-
space. The standard almost bi-paracontact structure of M is given by ðf1; f2; f3Þ,
where

f1 :¼
1ffiffiffiffiffiffiffiffiffiffiffi
1� k

p fh; f2 :¼
1ffiffiffiffiffiffiffiffiffiffiffi
1� k

p h; f3 :¼ f:

According to the notation used in §3 we denote by DG
1 and DG

2 the
eigendistributions of f1 and f2, respectively, corresponding to the eigenvaluesG1.
So DG

1 ¼ DfhðGlÞ and DG
2 ¼ DhðGlÞ. Then, according to Theorem 5.3, (5.2)–

(5.3) should be compared to Proposition 3.3.

Remark 5.4. For each a A f1; 2g we can define a semi-Riemannian metric
ga by setting

gaðX ;Y Þ :¼ dhðX ; faY Þ þ hðX ÞhðY Þð5:7Þ

for all X ;Y A GðTMÞ. Then it is easy to check that ðfa; x; h; gaÞ is a paracontact
metric structure on M. In fact ðfa; x; h; gaÞ ¼ CðDþ

a ;D
�
a Þ according to the nota-

tion used in §2.2. Let ‘pc and ‘pc denote the canonical paracontact connections
associated to the paracontact metric structures ðf1; x; h; g1Þ and ðf2; x; h; g2Þ, re-
spectively (cf. Theorem 2.4). Then, since DG

1 and DG
2 are integrable, Theorem

2.8 implies that ‘pc ¼ ‘bl and ‘pc ¼ ‘bl , where ‘bl denotes the bi-Legendrian
connection corresponding to the bi-Legendrian structure ðDhðlÞ;Dhð�lÞÞ and ‘bl

the bi-Legendrian connection associated to ðDfhðlÞ;Dfhð�lÞÞ. In particular, by
(2.23) we have that

T blð�; xÞ ¼ �f1h1; T blð�; xÞ ¼ �f2h2;ð5:8Þ

where T bl and T bl denote the torsion tensor fields of ‘bl and ‘bl , respectively.

The bi-Legendrian structure ðDþ
2 ;D

�
2 Þ was deeply studied in [9] and [11]. In

the sequel we study the ‘‘new’’ bi-Legendrian structure, ðDþ
1 ;D

�
1 Þ.

Theorem 5.5. The Legendre foliations DfhðlÞ and Dfhð�lÞ are either non-
degenerate or flat. In particular, DfhðlÞ and Dfhð�lÞ are positive definite if and
only if IM > 0, negative definite if and only if IM < 0, flat if and only if IM ¼ 0.

Proof. Let X A GðDfhðlÞÞ. Then the ðk; mÞ-nullity condition becomes

RgðX ; xÞx ¼ kX þ mhX :ð5:9Þ
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On the other hand,

RgðX ; xÞx ¼ �‘g
x‘

g
Xx� ‘g

½X ;x�xð5:10Þ

¼ �‘g
xfX þ ‘g

xfhX þ f½X ; x� þ fh½X ; x�

¼ ‘g
fXxþ ½x; fX � þ l‘g

Xxþ l½x;X � þ f½X ; x�

þ l½X ; x�DfhðlÞ � l½X ; x�Dfhð�lÞ

¼ �f2X � fhfX þ ½x; fX � þ lð�fX � fhX Þ
þ l½x;X � � f½x;X � � l½x;X �DfhðlÞ þ l½x;X �Dfhð�lÞ

¼ X þ lfX þ 2hX � lfX � lX þ 2l½x;X �Dfhð�lÞ:

Thus (5.9) and (5.10) imply

kfX þ mfhX ¼ ð1� lÞfX þ 2fhX þ 2lf½x;X �Dfhð�lÞ;

from which it follows that

f½x;X �Dfhð�lÞ ¼
1�

ffiffiffiffiffiffiffiffiffiffiffi
1� k

p

2
fX �

1� m

2ffiffiffiffiffiffiffiffiffiffiffi
1� k

p X ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffi
1� k

p

2
fX � IMX :

Therefore, by (2.26), we have, for any X ;X 0 A GðDfhðlÞÞ,

PDfhðlÞðX ;X 0Þ ¼ 2gð½x;X �Dfhð�lÞ; fX
0Þð5:11Þ

¼ �2gðf½x;X �Dfhð�lÞ;X
0Þ

¼ �ð1�
ffiffiffiffiffiffiffiffiffiffiffi
1� k

p
ÞgðfX ;X 0Þ þ 2IMgðX ;X 0Þ

¼ 2IMgðX ;X 0Þ:

Similarly, one can prove that, for any Y ;Y 0 A GðDfhð�lÞÞ,

PDfhð�lÞðY ;Y 0Þ ¼ 2IMgðY ;Y 0Þ:ð5:12Þ

The assertion of the theorem then easily follows from the expressions (5.11),
(5.12) of the Pang invariant of the Legendre foliations DfhðlÞ, Dfhð�lÞ. r

Since any (non-Sasakian) contact metric ðk; mÞ-space ðM; f; x; h; gÞ is ca-
nonically endowed with an almost bi-paracontact manifold, it admits the linear
connections ‘1, ‘2, ‘3 stated in Theorem 4.2 and, moreover, the canonical
connection ‘c defined in Theorem 4.4. On the other hand, to M it is attached
also the bi-Legendrian connection ‘bl corresponding to the bi-Legendrian struc-
ture ðDhðlÞ;Dhð�lÞÞ, as well as the bi-Legendrian connection ‘bl associated with
ðDfhðlÞ;Dfhð�lÞÞ. We now find the relations between these connections.
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Lemma 5.6. Let ðM; f; x; h; gÞ be a non-Sasakian contact metric ðk; mÞ-space
and ðf1; f2; f3Þ its standard almost bi-paracontact structure. Then, for the oper-
ators ha :¼ 1

2Lxfa, a A f1; 2; 3g, we have

h1 ¼ �IMh ¼ � 1� m

2

� �
f2;ð5:13Þ

h2 ¼ IMfhþ
ffiffiffiffiffiffiffiffiffiffiffi
1� k

p
f ¼ 1� m

2

� �
f1 þ

ffiffiffiffiffiffiffiffiffiffiffi
1� k

p
f3;ð5:14Þ

h3 ¼ h ¼
ffiffiffiffiffiffiffiffiffiffiffi
1� k

p
f2:ð5:15Þ

Proof. The proof of (5.14) is given in [12, Lemma 4.5] whereas (5.15) is
obvious. Then by using Lemma 4.1 one can prove (5.13). r

Substituting (5.13)–(5.15) in (ii) of Theorem 4.2 we get the following
corollary.

Corollary 5.7. Let ðM; f; x; h; gÞ be a non-Sasakian contact metric ðk; mÞ-
space and ðf1; f2; f3Þ its standard almost bi-paracontact structure. The corre-
sponding connections ‘1, ‘2, ‘3 stated in Theorem 4.2 satisfy the following
relations:

‘1f1 ¼ 0; ‘1f2 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffi
1� k

p
hn f3; ‘1f3 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffi
1� k

p
hn f2;ð5:16Þ

‘2f1 ¼ 0; ‘2f2 ¼ 0; ‘2f3 ¼ 0;ð5:17Þ
‘3f1 ¼ �ð2� mÞhn f2; ‘3f2 ¼ ð2� mÞhn f1; ‘3f3 ¼ 0:ð5:18Þ

Proposition 5.8. With the notation above, ‘bl ¼ ‘2 and ‘bl ¼ ‘1.

Proof. First notice that ‘bl satisfies the axioms (i), (ii), (iii) of Theorem

4.2 characterizing ‘2. Indeed by definition ‘blx ¼ 0. Next, ‘blf ¼ ‘blh ¼ 0
([8]) so that, tacking (5.17) into account, ‘blfa ¼ 0 ¼ ‘2fa for each a A f1; 2; 3g.
Finally, by using the expression (2.27) of T bl , a direct computation shows that
also (iii) is satisfied. Then ‘bl ¼ ‘2. As second step we prove that if S denotes
the ð1; 1Þ-type tensor field given by SðX ;Y Þ :¼ ‘bl

X Y � ‘bl
X Y , then we have

Sð�; xÞ ¼ 0; Sðx; �Þ ¼ �fh; S ¼ 0 on D:ð5:19Þ

Obviously Sð�; xÞ ¼ 0. In order to prove the remaining relations, let us define a
linear connection ‘ 0 on M by putting

‘ 0
EF :¼ ‘bl

E F ; for E A GðDÞ; F A GðTMÞ;
‘bl
E F ; for E A GðRxÞ; F A GðTMÞ:

�
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We prove that ‘ 0 ¼ ‘bl by checking that ‘ 0 satisfies the axioms which char-
acterize the bi-Legendrian connection associated with the bi-Legendrian structure
ðDfhðlÞ;Dfhð�lÞÞ. First, we prove that ‘ 0 preserves the Legendre foliations
DfhðlÞ and Dfhð�lÞ. Due to (5.2) any vector field tangent to DfhðlÞ has the
form X þ fX for some X A GðDhðlÞÞ. Then, for any Z A GðDÞ, we have

‘ 0
ZðX þ fX Þ ¼ ‘ 0

ZX þ ‘ 0
ZfX ¼ ‘ 0

ZX þ ‘bl
Z fX ¼ ‘ 0

ZX þ f‘bl
Z X ¼ ‘ 0

ZX þ f‘ 0
ZX :

Since ‘ 0
ZX ¼ ‘bl

Z X A GðDhðlÞÞ, we conclude that ‘ 0
ZðX þ fXÞ A GðDfhðlÞÞ.

Thus ‘ 0
ZDfhðlÞHDfhðlÞ. Moreover, ‘ 0

xDfhðlÞ ¼ ‘xDfhðlÞHDfhðlÞ. Analo-
gously one can prove that ‘ 0 preserves Dfhð�lÞ. Next, ‘ 0 dh ¼ 0 since
‘bl dh ¼ 0 and ‘bl dh ¼ 0. Finally, one can easily prove that T 0ðZ; xÞ ¼
T blðZ; xÞ ¼ ½x;ZDfhðlÞ�Dfhð�lÞ þ ½x;ZDfhð�lÞ�DfhðlÞ and T 0ðZ;Z 0Þ ¼ T blðZ;Z 0Þ ¼
2 dhðZ;Z 0Þx for any Z;Z 0 A GðDÞ. Thus, by Theorem 2.7, ‘ 0 ¼ ‘bl and hence
S ¼ 0 on D. Finally, by (5.8)

‘bl
x Z ¼ ‘bl

Z x� T blðZ; xÞ � ½Z; x� ¼ f2h2Z þ ½x;Z�

and, analogously,

‘bl
x Z ¼ f1h1Z þ ½x;Z�:

Therefore, by using (5.13) and (5.14), one finds Sðx;ZÞ ¼ f2h2Z � f1h1Z ¼ �fhZ.
Thus (5.19) is completely proved. In particular, one obtains

‘bl
x f ¼ ‘bl

x fþ fhf� f2h ¼ 2hð5:20Þ

and

‘bl
x h ¼ ‘bl

x hþ fh2 � hfh ¼ 2fh2 ¼ 2ð1� kÞf:ð5:21Þ

Then ‘bl satisfies (5.16). Since it easily satisfies also the other two conditions
which uniquely define the connection ‘1, we conclude that ‘bl ¼ ‘1. r

The paracontact metric structure ðf2; x; h; g2Þ defined in Remark 5.4 was
studied in [12]. Now we are able to study ðf1; x; h; g1Þ. We show that both the
paracontact metric structures satisfy a nullity condition.

Theorem 5.9. Let ðM; f; x; h; gÞ be a non-Sasakian contact metric ðk; mÞ-
space and let ðf1; f2; f3Þ be its standard almost bi-paracontact structure. Let g1
and g2 denote the semi-Riemannian metrics defined by (5.7), compatible with the
almost paracontact structures f1 and f2, respectively. Then the paracontact metric
structures ðfa; x; h; gaÞ, a A f1; 2g, satisfy

RgaðX ;Y Þx ¼ kaðhðYÞX � hðXÞY Þ þ maðhðYÞhaX � hðXÞhaY Þ
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where

k1 ¼ 1� m

2

� �2
� 1; m1 ¼ 2ð1�

ffiffiffiffiffiffiffiffiffiffiffi
1� k

p
Þ;ð5:22Þ

k2 ¼ k� 2þ 1� m

2

� �2
; m2 ¼ 2:ð5:23Þ

Furthermore, IM ¼ 0 if and only if ðf1; x; h; g1Þ is para-Sasakian.

Proof. For the case a ¼ 2 the assertion was already proved in [12]. We
prove the case a ¼ 1. First notice that, as Dþ

1 and D�
1 are involutive, the

paracontact metric structure ðf1; x; h; g1Þ satisfies (2.24) (cf. [28]). Then by (2.22)
we have that

ð‘g1
X h1ÞY ¼ ð‘pc

X h1ÞY � 2hðXÞf1h1Y � hðY Þf1h1X þ hðYÞf1h21Xð5:24Þ
� g1ðX ; f1h1Y Þxþ g1ðh1X ; f1h1YÞx:

Moreover, due to (5.13) and Proposition 5.8 we get

ð‘pc
X h1ÞY ¼ ð‘bl

X h1ÞY ¼ ð‘1
Xh1ÞY ¼ � 1� m

2

� �
ð‘1

Xf2ÞYð5:25Þ

¼ ðm� 2Þ
ffiffiffiffiffiffiffiffiffiffiffi
1� k

p
hðXÞf3Y :

Thus, by replacing (2.24), (5.24) and (5.25) in (2.20) we find

Rg1ðX ;YÞx ¼ �hðYÞðX � h1XÞ þ g1ðX � h1X ;Y Þxþ hðX ÞðY � h1YÞ

� g1ðY � h1Y ;XÞx� g1ðX � h1X ; h1Y Þxþ f1ðð‘
pc
X h1ÞY Þ

� 2hðX Þf2
1h1Y þ hðYÞf1h1f1X þ hðYÞf2

1h1X

þ g1ðY � h1Y ; h1XÞx� f1ðð‘
pc
Y h1ÞXÞ þ 2hðYÞf2

1h1X

� hðXÞf1h1f1Y � hðX Þf2
1h1Y

¼ �hðYÞX þ hðX ÞY þ ðm� 2Þ
ffiffiffiffiffiffiffiffiffiffiffi
1� k

p
hðXÞf1f3Y

� 2hðX Þf2
1h1Y þ hðYÞf2

1h
2
1X

� ðm� 2Þ
ffiffiffiffiffiffiffiffiffiffiffi
1� k

p
hðY Þf1f3X þ 2hðY Þf2

1h1X � hðXÞf2
1h

2
1Y

¼ �hðYÞX þ hðX ÞY þ ðm� 2Þ
ffiffiffiffiffiffiffiffiffiffiffi
1� k

p
hðXÞf2Y

� 2hðX Þh1Y � 1� m

2

� �2
hðYÞf2

2X

� ðm� 2Þ
ffiffiffiffiffiffiffiffiffiffiffi
1� k

p
hðY Þf2X þ 2hðYÞh1X þ 1� m

2

� �2
hðX Þf2

2Y
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¼ �hðY ÞX þ hðXÞY þ 2
ffiffiffiffiffiffiffiffiffiffiffi
1� k

p
hðX Þh1Y

� 2hðX Þh1Y þ 1� m

2

� �2
hðYÞX

� 2
ffiffiffiffiffiffiffiffiffiffiffi
1� k

p
hðY Þh1X þ 2hðY Þh1X � 1� m

2

� �2
hðXÞY

¼ 1� m

2

� �2
� 1

 !
ðhðY ÞX � hðXÞYÞ

þ 2ð1�
ffiffiffiffiffiffiffiffiffiffiffi
1� k

p
ÞðhðYÞh1X � hðXÞh1Y Þ:

For the last assertion in the statement of the theorem, we have that IM ¼ 0 if and
only if m ¼ 2, i.e., by (5.13), if and only if h1 ¼ 0. As the paracontact metric
structure ðf1; x; h; g1Þ is integrable, the assert follows from Corollary 2.6. r

We now study the special properties of the connection ‘c (cf. Theorem 4.4)
associated to the standard almost bi-paracontact structure ðf1; f2; f3Þ of a (non-
Sasakian) contact metric ðk; mÞ-space ðM; f; x; h; gÞ. We call ‘c the canonical
connection of the contact metric ðk; mÞ-space M.

Lemma 5.10. The torsion tensor field of the canonical connection of a non-
Sasakian contact metric ðk; mÞ-space ðM; f; x; h; gÞ is given by

T cðX ;YÞ ¼ 2

3

�
hðY Þ 1� m

2

� �
fX þ fhX

� �
ð5:26Þ

� hðX Þ 1� m

2

� �
fY þ fhY

� ��
þ 2 dhðX ;YÞx:

In particular,

T cðX ; xÞ ¼ 2

3
1� m

2

� �
fX þ fhX

� �
:ð5:27Þ

Proof. First of all notice that, being the almost bi-paracontact structure
ðf1; f2; f3Þ integrable, (3.1) holds. Then by replacing (2.12), (2.25), (3.1) into (iii)
of Theorem 4.4 we obtain

T cðX ;YÞ ¼ 2 dhðX ;Y Þxþ 1

6
ð�2hðY Þf1h1X þ 2hðXÞf1h1Y � 2hðYÞf2h2Xð5:28Þ

þ 2hðX Þf2h2Y þ 2hðYÞf3h3X � 2hðXÞf3h3YÞ:

By substituting (5.13) and (5.14) in (5.28), a straightforward computation yields
(5.26). r
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Proposition 5.11. With the notation above, we have for any X ;Y A GðDÞ,
‘c
XY ¼ ‘1

XY ¼ ‘2
XY ¼ ‘3

XY :

Proof. Let ‘ 0 be the linear connection defined by

‘ 0
EF :¼ ‘bl

E F ; if E A GðDÞ;
‘c
EF ; if E A GðRxÞ:

�
We check that ‘ 0 satisfies (i), (ii), (iii) of Theorem 4.4. First of all, obvi-
ously ‘ 0x ¼ 0. Next, for all X ;Y A GðDÞ, by (5.26), T 0ðX ;YÞ ¼ T blðX ;YÞ ¼
2 dhðX ;Y Þx ¼ T cðX ;YÞ and T 0ðX ; xÞ ¼ T cðX ; xÞ. Finally, for all X ;Y A GðDÞ,
we have ð‘ 0

XfaÞY ¼ ð‘bl
X faÞY ¼ 0 ¼ ð‘c

XfaÞY for each a A f1; 2; 3g, since ‘blf ¼
‘blh ¼ 0. Moreover, by definition, ð‘ 0

xfaÞX ¼ ð‘c
xfaÞX . Thus by the unique-

ness of ‘c we have that ‘ 0 ¼ ‘c. Then, since by Proposition 5.8 ‘bl ¼ ‘2, we
have that ‘2 and ‘c coincide on the contact distribution. Moreover, Proposition
5.8 and (5.19) imply that also ‘1 ¼ ‘bl and ‘c coincide on D. The same
property is then necessarily satisfied by ‘3 since ‘c is the barycenter of ‘1, ‘2,
‘3. r

Corollary 5.12. The canonical connection ‘c of a contact metric ðk; mÞ-
space ðM; f; x; h; gÞ is a contact connection, i.e. ‘ch ¼ ‘c dh ¼ 0, and satisfies

‘cf1 ¼ � 2

3
1� m

2

� �
hn f2ð5:29Þ

‘cf2 ¼
2

3
1� m

2

� �
hn f1 þ

2

3

ffiffiffiffiffiffiffiffiffiffiffi
1� k

p
hn f3ð5:30Þ

‘cf3 ¼
2

3

ffiffiffiffiffiffiffiffiffiffiffi
1� k

p
hn f2ð5:31Þ

Proof. By Proposition 5.8 and Proposition 5.11 we have, for all X ;Y ;Z A
GðDÞ, ð‘c

X dhÞðY ;ZÞ ¼ ð‘2
X dhÞðY ;ZÞ ¼ ð‘bl

X dhÞðY ;ZÞ ¼ 0 and, since ‘cx ¼ 0,
ð‘c

X dhÞðY ; xÞ ¼ 0. Moreover, from (5.27) it follows that

‘c
xX ¼ ½x;X � � 2

3
1� m

2

� �
fX þ fhX

� �
:ð5:32Þ

Then (5.32) yields

ð‘c
x dhÞðX ;Y Þ ¼ xðdhðX ;YÞÞ � dhð½x;X �;YÞ þ 2

3
1� m

2

� �
dhðfX ;Y Þ

þ 2

3
dhðfhX ;Y Þ � dhðX ; ½x;Y �Þ

þ 2

3
1� m

2

� �
dhðX ; fYÞ þ 2

3
dhðX ; fhYÞ

¼ ðLx dhÞðX ;YÞ þ 2

3
gðfhX ; fYÞ þ 2

3
gðX ; f2hY Þ ¼ 0;
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since Lx dh ¼ 0 and h is a symmetric operator. Finally, (5.29)–(5.31) follow
from (ii) of Theorem 4.4 and from (5.13), (5.14). r

Conversely, we show that (5.29)–(5.31) in some sense characterize the exis-
tence of a contact metric ðk; mÞ-structure on an almost bi-paracontact manifold.

Theorem 5.13. Let ðf1; f2; f3Þ be an integrable almost bi-paracontact struc-
ture on the contact manifold ðM; hÞ such that the associated canonical connection
satisfies ‘c dh ¼ 0 and

‘cf1 ¼ �ahn f2ð5:33Þ
‘cf2 ¼ ahn f1 þ bhn f3ð5:34Þ
‘cf3 ¼ bhn f2ð5:35Þ

for some a > 0 (respectively, a < 0) and b > 0. Let us define

g1 :¼ dhð�; f1�Þ þ hn h; g2 :¼ dhð�; f2�Þ þ hn h;ð5:36Þ
g3 :¼ �dhð�; f3�Þ þ hn h

and assume that the symmetric bilinear form p1 :¼ g1ðh1�; �Þ is positive definite
(respectively, negative definite). Then, for each a A f1; 2g, ðfa; x; h; gaÞ is a
paracontact metric ðka; maÞ-structure and ðf3; x; h; g3Þ is a contact metric ðk3; m3Þ-
structure, where

k1 :¼
9

4
a2 � 1; m1 :¼ 2� 3b;ð5:37Þ

k2 :¼
9

4
ða2 � b2Þ � 1; m2 :¼ 2;ð5:38Þ

k3 :¼ 1� 9

4
b2; m3 :¼ 2þ 3a:ð5:39Þ

Moreover, ðf1; f2; f3Þ is the standard almost bi-paracontact structure of the contact
metric ðk3; m3Þ-manifold ðM; f3; x; h; g3Þ.

Proof. Since the almost bi-paracontact structure is assumed to be inte-
grable, we have in particular, by Proposition 3.7, that the bilinear forms g1, g2,
g3, defined by (5.36), are symmetric, so that the definition is well posed. Notice
that, by construction, for each a A f1; 2; 3g, ga is compatible with the corre-
sponding structure, i.e.

gaðfaX ; faYÞ ¼ �eðgaðX ;YÞ � hðXÞhðYÞÞ

where we have posed e ¼ 1 if a A f1; 2g and e ¼ �1 if a ¼ 3. Moreover, each ga
is, by definition, an associated metric, i.e. dhðX ;YÞ ¼ gaðX ; faYÞ for all X ;Y A
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GðTMÞ. Furthermore, by comparing (5.33)–(5.35) with (ii) of Theorem 4.4 we
have that

h1 ¼ � 3

2
af2; h2 ¼

3

2
ðaf1 þ bf3Þ; h3 ¼

3

2
bf2:ð5:40Þ

Hence, by (5.40), we have, for all X ;Y A GðTMÞ,

g3ðX ;Y Þ ¼ �dhðX ; f3Y Þ þ hðX ÞhðYÞ
¼ �g1ðX ; f1f3YÞ þ hðXÞhðYÞ
¼ �g1ðX ; f2Y Þ þ hðX ÞhðY Þ

¼ 2

3a
g1ðX ; h1Y Þ

¼ 2

3a
p1ðX ;Y Þ:

Then the assumptions of positive definiteness of p1 and a > 0 imply that g3 is a
Riemannian metric. It follows that ðfa; x; h; gaÞ is a paracontact metric structure
for a A f1; 2g and a contact metric structure for a ¼ 3. Now, since the almost
bi-paracontact structure ðf1; f2; f3Þ is integrable, by Corollary 3.9, the tensor
fields N

ð1Þ
f1

, N
ð1Þ
f2

, N
ð1Þ
f3

vanish on D. Moreover, Proposition 3.7 implies that

dðf1X ; f1YÞ ¼ dðf2X ; f2YÞ ¼ �dhðf3X ; f3YÞ ¼ �dhðX ;YÞ for any X ;Y A GðDÞ.
Hence, taking (iii) of Theorem 4.4 into account, the torsion of the canonical
connection is given by

T cðX ;YÞ ¼ 2 dhðX ;Y Þxð5:41Þ
for all X ;Y A GðDÞ. We now are able to prove that on the contact distribution
the canonical connection and the Levi Civita connection of g3 are related by the
formula

‘c
XY ¼ ‘g3

X Y � hð‘g3
X Y Þx:ð5:42Þ

Indeed, let us define a linear connection ‘ 0 on M by

‘ 0
XY :¼ ‘c

XY þ hð‘g3
X YÞx; if X ;Y A GðDÞ;

‘g3
X Y ; elsewhere:

�

We prove that in fact ‘ 0 coincides with the Levi Civita connection of ðM; g3Þ.
For any X ;Y ;Z A GðDÞ we have

ð‘ 0
Xg3ÞðY ;ZÞ ¼ ð‘c

Xg3ÞðY ;ZÞ � hðZÞhð‘g3
X Y Þ � hðY Þhð‘g3

X ZÞ
¼ �X ðdhðY ; f3ZÞÞ þ dhð‘c

XY ; f3ZÞ þ dhðY ; f3‘
c
XZÞ

¼ �X ðdhðY ; f3ZÞÞ þ dhð‘c
XY ; f3ZÞ þ dhðY ;‘c

Xf3ZÞ
¼ �ð‘c

X dhÞðY ; f3ZÞ ¼ 0;

ð‘ 0
Xg3ÞðY ; xÞ ¼ ð‘g3

X g3ÞðY ; xÞ � hð‘c
XY Þ ¼ 0
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and
ð‘ 0

xg3ÞðY ;ZÞ ¼ ð‘g3
x g3ÞðY ;ZÞ ¼ 0:

Next, by (5.41)

T 0ðX ;YÞ ¼ T cðX ;Y Þ þ hð‘g3
X YÞx� hð‘g3

Y XÞx ¼ 2 dhðX ;Y Þxþ hð½X ;Y �Þx ¼ 0;

and T 0ðX ; xÞ ¼ T g3ðX ; xÞ ¼ 0. Thus ‘ 0 ¼ ‘g3 and (5.42) follows. Then (5.34),
(5.40) and (5.42) yield, for any X ;Y ;Z A GðDÞ,

g3ðð‘g3
X h3ÞY ;ZÞ ¼ g3ðð‘c

Xh3ÞY ;ZÞ þ hð‘g3
X h3Y ÞhðZÞ

¼ 3

2
bg3ðð‘c

Xf2ÞY ;ZÞ

¼ 3

2
abhðXÞg3ðf1X ;ZÞ þ 3

2
b2hðXÞg3ðf3X ;ZÞ ¼ 0:

Therefore the tensor field h3 is ‘‘h-parallel’’ (cf. [6]) and so, by [6, Theorem 4],
ðf3; x; h; g3Þ is a contact metric ðk; mÞ-space. The values of k and m can be found
by comparing (5.33)–(5.35) with (5.29)–(5.31). After a straightforward compu-
tation it turns out that they are given by (5.39). The remaining part of the
theorem follows from Theorem 5.9. In particular, (5.37) and (5.38) are con-
sequence of (5.22) and (5.23), respectively. The case a < 0 can be proved in a
similar way. r

Formulae (5.13)–(5.15) together with (a) of Lemma 4.1 allow us to define a
supplementary almost bi-paracontact structure on a non-Sasakian contact metric
ðk; mÞ-space. In fact, by (5.14) we have

h22 ¼ 1� m

2

� �2
f2
1 þ 1� m

2

� � ffiffiffiffiffiffiffiffiffiffiffi
1� k

p
f1f3ð5:43Þ

þ 1� m

2

� � ffiffiffiffiffiffiffiffiffiffiffi
1� k

p
f3f1 þ ð1� kÞf2

3

¼ 1� m

2

� �2
� ð1� kÞ

 !
ðI � hn xÞ:

Therefore, under the assumption that 1� m

2

� �2
0 1� k, we are led to consider

the tensor field

c :¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m

2

� �2
� ð1� kÞ

�����
�����

vuut
h2ð5:44Þ

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m

2

� �2
� ð1� kÞ

�����
�����

vuut
1� m

2

� �
f1 þ

ffiffiffiffiffiffiffiffiffiffiffi
1� k

p
f3

� �
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By (5.43) we see that if 1� m

2

� �2
� ð1� kÞ > 0 then the tensor field c satisfies

c2 ¼ I � hn x, whereas if 1� m

2

� �2
� ð1� kÞ < 0 we have c2 ¼ �I þ hn x.

Notice that 1� m

2

� �2
� ð1� kÞ > 0 if and only if jIM j > 0. Therefore we are

able to prove the following theorem.

Theorem 5.14. Let ðM; f; x; h; gÞ be a non-Sasakian contact metric ðk; mÞ-
space such that IM 0G1.

(i) If jIM j > 1 then M admits an integrable almost bi-paracontact structure
ðf 0

1; f
0
2; f

0
3Þ, given by

f 0
1 :¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m

2

� �2
� ð1� kÞ

s ðIMfhþ
ffiffiffiffiffiffiffiffiffiffiffi
1� k

p
fÞ

f 0
2 :¼

1ffiffiffiffiffiffiffiffiffiffiffi
1� k

p h

f 0
3 :¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m

2

� �2
� ð1� kÞ

s ðIMhþ
ffiffiffiffiffiffiffiffiffiffiffi
1� k

p
fhÞ:

(ii) If jIM j < 1 then M admits an integrable almost bi-paracontact structure
ðf 00

1 ; f
00
2 ; f

00
3 Þ, given by

f 00
1 :¼ 1ffiffiffiffiffiffiffiffiffiffiffi

1� k
p h

f 00
2 :¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� k� 1� m

2

� �2s ðIMhþ
ffiffiffiffiffiffiffiffiffiffiffi
1� k

p
fhÞ

f 00
3 :¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� k� 1� m

2

� �2s ðIMfhþ
ffiffiffiffiffiffiffiffiffiffiffi
1� k

p
fÞ:

Proof. Let us assume jIM j > 1. In order to relieve the notation, we put

a :¼ 1� m

2
and b :¼

ffiffiffiffiffiffiffiffiffiffiffi
1� k

p
. As remarked before, by a direct computation one

proves that f 02
1 ¼ I � hn x. Moreover, by (a) of Lemma 4.1, f2h2 ¼ �h2f2,

so that f 0
1 ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

q h2 and f 0
2 ¼ f2 anti-commute. Thus ðf 0

1; f
0
2; f

0
3 ¼ f 0

1f
0
2Þ is
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an almost bi-paracontact structure on ðM; hÞ. We prove that it is integrable,
by showing that the eigendistributions D 0G

1 associated to f 0
1 define Legendre

foliations, since we already know that D 0G
2 ¼ DG

2 do. First we show that D 0þ
1 is

a Legendrian distribution. For any X ;X 0 A GðD 0þ
1 Þ we have

dhðX ;X 0Þ ¼ dhðf 0
1X ; f 0

1X
0Þð5:45Þ

¼ 1

a2 � b2
ða2 dhðf1X ; f1X

0Þ þ ab dhðf1X ; f3X
0Þ

þ ab dhðf3X ; f1X
0Þ þ b2 dhðf3X ; f3X

0ÞÞ:

Now, notice that dhðf1X ; f1X
0Þ ¼ �dhðf3X ; f3X

0Þ ¼ �dhðX ;X 0Þ, and
dhðf1X ; f3X

0Þ ¼ dhðf1X ; f1f2X
0Þ ¼ �dhðX ; f2X

0Þ ¼ �dhðf3X ; f1X
0Þ, so that

(5.45) becomes

dhðX ;X 0Þ ¼ � a2 � b2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

q dhðX ;X 0Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

q
dhðX ;X 0Þ:

Hence dhðX ;X 0Þ ¼ 0. It remains to prove that D 0þ
1 is involutive. Take

X ;X 0 A GðD 0þ
1 Þ. By (5.26), the torsion of the canonical connection ‘c of the

contact metric ðk; mÞ-space ðM; f; x; h; gÞ satisfies T cðX ;X 0Þ ¼ 2 dhðX ;X 0Þx ¼ 0.
Then, using (5.29)–(5.31), we have

f 0
1½X ;X 0� ¼ f 0

1ð‘c
XX

0 � ‘c
X 0XÞ

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

q ðaf1‘c
XX

0 þ bf3‘
c
XX

0 � af1‘
c
X 0X � bf3‘

c
X 0XÞ

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

q ða‘c
Xf1X

0 þ b‘c
Xf3X

0 � a‘c
X 0f1X � b‘c

X 0f3XÞ

¼ ‘c
Xf

0
1X

0 � ‘c
X 0f

0
1X

¼ ½X ;X 0�:

In the same way one can prove that also D 0�
1 is involutive. Thus we conclude

that the almost bi-paracontact structure ðf 0
1; f

0
2; f

0
3Þ is integrable. The case

jIM j < 1 can be proved in a similar way. r

Remark 5.15. By a straightforward computation one obtains

h 0
1 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I 2M � 1

q
h; h 0

2 ¼ IMfhþ
ffiffiffiffiffiffiffiffiffiffiffi
1� k

p
f; h 0

3 ¼ 0;

h 00
1 ¼ IMfhþ

ffiffiffiffiffiffiffiffiffiffiffi
1� k

p
f; h 00

2 ¼ 0; h 00
3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� I 2M

q
h:

Moreover, the integrability of the almost bi-paracontact structure yields, by Cor-

ollary 3.9, N
ð1Þ
f 0
3
¼ 0 on D. On the other hand, for any X A GðDÞ, N ð1Þ

f 0
3
ðX ; xÞ ¼

�½X ; x� � f 0
3½f

0
3X ; x� ¼ 2f 0

3h
0
3 ¼ 0. Hence the almost contact structure ðf 0

3; x; hÞ is
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normal. Nevertheless the almost bi-paracontact itself is not normal because h 0
1

and h 0
2 do not vanish. Similar arguments hold for ðf 00

1 ; f
00
2 ; f

00
3 Þ. Thus we have

obtained a class of examples of integrable, non-normal almost bi-paracontact
structures such that one structure is normal.
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