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BI-PARACONTACT STRUCTURES AND LEGENDRE FOLIATIONS
BENIAMINO CAPPELLETTI MONTANO

Abstract

We study almost bi-paracontact structures on contact manifolds. We prove that if
an almost bi-paracontact structure is defined on a contact manifold (M,#), then under
some natural assumptions of integrability M carries two transverse bi-Legendrian
structures. Conversely, if two transverse bi-Legendrian structures are defined on a
contact manifold, then M admits an almost bi-paracontact structure. We define a
canonical connection on an almost bi-paracontact manifold and we study its curvature
properties, which resemble those of the Obata connection of a para-hypercomplex (or
complex-product) manifold. Further, we prove that any contact metric manifold whose
Reeb vector field belongs to the (i, x)-nullity distribution canonically carries an almost
bi-paracontact structure and we apply the previous results to the theory of contact
metric (k, u)-spaces.

1. Introduction

The study of Legendre foliations on contact manifolds is very recent in
literature, being initiated in the early 90’s by the work of Libermann, Pang et alt.
(cf. [16], [22]). Lately, the notion of “bi-Legendrian” structure has made its
appearance, especially with regard to its applications to Cartan geometry ([17])
and Monge-Ampére equations ([20]) and to other geometric structures associated
with a contact manifold, such as paracontact metrics. In particular, in [10] the
author studied the interplays between bi-Legendrian manifolds and paracontact
geometry, whereas in [11] the theory of bi-Legendrian structures was applied for
the study of a remarkable class of contact Riemannian manifolds, namely contact
metric (x, u)-spaces. We recall that a contact metric (i, u)-space is a contact
Riemannian manifold (M, ¢, &, 7, g) such that the Reeb vector field ¢ belongs to
the (i, u)-nullity distribution, i.e. the following condition holds

RIX, Y)E =rw(n(Y)X —n(X)Y) + un(Y)hX —n(X)hY),

for some real numbers x, x and for any X, Y e I'(TM), where RY denotes the
curvature tensor field of the Levi Civita connection and 2/ is the Lie derivative of

Key words and phrases. Almost bi-paracontact; contact metric manifold; (x, #)-nullity condition;
Sasakian; para-contact; para-Sasakian; bi-Legendrian; foliation; complex-product; anti-hypercomplex;
para-hypercomplex; Obata connection; 3-web.

Received February 23, 2010; revised March 18, 2010.

473



474 BENIAMINO CAPPELLETTI MONTANO

the structure tensor ¢ in the direction of the Reeb vector field. This definition,
which has no analogue in even dimension, was introduced by Blair, Koufor-
giorgos and Papantoniou in [4], as a generalization both of the well-known
Sasakian condition RY(X,Y)¢é=n(Y)X —n(X)Y and of those contact metric
manifolds verifying RY(X, Y)¢ = 0 which were studied by Blair in [2]. A notable
class of examples of contact metric (x,u)-spaces is given by the tangent sphere
bundle of Riemannian manifold of constant curvature.

One of the main results in [4] was that any non-Sasakian contact metric
(rc, u)-space is foliated by two mutually orthogonal Legendre foliations 2;(1) and
Z,(—4), given by the eigendistributions of the symmetric operator / correspond-
ing to the eigenvalues A and —A4, respectively, where A:=+/1 —x. Thus any
contact metric (x,u)-space is canonically a bi-Legendrian manifold.

In this paper we show that this is only a part of the story. In fact we prove
that also the operator ¢h is diagonalizable and admits the same eigenvalues as
h. Overall, the corresponding eigendistributions Zy,(4) and Zy,(—A) are inte-
grable and define two mutually orthogonal Legendre foliations, as well. Thus
any contact metric (r, u)-space carries two bi-Legendrian structures and, more-
over, any foliation of each bi-Legendrian structure is transversal to the foliations
of the other one. This geometrical structure resembles the concept, in even
dimension, of 3-web ([21]) together with its closely linked tensorial notion, para-
hypercomplex or complex-product structure ([1], [15], [18]). In fact, let ¢;, ¢», ¢;
denote the (1,1)-tensor fields defined by

(L1) b= b =k, =

|
=
—_

|
b

Then one can check that ¢, and ¢, are anti-commuting almost paracontact
structures on M such that ¢,¢, = ¢;.

Thus we are motivated in the study of this new geometric structure, which
we call almost bi-paracontact structure. An almost bi-paracontact structure on a
contact manifold (M,#) is by definition any triplet (¢,, ¢, ¢;), where ¢, and ¢,
are anti-commuting tensor fields satisfying ¢12 = ¢; =1—-n®¢ and ¢; = @9, is
an almost contact structure on (M,7). Then one can prove that ¢, and ¢, are
in fact almost paracontact structures and the eigendistributions corresponding to
+1 define, under some natural assumptions, four mutually transversal Legendre
foliations.

When the structure is normal, that is when the Nijenhuis tensors of ¢;, ¢,, ¢
vanish, the leaves of such foliations admit an affine structure. This is due to the
existence of a unique linear connection V¢ which preserves ¢,, ¢,, ¢;. V¢ is called
the canonical connection of the almost bi-paracontact manifold (M, ¢, ¢,, ¢;) and
it can be considered, in some sense, as the odd-dimensional counterpart of the
Chern connection of an almost para-hypercomplex manifold ([18]), as well as of
the connection studied by Andrada for a complex-product manifold ([1]), and of
the Obata connection of a manifold endowed with an almost quaternion struc-
ture of the second kind ([27]). In fact we prove that in any normal almost bi-
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paracontact manifold the 1-dimensional foliation & defined by the Reeb vector
field is transversely para-hypercomplex, i.e. the almost bi-paracontact structure
(¢;, ¢y, ¢3) is projectable to a local para-hypercomplex structure on the leaf space.

We further investigate the curvature properties of this connection, proving
that, under the assumption of normality, its curvature tensor field R¢ is of
type (1,1) with respect to ¢, ¢, 3, ie. R($X,4Y)=R($X,¢,Y)=
—R(3X,¢3Y) = —R(X,Y) for all X,Y e (TM).

In the second part of the paper we apply our general results on almost bi-
paracontact structures to the theory of contact metric (x,u)-spaces. First, we
study the bi-Legendrian structure (Zg;(4), Zgn(—4)). We prove that the Legen-
dre foliations Zy,(4) and Zy,(—A) are either non-degenerate or flat, according to
the Pang’s classification of Legendre foliations (cf. [22]). In particular, Zy;(4)
and Z,(—A) are positive definite if and only if Iy, > 0, negative definite if and
only if Iy <0, flat if and only if I =0, where

u
! 2
1 -k

is the invariant introduced by Boeckx for classifying contact metric (x,u)-
structures. This provides a new geometrical interpretation of such invariant
in terms of Legendre foliations (another one was given in [11]).

Then we consider the almost bi-paracontact structure (¢, ¢,, ¢;) defined by
(1.1) and prove that the semi-Riemannian metrics ¢g; and g, given by

gri=dn(,¢1) +n@mn, g =dn(-,¢y)+n®mn,
define two associated paracontact metrics satisfying

R¥(X,Y)E=r(n(Y)X —n(X)Y) + w,(n(Y)h X —(X)h, Y)

where

Mreover, Iy =0 if and only if (¢,&,#,91) is para-Sasakian. Furthermore, we
prove that any contact metric (x,u)-space such that I, # +1 admits a supple-
mentary non-normal almost bi-paracontact structure, although one of the two
paracontact structures is normal (cf. Theorem 5.14). In this way we obtain a class
of examples of strictly non-normal, integrable almost bi-paracontact structures.

Finally, we deal with the following question, which generalizes the well-
known problem of finding conditions ensuring the existence of Sasakian structures
compatible with a given contact form: let (M,#) be a contact manifold; then does
(M,n) admit a compatible contact metric (i, u)-structure? As a matter of fact,
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the answer to this question involves the standard almost bi-paracontact structure
(1.1) of contact metric (x,u)-spaces. In particular, using the properties of the
canonical connection V¢, we find necessary conditions for a contact manifold
(M,n) endowed with an almost bi-paracontact structure to admit a compatible
contact metric (x, u)-structure (cf. Theorem 5.13).

2. Preliminaries

2.1. Almost contact and paracontact structures. A contact manifold is a
(2n + 1)-dimensional smooth manifold M which carries a 1-form #, called contact
Sform, satisfying the condition # A (dn)" # 0 everywhere on M. Tt is well known
that given # there exists a unique vector field &, called Reeb vector field, such that

(2.1 iem=1, iz:dn=0.

From (2.1) it follows that %: dn =0, i.e. the 1-dimensional foliation #; defined
by the Reeb vector field is transversely symplectic. In the sequel we will denote
by 2 the 2n-dimensional distribution defined by ker(y), called the contact distri-
bution. 1t is easy to see that the Reeb vector field is an infinitesimal auto-
morphism with respect to the contact distribution and the tangent bundle of M
splits as the direct sum TM = 2 @ RE.

Given a contact manifold (M,#) one can consider two different geometric
structures associated with the contact form #, namely a “‘contact metric structure”
and a “paracontact metric structure’.

An almost contact structure on a (2n + 1)-dimensional smooth manifold M is
nothing but a triplet (¢, &,7), where ¢ is a tensor field of type (1,1), # a 1-form
and ¢ a vector field on M satisfying the following conditions

(2.2) PP=-T+n®¢& &) =1,

where [ is the identity mapping. From (2.2) it follows that ¢& =0, 70 ¢ =0 and
the (1,1)-tensor field ¢ has constant rank 2n ([3]). Given an almost contact
manifold (M,¢,& n) one can define an almost complex structure J on the

product M x R by setting J(X,f%) = (¢X —f¢n(X) %) for any X e I'(TM)

and f e C*(M x R). Then the almost contact manifold is said to be normal if
the almost complex structure J is integrable. The computation of the Nijenhuis
tensor of J gives rise to the four tensors defined by

(2.3) ND(X,Y) = [, 41X, Y) +2dn(X, Y)E,
(2.4) NP(X,Y) = (L) (Y) = (Zyyn) (X),
(2.5) NY(X) = (£:4)X,

(2.6) NO(X) = (Zen)(X),
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where [¢, #] is the Nijenhuis tensor of ¢, defined by
6, 41X, Y) := §°[X, Y]+ [$X, ¢Y] — $[pX, Y] — $[X, 4 Y],

and %y denotes the Lie derivative with respect to the vector field X. One finds
that the structure (¢,&,7) is normal if and only if N (" vanishes 1dentlcally, in
particular, if N, ) =0 then also the other tensors N, @) Ny ) and N ¢( ) vanish (cf.
[24]). By a long but straightforward computatlon one can prove the following
lemma which will turn out very useful in the sequel.

LemMa 2.1. In any almost contact manifold (M,$,¢,n) for any X, Y €
[(T™M),

(2.7) oN (X, Y)+ NV (X, Y) = NP (X, Y)E+ (XN (V).

Any almost contact manifold (M, ¢, & n) admits a compatible metric, i.e. a
Riemannian metric g satisfying

(2.8) 9($X,9Y) = g(X,Y) = n(X)n(Y)

for all X,Y e'(TM). The manifold M is said to be an almost contact metric
manifold with structure (¢,¢,n,9). From (2.8) it follows immediately that
n=g(,¢) and ¢g(-,¢:) = —g(¢-,-). Then one defines the 2-form ® on M by
O(X,Y)=g(X,9Y), called the fundamental 2-form of the almost contact metric
manifold. If ® = dy then  becomes a contact form, with ¢ its corresponding
Reeb vector field, and (M, ¢,&, 5, g) is called contact metric manifold.

In a contact metric manifold one has

(2.9) VIE=—¢— ¢h
(2.10) NV(X,Y) = (Vigh) Y — (Viy )X + (Vig)pY
— (V49)pX — n(Y)VE + n(X)V4E

where VY is the Levi Civita connection of (M,g) and h:= 1N () The tensor

field & is symmetric with respect to g and vanishes 1dentlcally 1f and only if the
Reeb vector field is Killing, and in this case the contact metric manifold is said to
be K-contact. A normal contact metric manifold is called Sasakian manifold.
Any Sasakian manifold is also K-contact and the converse holds only in dimen-
sion 3. A contact metric manifold is said to be integrable if and only if the
following condition is fulfilled

(2.11) (Vi)Y =g(X +hX,Y)E—n(Y)(X + hX).

Any Sasakian manifold satisfies such condition. By replacing (2.11) and (2.9) in
(2.10) one can prove the following

PrOPOSITION 2.2. In an integrable contact metric manifold
(2.12) N(X,Y) = 2(9(Y)phX — n(X)ghY).
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COROLLARY 2.3. Any integrable K-contact manifold is Sasakian.

On the other hand on a contact manifold (M,7) one can consider also
compatible paracontact metric structures. We recall (cf. [14]) that an almost
paracontact structure on a (2n + 1)-dimensional smooth manifold M is given by
a (1,1)-tensor field ¢, a vector field £ and a 1-form 7 satisfying the following
conditions ~

M) n&=1,¢=1-n®¢

(ii) the tensor field ¢ induces an almost paracomplex structure on each fibre

on 2 = ker(n).
Recall that an almost paracomplex structure on a 2n-dimensional smooth manifold
is a tensor field J of type (1,1) such that J # I, J? =1 and the eigendistributions
T+, T~ corresponding to the eigenvalues 1, —1 of J, respectively, have dimension
n.

As an immediate consequence of the definition one has that q§§ =0,70 ¢~ =0
and the field of endomorphisms ¢ has constant rank 2n. As for the almost
contact case, one can consider the almost paracomplex structure on M x R

defined by J (X f %) = (¢~X + fEn(X) %), where X is a vector field on M

and f a C* function on M x R. By definition, if J is integrable, the almost
paracontact structure (¢,&,7) is said to be normal. The computation of J in
terms of the tensors of the almost paracontact structure leads us to define four
tensors

(2.13) N (X, Y) = (44X, ¥) - 2dn(X, V)&,
(2.14) NP Y) = (Lpm(Y) = (Zgym)(X),
(2.15) N (X) = (Z:9)X,

(2.16) NW(X) = (L) (X),

The almost paracontact structure is then normal if and only if these four ten-
sors vanish. However, as it is shown in [28], the vanishing of N;;) implies the
vanishing of the remaining tensors.

Any almost paracontact manifold admits a semi-Riemannian metric § such
that

(2.17) g(#X . 9Y) = —G(X. Y) +n(X)n(Y)

for all X,Y eI'(TM). Then (M, qg,é,n,g) is called an almost paracontact met-
ric manifold. Notice that any such a semi-Riemannian metric is necessarily of
signature (n + 1,n). Moreover, as in the almost contact case, from (2.17) it follows
easily that » = ¢g(-,¢) and g(-,¢-) = —g(¢-,-). Hence one defines the fundamental
2-form of the almost paracontact metric manifold by ®(X,Y) = g(X,¢Y). If
dn = @, 17 becomes a contact form and (M, ¢, ¢, n, ) is said to be a paracontact

metric manifold.
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On a paracontact metric manifold (M, qg,f,n,gN) one has
(2.18) VIE = ¢+ gh
(2.19) N(X,Y) = (VS @)Y — (VI )X + (Vih)gY
— (V§)9X +n(Y)ViE - n(X)Vie

where /4 := IN 3 One proves (see [28]) that /& is symmetric with respect to §

and il vanishes identically if and only if ¢ is a Killing vector field and in such case
(M, ¢,&,n,g) is called a K-paracontact manifold. By using (2.18) one can prove
(cf. [12]) the formula

(2.20) RI(X,Y)E=—(ViB)Y + (Vi) X + (Vid)hY

+ (Vi) Y) = (V§)hX — g((Vih) X).
A normal paracontact metric manifold is said to be a para-Sasakian manifold.
Also in this context the para-Sasakian condition implies the K-paracontact

condition and the converse holds in dimension 3. In terms of the covariant
derivative of ¢ the para-Sasakian condition may be expressed by

(2.21) (V§h)Y = (X, Y)E+n(Y)X.

In any paracontact metric manifold Zamkovoy introduced a canonical con-
nection which plays the same role in paracontact geometry of the generalized
Tanaka-Webster connection ([25]) in a contact metric manifold. In fact the fol-
lowing result holds.

THEOREM 2.4 ([28]). On a paracontact metric manifold there exists a unique
connection V¢, called the canonical paracontact connection, satisfying the fol-

lowing properties:
(i) VPFy=0, V¢=0, V/g=0,

(i) (VEPY = (Vi)Y —n(Y)(X —hX) +§(X —hX, Y)E,

(iii) 77°(¢,§Y) = —gT™(, Y),
(iv) TP(X,Y) =2dn(X,Y)E for all X,Y eT(2).
The explicit expression of this connection is the following

(222)  VEY =VLY +q(X)@Y +n(Y)($X — $hX) + (X — hX,4Y)¢E.
Moreover, the torsion tensor field is given by

(2.23) TP (X,Y) =n(X)$hY — n(Y)phX +2§(X,$Y)E.

If the paracontact metric connection preserves the structure tensor q;, that is
the Levi Civita connection satisfies

(2.24) (VEDY = n(Y)(X —hX) = §(X — hX, Y)¢
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for any X, Y e ['(TM), then the paracontact metric structure ((;57 &,n,§) is said to
be integrable. This is the case, in particular, when the eigendistributions 7+ of
¢ associated to the eigenvalues +1 are involutive. Moreover, from (2.24) and
(2.21) it follows that any para-Sasakian manifold is integrable. By replacing (2.24)
and (2.18) in (2.19) one can straightforwardly prove the following proposition.

PrOPOSITION 2.5. In an integrable paracontact metric manifold
(2.25) NV (X, Y) = 2(1(Y)$hX — n(X)hY).
COROLLARY 2.6. Any integrable K-paracontact manifold is para-Sasakian.

2.2. Bi-Legendrian manifolds. Let (M,n) be a (2n+ 1)-dimensional con-
tact manifold. Tt is well known that the contact condition 7 A (dn)" #0 geo-
metrically means that the contact distribution & is as far as possible from being
integrable. In fact one can prove that the maximal dimension of an involutive
subbundle of & is n. Such n-dimensional integrable distributions are called
Legendre foliations of (M,n). More generally a Legendre distribution on a con-
tact manifold (M, #) is an n-dimensional subbundle L of the contact distribution
not necessarily integrable but verifying the weaker condition that dy(X,X’) =0
for all X, X’ eT'(L). The theory of Legendre foliations has been extensively
investigated in recent years from various points of views. In particular Pang
([22]) provided a classification of Legendre foliations by using a bilinear sym-
metric form I1# on the tangent bundle of the foliation %, defined by

(2.26) Iz (X, X') = —(LxLym) (&) = 2dn([¢, X], X).

He called a Legendre foliation positive (negative) definite, non-degenerate, degen-
erate or flat according to the circumstance that the bilinear form ITs is positive
(negative) definite, non-degenerate, degenerate or vanishes identically, respec-
tively. By (2.26) it follows that % is flat if and only if ¢ is “foliate”, i.e.
&, X]e(TF) for any X e [(TF).

If (M,n) is endowed with two transversal Legendre distributions L; and L,,
we say that (M,n,L;,L,) is an almost bi-Legendrian manifold. Thus, in par-
ticular, the tangent bundle of M splits up as the direct sum TM = L; @ L, ® RE.
When both L; and L, are integrable we refer to a bi-Legendrian manifold. An
(almost) bi-Legendrian manifold is said to be flat, degenerate or non-degenerate if
and only if both the Legendre distributions are flat, degenerate or non-degenerate,
respectively. Any contact manifold (M,#n) endowed with a Legendre distribu-
tion L admits a canonical almost bi-Legendrian structure. Indeed let (¢,¢, 7, 9)
be a compatible contact metric structure. Then the relation dy(¢X,¢Y) =
O(pX,¢Y) =dn(X,Y) easily implies that Q:= ¢L is a Legendre distribution
on M which is g-orthogonal to L. Q is usually referred as the conjugate
Legendre distribution of L and in general is not involutive, even if L is. In [7]
the existence of a canonical connection on an almost bi-Legendrian manifold has
been proven:
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THEOREM 2.7 ([7]). Let (M,n,L,L,) be an almost bi-Legendrian manifold.
There exists a unique linear connection V" called the bi-Legendrian connection,
satisfying the following properties:

(1) VblLl c Ll, Vble c Lz,

(i) ve=0, vPdy=o,

(i) 7P(X,Y) =2dn(X,Y)¢ for all XeT(L), Yel(L), T"(X,¢) =

(&, X1, ], + (& X0, for all X e T(TM),
where Xp, and Xp, denote the projections of X onto the subbundles L, and L,
of TM, respectively. Furthermore, the torsion tensor field T" of V® is explicitly
given by

(2'27) Tbl(X7 Y) = _[XLH YLJL;(—BR&_ - [Xsz YLz]Lle-)Rf +2 d”(Xa Y)é
+ 77( Y)([£7XLI]L2 + [57 XLz]Ll) - ”(X)([é’ YLI]LZ + [éa YLz]Ll)'

In [10] the interplays between paracontact geometry and the theory of bi-
Legendrian structures have been studied. More precisely it has been proven the
existence of a biunivocal correspondence ¥ : # — 2 between the set % of almost
bi-Legendrian structures and the set & of paracontact metric structures on the
same contact manifold (M,#). This bijection maps bi-Legendrian structures
onto integrable paracontact structures, flat almost bi-Legendrian structures onto
K-paracontact structures and flat bi-Legendrian structures onto para-Sasakian
structures. For the convenience of the reader we recall more explicitly how
the above biunivocal correspondence is defined. If (L;,L;) is an almost bi-
Legendrian structure on (M,#), the corresponding paracontact metric structure
(¢7 évnvg) = T(leLZ) is giVCl’l by

(228) ¢;|L1 = 17 g;le = _17 &é = 07 g = dr]()¢~) +7 ® n.

Moreover, the relationship between the bi-Legendrian and the canonical para-
contact connections has been investigated, proving that in the integrable case they
in fact coincide:

THEOREM 2.8 ([10]). Let (M,n,Li,L>) be an almost bi-Legendrian manifold
and let (¢,&,n,§) =Y (L1,Ly) be the paracontact metric structure induced on M
by (2.28). Let V" and V" be the corresponding bi-Legendrian and canonical
paracontact connections. Then
(a) Vg =0, V"'g=0,
(b) the bi-Legendrian and the canonical paracontact connections coincide if
and only if the induced paracontact metric structure is integrable.

3. Almost bi-paracontact structures on contact manifolds

DeriNiTION  3.1. Let (M,n) be a contact manifold. An almost bi-
paracontact structure on (M,n) is a triplet (¢, ¢y, #3) where ¢; is an almost
contact structure compatible with #, and ¢, ¢, are two anti-commuting tensors
on M such that ¢? =43 =1 —n®¢ and ¢4, = 5.
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The manifold M endowed with such a geometrical structure is called an
almost bi-paracontact manifold. From the definition it easily follows that ¢;¢; =
—¢3¢, = ¢, and P3¢, = —hrd3 = ¢;.

For each ae{1,2,3} let & and 2, denote the eigendistributions of
¢, corresponding, respectively, to the eigenvalues 1 and —1. Notice that, as
$,£=0, 2 and 2, are in fact subbundles of the contact distribution. In the
following proposition we collect some properties of those distributions.

PROPOSITION 3.2.  Let (M,n,,,$,,$3) be an almost bi-paracontact manifold.
Then

L $(27) =2y, 61(27) =25,

2 4T =9 b)) = 5y

3. 95(2)) =9, $5(2;) =2, for each o€ {l,2},

4. ¢ 95 — D5 and ¢, : D}t — D are isomorphisms,

5. the tangent bundle of M splits up as the direct sum TM = 9 ® 7, @
R¢ = 93@9/?@R§ Sfor all o,pe{1,2}, a#p,

6. dim(2,") = dim(2; ) = dim(2; ) = dim(Z2; ) =n. In particular, ¢, and

@, are almost paracontact structures.

Proof. For any X eI'(2;) one has ¢4 X = —¢ ¢, X = —¢ X, so that
$,(25) = 25. On the other hand, let Y be a vector field tangent to &, and
set X :=¢ Y. Then ¢, X =¢{Y =Y, so that it remains only to prove that
X eT(2)). Indeed, $,X = ¢ Y = -1 Y = ¢ Y = X. Thus ¢,(2)) =25
and analogously one can prove that ¢;(%5) = 2,. In a similar way one proves
the other identities, as well as the fourth property. In order to prove the fifth
property it is enough to show that 7 = 2 ® 7, = 7} @ QZ+ for all o, f € {1,2}.
Let us con51der the case « = 1. Then we can decompose every Xe F( )as X =

X - X ) 1(X +¢,X). An immediate computation shows that 1 (X — ¢ X )
691 and (X—|—¢1 ye 2. Next, if Xe2 N2, then ¢ X = X_—¢1
from Wthh it follows that ¢;X = —¢1X, hence X =0. Thus = %} @Jl
In a similar way one can prove that ¥ = 27 @ ,. Now we prove the identity
2=9®2y. If Xe2 NZ; then ¢1X:X: $, X, hence X = ¢,¢, X = 3 X
and this implies that X = 0. On the other hand, note that from 4, since ¥ =
97 @9, ,0e{l,2}, it follows that, for each a € {1,2}, dim(Z,") = dim(Z, ) = n.
Hence dim(2|" + ;) =2n and we conclude that 2 = 2" ® ;. The other
identities can be proven similarly. O

ProposiTION 3.3, In any almost bi-paracontact manifold one has
={X+hX|Xe2} and 75 = {X + p: X | X € 7 }.

Proof. We show that 2," = {X + ¢;X | X € 2} by proving the two in-
clusions. Let Y e 2;". We have to prove the existence of X € 25 such that
Y =X+ ¢ X. We put X :=1(Y - ¢3 Y). Firstly we verify that in fact X € 5.
We have §oX =3 (Y — $,4:Y) =5 (Y + 1Y) =3(h,Y + ¥) =5(Y + 4,4, Y)
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=1(Y —$4,Y) =X, hence X € Z;. Next, one can easily check that Y =
X +¢3X. Conversely, let X be a vector field belonging to Z;. Then
P X + §3X) =g X + 153X = h X + X =3 X + X = 43X + X, so that
X 4+ ¢;X € 2. Ina similar manner one can prove the other equality. O

Example 3.4. Consider R*"*! with global coordinates {xi,...,%, yi,...,
Vn,z} and the standard contact form n=dz— ) [, y;dx;. Put, for each ie
0 0 0 L .

{1,...,n}, X; ::a—yi and Y; ::a_xl-eriE' Then the contact distribution Z is
spanned by the vector fields Xi,..., X, Yi,...,Y,. We define three tensor fields

b1, ¢, ¢5 by setting
hXi=Xi, ¢ Yi=-Y, ¢<:=0,
9 Xi= =Y., §Yi:=-X;, ¢$<:=0,
0 Xi =Y, §Yi=-X, ¢¢:=0,

for all ie{1,...,n}. Some straightforward computations show that (¢, @, #3)
defines a bi-paracontact structure on the contact manifold (R*'*' 5). In this
case the canonical distributions 2,", 2, 95, 95 are given by

9" =span{Xy,..., Xy}, Z; =span{Yi,...,Y,},
95 =span{X; — Y1,..., X, — Y}, 25 =span{X; + Y1,..., X, + Yo}

In order to find some more examples we prove the following proposition.

ProposITION 3.5. Let (M,¢,E,n,9) be a contact metric manifold endowed
with a Legendre distribution L.  Then M admits a canonical almost bi-paracontact
structure.

Proof. Let Q be the conjugate Legendre distribution of L, i.e. the Legendre
distribution on M defined by Q := ¢(L) (see §2.2). We define the (1, 1)-tensor
field  on M by setting Y|, =1, ¥|o = —1, y<=0. Then if we put ¢, := ¢y,
&y =, ¢ := ¢, it is not difficult to check that (¢, @,, @;) is in fact an almost bi-
paracontact structure on (M,7). O

As a consequence of Proposition 3.5 we obtain a canonical almost bi-
paracontact structure on the cotangent sphere bundle of a Riemannian mani-
fold (M,g) and on any contact metric (x,u)-space ([4]). We will examine
carefully this last example in the last section of the paper.

DEFINITION 3.6. An almost bi-paracontact structure such that ;" and
c@zi are Legendre distributions is called a Legendrian bi-paracontact structure. 1f
7 and 25 define Legendre foliations of (M,#) then the almost bi-paracontact
structure is called integrable.
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We present some characterizations of the integrability of an almost bi-
paracontact manifold.

PROPOSITION 3.7. An almost bi-paracontact structure (¢, d,,¢3) is Legen-
drian if and only if for each o € {1,2} the tensor field N )" panishes identically.
Furtheremore, in any Legendrian almost bi-paracontact structure also the tensor
field N( ) vanishes identically. In particular, one has, for any X,Y e ['(TM),

(31) d”(¢1Xa ¢1 Y) - d’7(¢2X7 ¢2 Y) = 7d7/(¢3Xa ¢3 Y) - 7d77(X7 Y)

Proof. First of all we have, for all X e I'(2), N¢ (& X) = —n(E, ¢,X]) =
2dn(¢,¢,X) =0 by (2.1). Next, in order to prove that N¢( ) vanishes on 9, we
distinguish the cases X, Y e(Z)), X,Ye(2,) and X e (Z}), Y e [(Z)).
In the first case we have N;”(X,Y) =¢,X(n(Y)) —n([4,X, ¥]) — 4, Y (n(X)) +
([, Y, X)) =2dn(¢,X,Y)+2dn(X,¢9,Y)=4dy(X,Y)=0, where the last
equality is due to the fact that &, is a Legendre distribution. The case
X,YeTl(Z;) is similar. Next, for any X e [(2)), Y eIl (Z]), we have
N< X, y) = (06X, Y)) + 0(06,Y. X)) = Fn((X, ¥)) £ n([X, ¥]) = 0. Con-
versely, if Ni¥ =0 then, for any X, Y e [(2,), 0 = N\ (X, Y) =2 dn(¢,X, Y) +
2n(X,¢,Y) =4dn(X,Y), so that dn(X,Y)=0. Consequently, as, by Proposi-
tion 3.2, 2 is n-dimensional, it is a Legendre distribution. In a similar way
one can prove that also &, is a Legendre distribution. In order to prove the
second part of the prop0s1t10n notice that since N, () and Ny (2) vanish, for each

o e{l,2}, dy(p,, ) = —dn(-,¢,). Now, for any X YeF(TM), dn(9:X,Y) =
dn(¢19,X,Y) = _dﬂ(¢2Xa 1Y) =dn(X,d,4,Y) = _dﬂ(Xa ¢3Y). Hence,

N2(X,Y) = g X(n(Y)) = n([$:X . Y]) — $5Y (X)) + ([ Y, X))
=2dn($s X, Y) = 2 dn(¢5Y, X) =0. O

PROPOSITION 3.8.  An almost bi-paracontact structure (¢1,¢2,¢3) is Legen-
drian (respectively, integrable) if and only if, for each we{1,2}, N, )(X,X’) €

[(2F) (respectively, N N!! )(X X')=0) for any X,X' e [(27).
Proof. By (2.13) we have, for any X, X' eT'(2,),
(32) N X = (XX 4 (X, X) = 4,0X, X') = 6, 1%, X'
:Z[Xle] _2¢a[X1X/]'
Hence, applying ¢, one obtains

(3.3) BN (X X') = 20,[X, X' = 20X, X'] + 2n([X, X"])¢

= —N;'(X,X") = 4dn(X, X")¢
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Then (3.3) 1mplles that dy(X,X’') =0 if and only if N¢ (X X eT(2,;) and
(3.2) that 2 is involutive if and only if N! Py )(X X"y =0. Analogous arguments
work for @_. O

o

COROLLARY 3.9. An almost bl paracontacl structure (¢, ¢, ¢3) is integrable

if and only if the tensor fields N N(;U vanish on the contact distribution 9.
Furthermore, in an integrable almost bi-paracontact manifold also the tensor field
ng;) vanishes on 9.

Proof. The proof is trivial in one direction. Conversely, notice that,
for any X eT(2]), Yel(Z;), NJ'(X,Y)=[X,Y]+[X,—Y]—¢,[X ¥]—
¢,]X,—Y] =0. Then by Proposition 3 8 we have that N, (" and N, (1 vanish on
9. Now for ending the proof it remains to demonstrate that if N 4 ) and N
vanish on & then also N, (' yanishes on . Let X, X' be sections of ;" By

Proposition 3.2, ¢, X and ¢2X " are sections of ;. Then the integrability of &,
and 2, yields

B4 0= N (x.x)

= ¢1[X7X |+ 612X, 62 X"] — $3[4: X, X'] — 5[ X, X ]
= [X, X'] = (X, X"] — 43[4, X, X'] — §3]X, , X"].
Using (3.4) we have that
NV, X') = =X, X'+ [$361 X . 931 X'] — $s[hsh X, X] — $3[X, 3 X )
= —[X, X' ]+ [0 X, 5: X" + h3]ho X, X'] + 43X, 9, X '] = 0.

Arguing in the same way one can prove that N, (1 )( Y)=0 for all Y,Y'e
[(2y). Next, for any X e [(Z") and X € l"(g1 ) by (2.7) we get

$3N; (X, Y) = =Ny ($:X, Y) + 2(dn(¢:X, Y) + dn(X, $:Y))E =0,

because ¢;Z; = 2* and by (3.1). On the other hand, since the almost bi-
paracontact structure (¢, ¢y, ¢3) 1is integrable in particular Legendrian,
(N, (X, Y)) = =n((X, ¥]) +n(($3X, ¢ Y]) = N’ (X,¢3¥) =0 by Proposition
3.7. Therefore, as ¥ = 2;" @ 9;, we conclude that N( )(Z, Z')=0 for any
VAVAR-SNER O

A notion stronger than integrability is that of ‘““‘normal almost bi-paracontact
structure”.

DrerFINITION 3.10.  Let (M,#n,¢;,¢,,¢3) be an almost bi-paracontact man-
ifold. If the almost paracontact structures (¢;,&,7), (¢,,&,1) and the almost
contact structure (¢s,&,n) are normal, i.e. NY'=0 for each ae{l,2,3},
(¢, ¢y, 45) is called a normal almost bi-paracontact structure.
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By arguing as in Corollary 3.9 one can prove that if N ) and N ) vanish
identically, then also N, (z =0 and the almost bi- paracontact structure 1s norrnal
Moreover, since, for each a € {1,2} and any X e ['(Z), N, (é,X) = N¢z (¢, X),
using Corollary 3.9 one can prove the following proposition.

ProposiTiON 3.11. An almost bz -paracontact structure is normal if and only
if it is integrable and N and N ) vanish identically.

As a consequence we are able to give a geometrical interpretation to nor-
mality in terms of Legendre foliations.

COROLLARY 3.12.  An almost bi-paracontact structure is normal if and only,
Jor each o€ {1,2}, both &} and 2, are flat Legendre foliations.

Proof. Taking the definition of N ) into account, one can easﬂy prove that
¢ is foliate with respect both to &, and 2, if and only if N¢ = (0. Then the
assertion follows from this remark and Proposrtlon 3.11. O

Thus we have seen that, under some natural assumptions, an almost bi-
paracontact structure on a contact manifold gives rise to a pair of transverse
(almost) bi-Legendrian structures (2,",%; ) and (25,2;). Conversely we have
the following result.

ProposiTioN 3.13. Let (L,Q) and (L', Q') be two transverse almost bi-
Legendrian structures on the contact manifold (M ,n). Then there exists a Legen-
drian almost bi-paracontact structure (¢, ¢y, ¢3) such that L, Q and L', Q' are,
respectively, the eigendistributions of ¢, and ¢,.

Proof.  We define ¢,[, =1, ¢||p=—1, $;£=0 and ¢,|,, =1, ¢»|p = —1,
$,& =0. Then we set ¢; := ¢;¢,. One can easily check that (¢, ¢,,#;) is in
fact an almost bi-paracontact structure on (M,#) such that, by construction,
9t =L, 97 =Q and 95 =L', 25 = Q'. In particular, (¢,,¢,,¢;) is Legen-
drian and it is integrable if and only if L, Q, L', Q' are involutive. O

4. Canonical connections on bi-paracontact manifolds

In this section we attach to any almost bi-paracontact manifold some canon-
ical connections and then we study their nice properties. To this end, we prove
the following preliminary lemma.

Lemma 4.1. Let (¢y,¢,,¢3) be an almost bi-paracontact structure on the
contact manifold (M,n). For each o€ {1,2,3} let h, be the operator defined by
hy =% %, =N Then
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(@) hyd, = —d,hy for each o e{l1,2,3},
(b) ¢1ha+higy = hy = —hagpy — $yh1, $1hs + s = hy = —h3¢y — s,
Prhs + gy = —hy = —h3, — 3.

Proof. (a) Let us assume that o€ {1,2}. Then (%4,)o @, + ¢, 0 (%4,)
= L)) = LI - ® &) = (L) @&~ ® (%) =0, since Ly =iz di+
dizn =0 by (2.1). Thus hyo¢, = —¢,0h,. The case a =3 is similar.

(b) 2h3 = Lehy = Le(h14) = (Lethr)dy + 1(Ley) = 2y + 2¢1hy. The
other equalities can be proved in a similar way. O

THEOREM 4.2. Let (¢, ¢,,¢3) be an almost bi-paracontact structure on the
contact manifold (M,n). For each o€ {1,2,3} there exists a unique linear con-
nection V* on M satisfying the following properties:

(i Vv*¢=0,

(i) Vg =0, V'g,=n® (2 —mhgs+dsh), V'és=n® (2hs—hg,+
$h), Vi =n® (2 +hapy — dsha), Vi =0, Vg3 =n® (2h3+
hay — $ih2), Vg =n @ (2 — hady + dohs), VP hy = n @ (2hy + hagy —
$1h3), V3¢3 =0,

n(X)h, Y for any X,Y e I'(TM),
where T denotes the torsion tensor field of V*. V', V2, V3 are explicitly given by

(4.1) V)l(Y:%([/n Y= [ X, Y]+ 41 [X, 0 Y] = 1[4 X, Y]+ o[ X, ¢, Y]

— X, Y]+ s X, Y] — [ X, 45 Y]
+20(X) (= Y + Y — h3ps Y) + 2n(Y )iy X
—n([X, YN)S+n([¢ X, 4, Y])E) + X (n(Y))<,

(42)  VEY = 11X, Y]~ (52X, Y] + X2 Y] — s X, Y]+ (X, V)

— $31X, Y] — §3[ X, 1 Y] + 41 [h2 X, 43 Y]
+27(X)($ Y — gy Y — has Y) + 25n(Y ) X
—n([X, Y])E + ([, X, 6, Y])E) + X (n(Y))<,

(43) VI = Z(IX Y]+ X, Y]+ hX 6y Y]+ X, 2 Y] — X, Y]

+ $5(h5 X, Y] + $y[h3 X, 4, Y] — ¢y [ X, ¢, Y]
+20(X)(md Y + gy Y + 3y Y) — 2n(Y)has X
—n([X, Y))S —n([¢:3X, 45 Y])E) + X (n(Y))<.

Proof. First of all we prove the uniqueness. Fix an o€ {1,2,3} and
suppose that V and V' are two linear connections satisfying (i), (ii) and (iii). Let
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us define the tensor 4 :=V —V’. For any X,Y e I'(2), since both V and V'
preserve the almost bi-paracontact structure, one has

(44) A(Xv ¢ﬂ Y) = ¢ﬁA(Xa Y)

for each pe{1,2,3}. Because of (i), we have A(X,&) =0 for all X e T(TM).
Next, for all Y eI'(2),

A&, Y)=V:Y — VéY
=VyE+TEY)+[E Y] -V =T'(Y) - [, Y]
=&(T(&2Y) - T'(E 97 Y))
= &(T (4,0, Y) = 2(dn(,¢, ,Y) — dn(&,¢;Y))E = n(; Y )&
—n(Oha g} Y — T'(§,&,4,Y) +2(dn(4,£,4,Y)

—dn(E, B2 Y))E+ 0B Y )haé + n(Ehagy Y) = 0,

where we have applied (ii) and (iii), and we have put e =1 if a € {1,2}, e = -1 if
o= 3. Further, from (iii) it follows that T(¢,X,Y) - T(X,¢,Y) =T'(¢,X,Y) —
T,(X,¢“ Y), that is V¢1Xy — Vy¢O(X - V)(¢aY + V¢1yX = V;)yXY — V;,¢aXf
Vi, Y +V, yX. Consequently, '

(4.5) A(¢, X, Y)—A(Y,¢,X) — A(X,9,Y)+ A(¢$,Y,X) =0.
If in (4.5) we take X eT(2,)) and Y e (2, ) we obtain
(4.6) AX,Y)=A(Y,X).

By virtue of (ii), for each Z e I'(2), Vz and V}, preserve the distributions Z;.
Thus A(X,Y)eI(2,) and A(Y,X)eI'(2,). This together with (4.6) and 5.
of Proposition 3.2 imply that

4.7) AX,Y)=A(Y,X)=0.

Now let us consider X, X' eI'(2,)) and let fe{l,2}, f# o Note that, by
1.-2. of Proposition 3.2, ¢;X" € '(%,). Then, by (4.4) and (4.7), A(X,X') =
A(X, ¢/§X’) = ¢pA(X,¢pX') = 0. In a similar way one can prove that A(X’, X)
= 0. Thus the tensor 4 vanishes identically and so V and V’ coincide.

In order to prove the existence, for each o€ {1,2,3}, of a connection V*
satisfying (i), (ii), (iii), we distinguish the cases o€ {1,2} and «=3. Let us
consider o € {1,2}. First of all, we put, by definition, V*¢ := 0. Next, notice
that by (iii) we have that T%(¢,X,&) = h, X, for all X e I'(TM). In particular,
for any X e [(2), T*(X,&) = T(¢2X,&) = hy¢,X. It follows that necessarily

(4.8) VIX = —hup X + €, X]
for all X eI'(2). In particular,

& X),e, if X eT(2));
(4.9) VIX = & Xlo, . ( ,)
< &, X],-, f Xel(2)).
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Further, for any X e ['(2,) and Y e T'(Z,),
T*(X,Y) =T%¢,X,Y)
= _T1<X7 Y) +4 d;/](Xv Y)éa

from which it follows that T*(X,Y)=2dn(X,Y)E Hence, 2dn(X,Y)E =
VAZY - V?/X - [Xa Y]Q“ - [Xv Y]@; - ”([Xa Y])é) that is

(4.10) ViY — [X, Y}(f =V{X - [X, Y]g;.

Since, due to (ii), V3 Y € I'(Z,) and V{ X € ['(Z,"), both the sides of (4.10) must
vanish and we conclude that

(4.11) ViY =[X,Y],, ViX=[YX],..

Moreover, taking 1.-2. of Proposition 3.2 into account, for any X, X' e I'(Z,)
we have

(4.12) V;X, = V)W;X/ = ¢/3V;¢/;X/ = ¢/;[X7 ¢/;X/]fz;
and, for any Y,Y' eI'(Z,),
(4.13) VEY = VigsY = Vids Y = GV, 45 Y],

where fe{1,2}, f#a. Now we decompose any X,Y e '(TM) as X = X, +
X_+nX)¢and Y=Y, +Y_+n(Y)E where X, Y, and X_, Y_ denote the
projections onto the subbundles 2, and 2, of TM, respectively. Then by
(4.10), (4.11), (4.12) and (4.13) we get

(414) V)?Y = ¢/f[X+7¢o: Y+]§/); + [X-‘rv Y—].@; + [X—v Y-‘r]ff;r + ¢/j’[X—a¢oz Y—]Clx+

+X(Y)E+n(X)[E, Yilgs +n(X)[E Y-]q-
Notice that, as one can easily check,
1 1
Then, applying (4.15) to (4.14), after some very long but straightforward compu-
tations, we get

4.15) X,

(@16)  VEY = X((V))E + (X, Y] = [6,X.6,Y] ~ 4,16, X, Y] + 4,14,

+ Ppl X, Pp Y] — b, [ X, 0pb, Y] — $pb, [0, X, hp Y]

+ @l X, 9, Y] + (X)), (S, 4, Y] = n(Y)4,[E, ¢, X]
—n(X)Ppl&, b Y] +n(X) s, IS, dpd, Y] +1(Y)[E, X]
+ (XS Y] =n([X, YDE+n((¢, X, ¢, Y])E
—n(Y)n([&, X])E —n(X)n([S, Y])E).
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Then we can take (4.16) as a definition and one can easily check that, for each
o€ {1,2}, V¥ satisfies (i), (ii) and (iii). Moreover, taking the definition of the
operators hy, hy, hs into account, it is not difficult to verify that (4.16) implies
(4.1)-(4.2). It remains to prove the theorem for o = 3. In that case the same
construction as for « € {1,2} can be repeated, but now arguing on the eigendis-
tributions 2y and %; of ¢; corresponding to i and —i, respectively, and
replacing (4.15) with

(I +igs—n®L).

| —

Pay =%(1—i¢3 -1®%), pa; =
Then after very long computations one obtains
VDY = X((D)E+ (X, Y]+ (X, 3]+ 4y (X1 Y]+ (X 6]
X Y]+ Bl X Y] Bl X Y]~ XY
VB E B Y AN RIE B3]~ XVl 82 Y] N6, 6]

= (Y&, $3X] +n(X)[E 97 Y] = (X, Y])E — n([$sX, 45 Y])E),
from which (4.3) follows. O

PROPOSITION 4.3.  The torsion tensor fields of the linear connections V', V2,
V3 stated in Theorem 4.2 are given by

(4.17) WMJ)ZK PN Y) + (N = NDY (6, X 6, Y))
+(dn(X,Y) — d(p X, $ Y))E
3002y Y + g ¥ — sy Y)

—n(Y) (=2 ¢ X + hagy X — I35 X)),

Ny = N Y) 4 (NG = NJDY (8, X 6, 7))
dn(X,Y) — dy(ps X, $,Y))E

(X)) (¢ Y —2h¢, Y — h3h3 Y)
—n(Y)(h1 X = 2hp, X — h3¢3 X)),

— (N + N, 1) = (VY + MDY (83X, 65 7)
+(dn(X, Y) +dn(ps X, §3Y))E

(X)) (i Y + hapy Y + 2134, Y)

—n(Y) (i X + hap, X + 2h3¢5X)).

(4.18) T>(X,Y) =—(

N N

—~

N —

+

(4.19) T3(X,Y) =

A.l;|>—a

+

N —
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Proof. The proof follows from (4.1)—(4.3) by a straightforward computa-
tion. ]

The connections stated in Theorem 4.2 give rise to a canonical connection on
an almost bi-paracontact manifold that can be considered as an odd-dimensional
counterpart of the Obata connection of an para-hypercomplex (or complex-
product) manifold (cf. [1], [15], [18], [23], [27)).

THEOREM 4.4. Let (M,n,¢,,$,,¢5) be an almost bi-paracontact manifold.
There exists a unique linear connection V¢ on M such that

(i) vee=o0,

(i) V¢, =2n®h, for each o e{1,2,3}, 1 1

(i) 7 :(1)‘1’7 ‘1’%(—‘177((/51'7 $1°) — dn(by, dy:) + dn(s-, ¢3-)) ‘*‘%(‘ ¢(1) - N,,Ez)

+N)-

Proof. We first prove the uniqueness of a linear connection satisfying the
conditions (i), (ii) and (iii). Let V and V' be two linear connections satisfying (i),
(i), (iii). Let us define the tensor 4 :=V —V’. Because the expressions of the
torsion tensor fields of V and V' coincide, one has immediately that A(X,Y) =
A(Y,X) for all X,Y eI'(TM). Hence A is symmetric. Then, due to (ii), one
has A(X,$,Y)=¢,A(X,Y)=¢A(Y,X) =AY, 4 X) = A($, X, Y) and, analo-
gously, A(X,¢,Y) =9, A(X,Y) = A($,X,Y). Therefore

(4.20) A9 X, ,Y) = 1 AX,$,Y) = 144X, Y) = $3A(X, Y).
On the other hand
(421) A4 X, 4,Y) =4 A9 X, Y) = $$ A(X, Y) = —¢3A(X, Y).

Thus comparing (4.20) and (4.21) we get ¢;4(X,Y) = —¢;4(X,Y). Applying
¢3 to both the sides of the previous identity we obtain

(4.22) —AX,Y) +n(4(X,Y))¢ = AX, Y) = n(4(X, Y))<.

Notice that as, for each ZeI'(Z), Vz and V., preserve ¢,, they also preserve
the eigendistributions Z{" and hence the contact distribution 7 = %;" ® Z; .
This implies that #(A4(X, Y)) = 0 whenever X, Y e I'(2). Moreover, A(X,&) =0
and A(E,Y) = A(E,¢1Y) = A(4,&,¢,Y) = 0. Consequently (4.22) yields that A
is anti-symmetric. Since it is also symmetric, it necessarily vanishes identically.
This proves that V=V'.

In order to define a (necessarily unique) linear connection satisfying the
conditions (i), (i), (iii), we consider the barycenter of the canonical connections
V!, V2, V3 stated in Theorem 4.2. Thus we define, for all X, Y e I'(TM),

: 1
V,"(Y::E(V}(YJer(YJrV;Y).
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We have immediately that V6 = 0. By the expressions in (ii) of Theorem 4.2
and by (b) of Lemma 4.1 we have

1
(Vo + V24)) =21 ® (2hy + has — psha + 2hy — hagy + $oh3)

N W —

2577@}11

and, analogously, V¢, =27 @ hy, V'¢3 =27 ® h3. Using (4.17)-(4.19) we can
easily find the expression of the torsion of V¢:

(4.23)  TYX,Y)=T'(X,Y)+T*X,Y)+T*X,Y)

= d"](Xa Y)é:
F3 (X, 3y Y) — i X, b2 Y) + X, 4 Y))E
+é(—Nq§l‘)(X, Y) - NV (X, Y) + NP (X, Y)). O

The unique connection V¢ stated in Theorem 4.4 will be called the canonical
connection of the almost bi-paracontact manifold (M,#, ¢, d,, ;). Using (4.1)—
(4.3), after a long computation, one finds that the explicit expression of V¢ is the
following:

VEY = G, Y]~ B X4 Y]~ (62X, 62 Y]+ [, 5]

+3¢1[X, 01 Y] + 36, [X, 6, Y] = 33X, 43 Y] — 41 [ X, Y]
— Q| X, Y]+ §5[¢: X, Y]+ 41 (62X, 43 Y] — ¢1[¢3X, 6, Y]
= Qlh X, 93 Y]+ b3[¢: X, 1 Y] + §31h1 X, 9, Y] — d3[¢, X, 4, Y]
+20(X) (¢ Y + hady Y — h3g3Y) + 2n(Y)(Ind\ X + haghy X — h3d3 X)
+ (41X, 61 Y]) +0([92 X, 9, Y]) = n([h3X, §3Y])
= 3n([X, Y]))S) + X(n(Y))<.
COROLLARY 4.5. Let (M,n,¢;,$,,¢3) be a normal almost bi-paracontact
manifold.

1. There exists a unique linear connection V¢ on M preserving the almost bi-
paracontact structure and whose torsion is given by

(4.24) T =2dn®:¢.
2. The curvature tensor field of V¢ satisfies

(4.25) RE(pr-,¢1°) = R4, ¢27) = —R (¢35, 43) = —R".
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In particular, for all X e T(TM)

(4.26) R¢(X,&) =0
3. The Ricci tensor of V¢, defined as Ric‘(X,Y) := trace(Z — R°(Z,X)Y),
is given by
: 1
(4.27) Ric‘(X,Y) = ) trace(R‘(X, Y)).

In particular, the Ricci tensor is skew-symmetric and Ric(¢,-,¢,-) =
RiCC(¢2~,¢2-) = _Ricc(¢3'7¢3') = Ric*.
4. The connection V¢ and the connections V', V*, V3 coincide.

Proof. 1. As in any normal almost bi-paracontact manifold the tensor fields
hy, hy, h3 vanish identically, by (ii) of Theorem 4.4, V¢ preserves the tensor fields
&1, ¢y, ¢3. Moreover, by (3.1) the expression (4.23) of the torsion simplifies in

(4.24).
2. First of all notice that, since V¢, =0, for each o e {1,2,3} we have
(4.28) R(X,Y)o¢,=¢,0R(X,Y).

for all X, Y e(TM). Now the Bianchi identity yields
(429)  R(X,Y)Z+R(Y,Z)X +R(Z,X)Y
=TYTX,Y), Z)+ (VyT)NY,Z) + T(T(Y, 2), X)
+ (W THNZX)+T(TN(Z,X),Y) + (VoT)X, Y).

We examine the terms in the right-hand-side of (4.29). Notice that, by (4.24),
TY(T(X,Y),Z)=4dy(X,Y) dn(&,Z)¢ =0 and

(VST)(Y, Z) = V52 dn(Y, Z)) — 2 dn(V5 Y, Z)E — 2 dn(Y, V5 Z)¢
=2X(dn(Y,Z))¢+2dn(Y,Z)Vy<
—2dn(V§ Y, Z)E — 2 dn(Y, V5 Z)E
=2(Vy dn)(Y, Z)¢.
Hence (4.29) simplifies in
(430)  R(X,Y)Z+R(Y,Z)X + R(Z,X)Y
=2((Vx dn)(Y, Z) + (Vy dn)(Z, X) + (VZ dn)(X, Y))<.
Now in (4.30) consider X, Y eI['(2,)) and ZeI'(2,), o e{l1,2}. Then, as V¢

o
preserves the contact distribution, the left-hand-side of (4.30) is tangent to &
whereas the right-hand-side is transversal to 2. Hence they both vanish. Thus,

in particular

(4.31) RY(X,Y)Z =—R‘(Y,Z)X — R(Z,X)Y.
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But the left-hand-side of (4.31) is a section of &, , whereas the right-hand-side
is a section of &,. Consequently, R‘(X,Y)Z =0 for all X,Y eI'(2,) and
Zel'(2,). Slnce by Proposition 3.2, for any f # o, ¢, maps ¥, onto %,
applying (4.28) we get that R(X, Y)Z 0 also for ZeTl(2)). Moreover,
obviously, R‘(X, Y)¢ =0, so that we can conclude that

(4.32) RY(X,Y)=0

for any X, Y eI'(2,). In a similar way one can prove that (4.32) holds for
X,YeI'(2;). Thus in both cases the relation R(¢,X,¢,Y)=—R(X,Y),
ae{l,2}, is trivially satisfied. Moreover, if X eI'(Z)) and Y eI(Z,),
R(¢,X,0,Y)=R(X,—Y)=—R%X,Y). In order to complete the proof in
the case a € {1,2} it remains to prove that R‘(X,&) =0 for any X € ['(Z). No-
tice that, as V¢ =0 and T°(X,¢) =2dn(X,{) =0, VEX = [£, X]. By applying
again the Bianchi identity (4.29) we obtain, for all Z e I'(2),

RY(X,E)Z+ RE(E,Z)X = (VET)(Z, X)
= VUT(Z, X)) = T*([&, 2], X) = T*(Z,[¢, X])
= 2L dn)(Z,X)E = 0.

Consequently R¢(X,{)Z=—R(¢,2)X. If in the last equality we take
Xel(2)) and ZeT(2,), the left-hand-side is a section of %, while the
right-hand-side is a section of 2. Thus they both vanish and tdkmg (4.28)
into account we conclude that R‘(X £)=0 for all X eI'(2). Finally, for any
X, Y €T(TM), R($3X,45Y) = RE(1hyX, 1, ¥) = —R(§ X, 1Y) = RE(X, Y.

3. For simplifying the notation, let ryy denote the endomorphism Z —
R¢(Z,X)Y, so that Ric‘(X,Y) = trace(ryy). From (4.25) it follows immedi-
ately that ryy(&)=0. Let {E,...,E,, Es1,...,Enm, ¢} be a local basis such
that, for each ie{l,...,n}, E;e(2{") and E,.; = $,E; € (2, ). In order to
prove (4.27) we distinguish the cases (i) X, Y e ['(2]"), (ii) X,Y e '(2,), (i)
Xel(2"), Yel(2;), (iv) X e [(TM), Y =¢&. In the first case, due to (4.32),
VXy(E,‘) = RC(E'[7 X) Y =0. MOI‘GOVCI’7 rXY(En-H) = R("(E,H_,‘, X) Ye F(QZ{L) SO
that it has no components along the direction of E,,i,...,FE>,, . Hence
Ric‘(X, Y) = trace(ryy) = 0. On the other hand, since R°(X,Y) =0, also the
right-hand-side of (4.27) vanishes. The case (ii) being analogous, we pass to
the case (iii). First of all, by (4.32), ryy(E;) = R°(E;;X)Y =0. Next, by the
Bianchi identity used before,

VXY(EnJri) = R(E,4i, X) Y= _RC(X; Y)En+i - RC(Yy En+i)X
= 7RC(X7 Y)EnJria
as R(Y,E, ;) =0.

Since R‘(X Y)E,.i=R(X,Y)$E = ¢,(R°(X, Y)E;), we conclude that
trace(ryy) = —3 trace R¢(X,Y). The last case is obvious since, due to (4.25),
Ric‘(X,¢&) = () = —1 trace(R‘(X, ¢)).

4. Proposition 4 3, (4.24) and the normality of the almost bi-paracontact
structure imply that T‘(X, Y)=T*X,Y)=T3X,Y)=2dn(X,Y)éE=TX,Y)
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for all X,Y e'(TM). Moreover, according to (ii) of Theorem 4.2, because of
the vanishing of the tensor fields /1, 4, h3, each connection V!, V2, V3 preserves
the tensor fields ¢, ¢,, ¢;. Consequently, for each o € {1,2,3}, V* fulfils all the
conditions of Theorem 4.4 and hence coincides with V€. O

COROLLARY 4.6. Every normal almost bi-paracontact manifold carries four
mutually transverse Legendre foliations whose leaves are totally geodesic and admit
an affine structure.

Proof. Since the almost bi-paracontact structure is normal, it is in particular
integrable, so that the eigendistributions 2", 2, 5, &, define four mutually
transverse Legendre foliations on the manifold. The leaves of these foliations are
auto-parallel with respect to the canonical connection V¢, so that they are totally
geodesic. Finally, for each « € {1,2}, for any X, X' e ['(2]) we have, by (4.24),
T°(X,X’) =0 and, by (4.25), R°(X,X’)=0. Thus V¢ induces a flat, torsion-
free connection on the leaves of the foliations 2;', Z;, 25, 25 . O

We conclude the section by studying the transverse geometry of a normal
almost bi-paracontact manifold with respect to the Reeb foliation. We show in
fact that the space of leaves of a normal almost bi-paracontact manifold is para-
hypercomplex (see [13] or, with different names, [1], [15], [18] [23], [27]). We
recall that a para-hypercomplex structure on an even dimensional manifold is
given by two anti-commuting product structures I, J and a complex structure K
such that IJ = K. Then one can prove that the manifold admits a canonical
connection, usually called the Obata connection, defined as the unique torsion-free
connection preserving the para-hypercomplex structure.

THEOREM 4.7. Let (M, ¢, ¢y, $3) be a normal almost bi-paracontact manifold.
Then the 1-dimensional foliation defined by the Reeb vector field & is transversely
para-hypercomplex.  Furthermore, the canonical connection V€ is (locally) project-
able to the Obata connection defined on the leaf space.

Proof. First of all we have to prove that the tensor fields ¢,, ¢,, ¢; are
“foliated” objects, i.e. they are constant along the leaves of the Reeb foliation
Fe. Thus we have to show that %:¢, =0 for each ae{l,2,3}. In fact this
condition is satisfied because, by assumption, N, (1) =0, so that also N {;:) =
Z:¢, =0. Thus the tensor fields ¢,, ¢,, ¢; are prOJectable We prove that they
(locally) project onto a para-hypercomplex structure. Let 7z be a local submer-
sion defining the Reeb foliation. For each o € {1,2,3} let J, be the tensor field
defined by n,0¢, =J,on.. Then it is clear that (J;,J>,J3) is an almost para-
hypercomplex structure. Moreover, for any two (local) vector fields X’ and Y’
in the leaf space, denoting by X and Y the unique basic vector fields on M such
such that 7,X = X’ and n,Y = Y’, we have

Vo JJ (X Y') = (NP (X, Y)) =0,
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so that the structure is integrable. For concluding the proof we prove that the
canonical connection V¢ projects onto the the Obata connection VY. First we
prove that V¢ is projectable, i.e. it projects to connections of the local slice spaces
of #:. The conditions for this are: a) for any basic vector fields X € I'(Z) and
for any V e I'(T %) one has VX =0, b) if X and Y are basic vector fields then
also Vi Y is a basic vector field ([19]). Here, by “basic vector field” we mean
a vector field X transverse to the foliation % which is locally projectable to a
vector field on the leaf space by means a local submersion defining %:; one can
see that this is equivalent to require that [X, V] is still tangent to the foliation for
any Ve I'(TZ) (cf. [19], [26]). Now the condition (a) is easily verified since
ViX = [, X] = 0 because [£, X] is tangent both to & and to % (X being basic).
Also the second condition holds. Indeed first recall that, by construction, V¢
preserves the contact distribution; next, by (4.26),

(4.33) 0= R(X,&)Y = VEVEY — VEVEY = Vi Y
= V§[E, Y] — VEVEY = —VEV§ Y

since [X,¢] =[Y,{] =0, X, Y being basic. Thus, by (4.33), [{,Vy Y] =ViVyY
=0 and hence V3 Y is basic. Therefore V¢ locally projects along the leaves of
Z: to a linear connection V' which parallelizes the induced complex and product
structures, since V¢, =0 for each o e {1,2,3}. It remains to prove that V' is
symmetric. Let X', Y’ be any local vector fields on the leaf space and let X,
Y be the corresponding basic vector fields such that z,X = X’ and =, Y = Y".
Then T'(X",Y') =n.TX,Y) =n.(2dn(X,Y)¢) =0. Thus V' coincides with
the Obata connection. O

5. The standard bi-paracontact structure of a contact metric (x, u)-space

In this section we study one of the main examples of almost bi-paracontact
manifolds, namely we show that any (non-Sasakian) contact metric (, #)-space
admits a canonical almost bi-paracontact structure which satisfies very interesting
properties.

Recall that a contact metric (r,u)-space is a contact metric manifold
(M, ¢,E n,g9) such that the Reeb vector field ¢ belongs to the “(x,u)-nullity
distribution” i.e.

(5.1) RIX, Y)E =rw(n(Y)X —n(X)Y) + un(Y)hX = n(X)hY),

This notion was introduced by Blair, Koufogiorgos and Papantoniou in [4], who
proved the following fundamental results.

THEOREM 5.1 ([4]). Let (M,¢,&,n,9) be a contact metric (i, u)-space. Then
necessarily ik < 1. Ifk =1 then h=0 and (M, $,&,n,g) is Sasakian; if k < 1, the
contact metric structure is not Sasakian and M admits three mutually orthogonal
totally geodesic distributions 2(0) = RE, D,(1) and Dy(—2) = ¢(Zi(A)) corre-
sponding to the eigenspaces of h, where 1 =1 — k.
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Furthermore, in [4] it is proved that any contact metric (x, #)-space satisfies
(2.11), hence it is integrable, and for any X € I'(Z,(1)), Y e I(Z4(—-1)), V§Y €
[(Z2y(—2) ®RE) and Vi X e T(2,(4) @ RE).

Given a non-Sasakian contact metric (r,x)-manifold (M, ¢,¢ n,g), Boeckx

u
1=

2. . . .

5] proved that the number I, := , 1s an invariant of the contact metric
e YT Tx

(rc, w)-structure, and he proved that two non-Sasakian contact metric (x,u)-
manifolds (M, ¢, &1,1,,91) and (My, ¢,,&>,7,,92) are locally isometric as con-
tact metric manifolds if and only if Iy, = I,. Then the invariant /), has been
used by Boeckx for providing a local classification of contact metric (i, u)-spaces.
An interpretation of the Boeckx invariant in terms of Legendre foliations is given
in [11].

The standard example of contact metric (i, u)-manifolds is given by the
tangent sphere bundle 77N of a Riemannian manifold N of constant curvature
¢ endowed with its standard contact metric structure. In this case x = ¢(2 — ¢),

l+c¢
S

The link between contact metric (r, u)-spaces with the theory of Legendre
foliations was pointed out in [9] and [11]. In fact any contact metric (i, u)-space
(M,¢$,& n,g) is canonically a bi-Legendrian manifold with bi-Legendrian struc-
ture given by (2,(1),2,(—1)), and the corresponding bi-Legendrian connection
preserves the tensors ¢, h, g ([8], [9]). We prove now that a contact metric
(1, u)-space admits a further bi-Legendrian structure which is transverse to

(Z1(2), Zn(=4))-

u= —2c¢ and IT1N

THEOREM 5.2. In any non-Sasakian contact metric (i, u)-manifold the oper-
ator ¢h admits three eigenvalues, 0, of multiplicity 1, and A, — 1, each of multiplicity
n, where 4 :=~/1 — k. The corresponding eigendistributions are given by Zy,(0) =
R¢ and

(5:2) Dap(i) = (X + X | X e T(Z4(1)),
(5.3) Dyp(—2) = {Y + Y | Y e D(D(~D)}.

Furthermore, Dyy(1) and Zyp(—1) define two mutually orthogonal Legendre folia-
tions which are transversal to the canonical bi-Legendrian structure (Zy(1), Zn(—2)).

Proof. That ¢h admits the eigenvalues 0 and ++/1 — x follows from the
relation 42 = (x — 1)¢*> ([4]). Since the operator 4 is symmetric and ¢ anti-
commutes with £, also ¢h is symmetric and hence it is diagonalizable. Now,
since the kernel of ¢h is generated by the Reeb vector field, we have that
P4(0) =RE. Moreover, if X e I'(Z4(4)), then phdX = —pphX = —IpX, so
that ¢X € I'(Zy,(—4)). This implies that Zy,(A) and Zy,(—4) have equal
dimension n, if 2n+1 is the dimension of M. %y, (A) and Zy,(—A) are in
fact mutually orthogonal. Indeed, for any X € I'(Zy4,(4)) and Y e I'(Zy(—41)),
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since the operator ¢h is symmetric, we have Ag(X,Y) = g(¢hX,Y) = g(X,¢dhY)
=—9(X,Y), so that g(X,Y) =0. In order to prove (5.2) first notice that, for
any X e T(2,(1)), ¢h(X + ¢X) = IpX — $*hX = J(X + ¢X) so that X + ¢X €
I'(Z4,(A)). Thus it remains to show that, given Y e I'(Zy4,(4)), there exists X e
I'(Z;(2)) such that ¥ = X + ¢X. One can verify that X :=1(Y — #Y) has the
required properties. In a similar way one proves (5.3). Now we are able to
demonstrate the integrability of the distributions Zy,(4) and Z4,(—4). Any two
sections of Z,(A) can be written as X + ¢X and X'+ ¢X’, for some X, X'e
I'(2,(4)). Then, by (2.11)

(54) Vi (X' +9X) = VIX' + VI X'+ gVIX' +g(X +hX, X')é
+ PV X+ g(pX +hpX, X')E
= VX' +¢ViX' + Vi X'
+ Vi X+ (1 + 2)g(X, X')E.
Now, VJ X' e(2,(2) @ RE), so that we can decompose V;j X' along its com-

ponent tangent to Z,(4) and the one tangent to Ré given by 77( )f =
gV X O But, by (29), g(ViX"&) = —g(X", V&) = (A— Dg(X, X"), s
that (5. 4) becomes

(5.5) Vipx (X' +0X") = ViX' + ¢ViX' + (Viy X') 5,00

+¢(V¢XX)(];, +24g(X, X")E.

Therefore
(5.6) [X +¢X. X' +¢X'] = [X, X']+ ¢[X, X']+ (Vi X ), 000 — (Vix X ), 00)

— (Vix X)ag,0) +8(Vix: X) g, -

Due to (5.2) each of the three terms [X,X']+ 4[X,X], (V;fXX’)%W—f—
d(Vix X)) and (Vi X)g, ) + #(Viy X)g, ;) in the right-hand-side of (5.6) is
a section of Zy;,(4). Thus we conclude that Z,(A) is involutive. In particular,
being Z4,(A) an integrable subbundle of &, it defines a Legendre foliation of
M. Analogous arguments work also for Zy,(—4). It remains to prove that
Dyn(4) and Zy,(—A) are transverse to each foliation of the bi-Legendrian struc-
ture (Z,(A), Zy(—4)). For instance we show that TM = Zy,(A) ® Z(—1) ® RE,
the other cases being similar. If X is a vector field tangent both to %,,(4) and
to Z,(—A) then JX = ¢hX = —A¢X so that X = —¢X. By applying ¢ we get
X =¢X, hence X =0. Next, let Z be a vector field on M. Then there exist
X el (2,(4)) and Y eT(2,(—2)) such that Z =X+ Y +5n(Z)¢. Adding and
subtracting ¢X e ['(Z,(—4)) we obtain Z = (X + ¢X) + (Y — ¢X) +n(Z)¢&,
where X + ¢X € I'(Zy4,(1)) and Y — ¢X e ['(Z,(—1)). O

Theorem 5.2 implies that any (non-Sasakian) contact metric (x, u)-space
is endowed with two transverse bi-Legendrian structures (Z,(1),%,(—2)) and
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(Dyn(2), Zgn(—A)) defined by the eigenspaces of the operators 4 and ¢h corre-
sponding to the eigenvalues +4. Thus by Proposition 3.13 we conclude that any
(non-Sasakian) contact metric (x,u)-space M admits an integrable almost bi-
paracontact structure which we call the standard almost bi-paracontact structure
of the contact metric (x, u)-space M. One can easily prove the following result.

THEOREM 5.3. Let (M,$,E n,9) be a non-Sasakian contact metric (i, u)-
space. The standard almost bi-paracontact structure of M is given by (¢, $5, $3),
where

I
b
—_

|
=

According to the notation used in §3 we denote by Qli and D@zi the
eigendistributions of ¢, and ¢,, respectively, corresponding to the eigenvalues +1.
So f = Dy (£2) and 25 = Z;,(+7). Then, according to Theorem 5.3, (5.2)-
(5.3) should be compared to Proposition 3.3.

Remark 5.4. For each a € {1,2} we can define a semi-Riemannian metric
g, by setting

(57) gac(Xa Y) = d’?(X’¢1 Y) + ﬂ(X)”(Y)

for all X,Y e '(TM). Then it is easy to check that (¢,,&, 7, g,) is a paracontact
metric structure on M. In fact (¢,,&,7,9,) = ¥(2,,2,) according to the nota-
tion used in §2.2. Let V7¢ and V?¢ denote the canonical paracontact connections
associated to the paracontact metric structures (¢;,&,7,g1) and (¢,, &, 7, 92), re-
spectively (cf. Theorem 2.4). Then, since Qli and D@Zi are integrable, Theorem
2.8 implies that V¢ = V? and V?¢ = V¥ where V” denotes the bi-Legendrian
connection corresponding to the bi-Legendrian structure (Z,(4), Z,(—2)) and V”
the bi-Legendrian connection associated to (Zgn(4), Zgn(—4)). In particular, by
(2.23) we have that

(58) Tbl("f) = _¢1h17 Tbl('vi) = _¢2hZa

where T? and T* denote the torsion tensor fields of V” and V%, respectively.

The bi-Legendrian structure (25, %, ) was deeply studied in [9] and [11]. In
the sequel we study the “new” bi-Legendrian structure, (2", 2, ).

THEOREM 5.5. The Legendre foliations Zy,(A) and Z4,(—A) are either non-
degenerate or flat. In particular, Dy,(A) and Zy,(—2) are positive definite if and
only if Iy > 0, negative definite if and only if Iy <0, flat if and only if Iy = 0.

Proof. Let X e I'(Z4,(A)). Then the (x,u)-nullity condition becomes
(5.9) RI(X,E)¢ =xX + uhX.
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On the other hand,
(510)  RIX,&)E= —VIVEE — Vi ¢
= —VIPX + VIhX + §[X. ] + ph[X €]
= Vx4 (& pX] + AVEC + A0S, X] + 41X, ]
+ AlX, 5]%,,(1) - X, 6]94),1(7
= —*X — phpX + £ ¢X] + A(~pX — ghX)
U X) = BE X) = 2IE X+ HE Xy
=X + X +2hX — IpX — AX + 2, X]%h(%).
Thus (5.9) and (5.10) imply
KX + puphX = (1 = )X + 200X +28(E, X1, )5

from which it follows that

U
1=
I1-vVI1—-x« B 1-VI1 -k
Z[SP 4 PINE = ¥ - 7 _KX: > PX —IuX.
Therefore, by (2.26), we have, for any X, X’ e I'(Z4(4)),
(5.01) Ty (X, X)) = 2916 X1, e X))

= 244 X,y X)
—(1=V1—-x)gl¢X,X') + 2Iyg(X, X"
— 2Lg(X, X').

Similarly, one can prove that, for any Y, Y’ e I'(Z4(—41)),
(5.12) Oy, (Y, Y') =2Iyg(Y,Y").

The assertion of the theorem then easily follows from the expressions (5.11),

(5.12) of the Pang invariant of the Legendre foliations Zy;,(4), Zgn(—4).

Since any (non-Sasakian) contact metric (x,u)-space (M, ¢,&,5,9) is ca-
nonically endowed with an almost bi-paracontact manifold, it admits the linear
connections V', V2, V? stated in Theorem 4.2 and, moreover, the canonical
connection V¢ defined in Theorem 4.4. On the other hand, to M it is attached
also the bi-Legendrian connection V¥ corresponding to the bi-Legendrian struc-
ture (Z,(2), Zi(—1)), as well as the bi-Legendrian connection V?' associated with

(Dyn(2), Zgn(—A)). We now find the relations between these connections.
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LemMA 5.6. Let (M,¢,&,n,9) be a non-Sasakian contact metric (k, )-space
and (P, ¢»,¢3) its standard almost bi-paracontact structure. Then, for the oper-
ators hy, == %,ﬂgf) oe{l,2,3}, we have

o

(5.13) hy = —Iyh = —(1 —§>¢2,
(5.14) h2_1M¢h+\/1—K¢_<1—’2‘)¢1+¢1_K¢3,
(5.15) hy=h=1—rxp,.

Proof. The proof of (5.14) is given in [12, Lemma 4.5] whereas (5.15) is
obvious. Then by using Lemma 4.1 one can prove (5.13).

Substituting (5.13)—(5.15) in (ii) of Theorem 4.2 we get the following
corollary.

COROLLARY 5.7. Let (M,¢,E,1,9) be a non-Sasakian contact metric (k, pt)-
space and (¢y, ¢y, ¢3) its standard almost bi-paracontact structure. The corre-
sponding connections V', V?, V3 stated in Theorem 4.2 satisfy the following
relations:

(5.16)  V'¢ =0, Vig=2V1-n®¢;, V'dy=2V1-in® ¢,
(517) V2¢1 = Oa V2¢2 = 05 V2¢3 = 0;
(5.18) V3¢1 =-Q2-wn® ¢, V3¢2 =Q2-wn® ¢, V3¢3 =0.

PROPOSITION 5.8.  With the notation above, V' =V? and V" = V'.

Proof. First notice that V* satisfies the axioms (i), (ii), (iii) of Theorem
4.2 characterizing V2. Indeed by definition V”¢ =0. Next, V/¢=V"’h =0
(8]) so that, tacking (5.17) into account, V"¢, =0 = V?¢, for each o e {1,2,3}.
Finally, by using the expression (2.27) of T, a direct computation shows that
also (iii) is satisfied. Then V” = V2. As second step we prove that if S denotes
the (1,1)-type tensor field given by S(X,Y):= V%Y — V%Y, then we have

(5.19) S(,&) =0, S(&-)=—¢h, S=0 on 7.

Obviously S(-,£) =0. In order to prove the remaining relations, let us define a
linear connection V' on M by putting

VUF, for EeT(2), Fel(TM);

w:{
EZ "\ VUF, for EeT(RE), Fel(TM).
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We prove that V' = V? by checking that V' satisfies the axioms which char-
acterize the bi-Legendrian connection associated with the bi-Legendrian structure
(2gn(2), Dyn(—4)). First, we prove that V' preserves the Legendre foliations
Dyn(4) and Zyy(—A). Due to (5.2) any vector field tangent to Zy,(4) has the
form X + ¢X for some X € I'(2,(4)). Then, for any Z eT'(2), we have

V(X + ¢X) = Vo X + V,0X =V, X + V29X =V, X + ¢VIX =V, X + ¢V, X.

Since V,X =VJX eT(Z,(2), we conclude that V,(X + ¢X)e T (Zy(1)).
Thus V,Z4(2) = Dgi(%). Moreover, ViZy(3) = Ve@y () = Zgp(4).  Analo-
gously one can prove that V' preserves Zy(—4). Next, V'dy =0 since
V" dnp=0 and V" dyp=0. Finally, one can easily prove that T'(Z,¢) =
Tb/(Z, é) = [fvz%h(/i)]%h(_i) + [é; Z%h(*i)]%/,(l) and T’(Z,Z’) inl(Z, Z/) =
2dny(Z,Z")¢ for any Z,Z' e T(Z). Thus, by Theorem 2.7, V' = V” and hence
S=0 on 2. Finally, by (5.8)

VIZ=V)e-T"(Z,8) - (Z,¢] = plnZ + (¢, 7]
and, analogously,
Vglz - ¢1h12 + [éa Z]

Therefore, by using (5.13) and (5.14), one finds S(&,Z) = ¢yhnZ — ¢ Z = —phZ.
Thus (5.19) is completely proved. In particular, one obtains

(5.20) VI8 =Vip+ phg — §°h = 2h
and
(5.21) VI =VEh+ ¢h* — hph = 2¢h* = 2(1 — k).

Then V¥ satisfies (5.16). Since it easily satisfies also the other two conditions
which uniquely define the connection V', we conclude that V¥ = V! O

The paracontact metric structure (¢,,&,7,92) defined in Remark 5.4 was
studied in [12]. Now we are able to study (¢;,&,%,91). We show that both the
paracontact metric structures satisfy a nullity condition.

THEOREM 5.9. Let (M,$,E n,9) be a non-Sasakian contact metric (i, u)-
space and let (§, ¢, d3) be its standard almost bi-paracontact structure. Let g;
and g, denote the semi-Riemannian metrics defined by (5.7), compatible with the
almost paracontact structures ¢, and ¢, respectively. Then the paracontact metric

structures (¢,,E,n,9y), o€ {1,2}, satisfy

R(X, Y)¢ = 1a(n(Y)X = n(X)Y) + 1, (n(Y)ho X = n(X)hs Y)
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where
2
(5.22) K1 = (1 —g> 1, o =201-vV1-¥)
2
(5.23) sz—2+<1—’2‘>, =2

Furthermore, Iy =0 if and only if (¢,,&,m,91) is para-Sasakian.

Proof. For the case a =2 the assertion was already proved in [12].
prove the case o= 1. First notice that, as ;" and &, are involutive,

503

We
the

paracontact metric structure (¢;,<&,7,g1) satisfies (2.24) (cf. [28]). Then by (2.22)

we have that
(5.24) (VEmM)Y = (VER)Y = 20(X) I Y = n(Y )X +n(Y)phi X
—g1(X,pmY)E+gi(mX, ¢ Y)E.

Moreover, due to (5.13) and Proposition 5.8 we get

(5.25) (VER)Y = (Vi)Y = (Vih) Y = _<1 - g) (Vig,) Y
= (u=2)VT—rn(X)gsY.
Thus, by replacing (2.24), (5.24) and (5.25) in (2.20) we find
RMX,Y)E=—n(Y)(X —X)+g1(X — X, Y)E+n(X)(Y —hY)
(Y =Y, X)¢—gi(X —mX,mY)E+ ¢ (VEmM)Y)
= 2(X)$im Y +n(Y) g X +n(Y)pim X
+g1(Y =Y, mX)E = (V¥m)X) +20(Y)pim X
—n(X)pnd Y —n(X)gih Y
= (V)X +7(X)Y + (u = 2)V1 —xn(X)$ 63 Y
= 2(X)$t Y +n(Y)pihi X
— (0 =2VT = n(Y) 193X + 20(Y )i X — n(X)gihi Y
= (V)X +7(X)Y + (u = 2)V1 —xn(X)$, Y

. (1o i
- (1-4) nrigix

2
= VTR + 200+ (1= 5) gy
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= n(NX+nX)Y +2V1 —xn(X) Y
2
—277(X)h1Y+(1 —g) n(Y)X

2
—2VT = k(Y)Y X + 29( V) X — (1 - g) n(X)Y

- <<1 —g)z - 1>(n(Y)X—77(X)Y)

+2(1 = V1= x)n(Y)h X —n(X)h Y).
For the last assertion in the statement of the theorem, we have that I, = 0 if and

only if 4 =2, ie., by (5.13), if and only if #; =0. As the paracontact metric
structure (¢,,&,7,91) is integrable, the assert follows from Corollary 2.6. [

We now study the special properties of the connection V¢ (cf. Theorem 4.4)
associated to the standard almost bi-paracontact structure (¢, d,,d;) of a (non-
Sasakian) contact metric (x,u)-space (M,¢,E,n,g9). We call V¢ the canonical
connection of the contact metric (k,p)-space M.

Lemma 5.10.  The torsion tensor field of the canonical connection of a non-
Sasakian contact metric (r,p)-space (M,$,& n,q) is given by

(5.26)  TX,Y)= % (n(Y) ((1 - ‘2‘) pX + ¢hX>

—5(X) <<1 - g)ng + ¢hY>) L 2dy(X, Y)E

In particular,
(5.27) T(X, &) = % ((1 —%)¢X+¢hX>.

Proof. First of all notice that, being the almost bi-paracontact structure
(¢, ¢,, ¢3) integrable, (3.1) holds. Then by replacing (2.12), (2.25), (3.1) into (iii)
of Theorem 4.4 we obtain

(528) T(X.¥) = 2dq(X, V)& + L (-20(¥ )b X + 20X )b Y — 20(¥)gshoX
+20(X) o Y + 250(Y )pshs X — 25(X)h3h3 Y).

By substituting (5.13) and (5.14) in (5.28), a straightforward computation yields
(5.26). O
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ProposITION 5.11.  With the notation above, we have for any X,Y € I'(2),
VoY =VLY =ViY =V}Y.
Proof. Let V' be the linear connection defined by
VIF {vglF, if EeT(2);
ES\VEF, if E e T(RE).
We check that V' satisfies (i), (ii), (iii) of Theorem 4.4. First of all, obvi-
ously V/¢=0. Next, for all X,Y el(2), by (526), T'(X,Y)=T"(X,Y) =
2dn(X,Y)E=TX,Y) and T'(X,&) = T°(X,¢). Finally, for all X, Y e I'(2),
we have (Vy¢,)Y = (V¥4,)Y =0 = (Vig,)Y for each a e {1,2,3}, since V¢ =
VYh =0. Moreover, by definition, (Vip,)X = (Vig,)X. Thus by the unique-
ness of V¢ we have that V/ = V¢. Then, since by Proposition 5.8 V¥ = V2, we
have that V> and V¢ coincide on the contact distribution. Moreover, Proposition
5.8 and (5.19) imply that also V' =V* and V° coincide on &. The same
property is then necessarily satisfied by V> since V¢ is the barycenter of V!, V2,
V3. O
COROLLARY 5.12.  The canonical connection V¢ of a contact metric (i, u)-
space (M, ¢,&,m,q9) is a contact connection, i.e. Vn =V dn =0, and satisfies

(5.29) Vg, = —% (1 —%);7 ® ¢,

2 u 2
(530) VC¢2:§(1_§>77®¢1+§\/1—K77®¢3
(5.31) Vi, :§\/1 — KN ® ¢,

Proof. By Proposition 5.8 and Proposition 5.11 we have, for all X,Y,Z e
L(2), (Vy dy)(Y,Z) = (Vi dy)(Y,Z) = (V¥ dy)(Y,Z) =0 and, since V¢ =0,
(Vy dn)(Y,&) =0. Moreover, from (5.27) it follows that

(5.32) VEX = [, X] %((1 —g>¢X+¢hX>.
Then (5.32) yields

(VS dn)(X., ¥) = E(dn(X, V)~ dn((&,X], V) + 5

<1 —%) dn(¢X,Y)
+§ dn(¢hX,Y) — dn(X, [, Y))

+2 (1 _ g) dn(X, ) +2 dn(X. 4hY)

= (% dn)(X, ¥) 4 2g(ghX, $7) + 2g(X, #°hY) =0,
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since % dyp =0 and & is a symmetric operator. Finally, (5.29)-(5.31) follow
from (ii) of Theorem 4.4 and from (5.13), (5.14). O

Conversely, we show that (5.29)—(5.31) in some sense characterize the exis-
tence of a contact metric (k, g)-structure on an almost bi-paracontact manifold.

THEOREM 5.13.  Let (41, ¢y, ¢3) be an integrable almost bi-paracontact struc-
ture on the contact manifold (M,n) such that the associated canonical connection
satisfies V¢ dn =0 and

(5.33) Vi =—an ® ¢,

(5.34) Vipy =an @ ¢ + bn @ ¢

(5.35) Vi =bn ® ¢,

for some a >0 (respectively, a < 0) and b > 0. Let us define
(5.36) gr=dn(. ) +n®n, g :=dn(,¢y) +nQn,

g3 = —dn(-,¢3) +n1®n

and assume that the symmetric bilinear form m = g\(h-,-) is positive definite
(respectively, negative definite). Then, for each oe€{1,2}, (¢,,&,n,9,) is a
paracontact metric (i, ,)-structure and (¢5,&,n,g3) is a contact metric (ic3, ls)-
structure, where

(5.37) Ky =-a’—1, pu :=2-73b,

(5.38) Ky = (a®> —b*) =1, =2,

L Nl

(5.39) K3 =1 —%bz, 1y =2+ 3a.

Moreover, (§;, ¢y, $3) is the standard almost bi-paracontact structure of the contact
metric (K3, i3)-manifold (M, ¢5,&,n,g3).

Proof. Since the almost bi-paracontact structure is assumed to be inte-
grable, we have in particular, by Proposition 3.7, that the bilinear forms g, g»,
g3, defined by (5.36), are symmetric, so that the definition is well posed. Notice
that, by construction, for each o€ {l,2,3}, g, is compatible with the corre-
sponding structure, i.e.

924, X,0,Y) = —e(g,(X, Y) —n(X)n(Y))

where we have posed e =1 if w € {1,2} and ¢ = —1 if « = 3. Moreover, each g,
is, by definition, an associated metric, i.e. dn(X,Y) = g,(X,¢,Y) for all X, Y e
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I'(TM). Furthermore, by comparing (5.33)—(5.35) with (ii) of Theorem 4.4 we
have that

3 3 3
(540) h] = —§a¢2, hz = E(a¢l + b¢3), h3 = §b¢2

Hence, by (5.40), we have, for all X, Y e ['(TM),
93(X, Y) = —=dn(X, 5 Y) +n(X)n(Y)
=—g1(X, 193 Y) +n(X)n(Y)
= —01(X, 4, Y) +n(X)n(Y)

2
=—g1( X, Y
3a91( mY)

2
=—m(X,Y).
3(17[1( ’ )

Then the assumptions of positive definiteness of 7#; and ¢ > 0 imply that g3 is a
Riemannian metric. It follows that (¢,,¢,7,9,) is a paracontact metric structure
for o € {1,2} and a contact metric structure for « =3. Now, since the almost
bi-paracontact structure (¢;,¢,,#;) is integrable, by Corollary 3.9, the tensor
fields N(;]l), N, ' Ny vanish on 2. Moreover, Proposition 3.7 implies that
d($X,9,Y) =d($,X,$,Y) = —dn(¢3X,$3Y) = —dn(X, Y) for any X, Y e I'(2).
Hence, taking (iii) of Theorem 4.4 into account, the torsion of the canonical
connection is given by

(5.41) T(X,Y) =2 dy(X, Y)¢

forall X, Y eI'(2). We now are able to prove that on the contact distribution
the canonical connection and the Levi Civita connection of g3 are related by the
formula

(5.42) VoY =VRY —n(VEY)E.
Indeed, let us define a linear connection V' on M by

vy dWY n(VEY)E, if X, Y e (2);
YWy, elsewhere.

We prove that in fact V' coincides with the Levi Civita connection of (M, g3).
For any X,Y,Z eI'(2) we have

(Vyg3)(Y, Z) = (Vyg3)(Y, Z) = n(Z)n(VYY) = n(Y)n(V¥ Z)
= —X(dn(Y,$52)) +dn(Vy Y, $3Z) + dn(Y, $;Vy Z)
= =X (dn(Y,452)) +dn(Vy Y, $32) + dn(Y, Vy§;2)
= —(Vy dn)(Y,4;2) =0,
(Vyg3)(Y, &) = (V¥g3)(Y, &) —n(Vy Y) =0
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and
(Vega)(Y, Z) = (VZg3)(Y, Z) = 0.
Next, by (5.41)
T'"(X,Y)=TX,Y)+n(Vy V)& = n(Vy X)E=2dn(X, V)¢ +n([X, Y])E =0,
and T'(X,&) = T%(X,£) =0. Thus V' =V?% and (5.42) follows. Then (5.34),
(5.40) and (5.42) yield, for any X,Y,ZeI(2),

93((V¥hs) Y, Z) = g3((Vihs) Y, Z) + n(V¥ hs Y)n(Z)
= 2b0:((V§4,)Y, 2)

= Sabn(X)gs( X, Z) + 3 60(X)gs(s X, 2) =0,

Therefore the tensor field /3 is “z-parallel” (cf. [6]) and so, by [6, Theorem 4],
(¢5,¢,m,93) is a contact metric (x, i)-space. The values of x and u can be found
by comparing (5.33)—(5.35) with (5.29)—(5.31). After a straightforward compu-
tation it turns out that they are given by (5.39). The remaining part of the
theorem follows from Theorem 5.9. In particular, (5.37) and (5.38) are con-
sequence of (5.22) and (5.23), respectively. The case @ < 0 can be proved in a
similar way. O

Formulae (5.13)—(5.15) together with (a) of Lemma 4.1 allow us to define a
supplementary almost bi-paracontact structure on a non-Sasakian contact metric
(r,)-space. In fact, by (5.14) we have

(5.43) 1= (1 —’2—‘)2(;512 + (1 —§> VT = x5
+ <1 - g) VI =k + (1 - x)¢5

:<(1_g>2—(1—ic)>(1—77®f)-

2
Therefore, under the assumption that (1 ’g) # 1 —x, we are led to consider

the tensor field

(5.44) Y= hy
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2
By (5.43) we see that if (1 —g) — (1 —x) > 0 then the tensor field y satisfies
2
Wr=I-n®:¢, whegeas if <1 —’g) —(1—x) <0 we have y>=—-T+3Q®¢.

1K

Notice that — (I =x) >0 if and only if |Ij| > 0. Therefore we are

able to prove the following theorem.

THEOREM 5.14. Let (M, ¢,&,n,9) be a non-Sasakian contact metric (i, u)-
space such that Iy # +1.
(1) If Imn| > 1 then M admits an integrable almost bi-paracontact structure

(41,5, ¢3), given by
1

P = = (Iydh + V1 — k)
7
WE) 1w
b=
2 -«
9y = ! (Insh + V1 = kh).

(0

() If |In| < 1 then M admits an integrable almost bi-paracontact structure

(81,43, 93), given by
1= 11— Kh
y = ! = (I + V1 = )
\/1 k- (1 - ’E‘)
V= ! = (T ph + V1 —«g).

ey

Proof. Let us assume |Iy| > 1. In order to relieve the notation, we put
oa:=1 —g and f:=+v1—x. As remarked before, by a direct computation one
proves that ¢iz =1—-n® ¢ Moreover, by (a) of Lemma 4.1, ¢,h = —hag,,

1
so that ¢ = \/:hz and ¢, = ¢, anti-commute. Thus (|, ¢3, d; = @|¢5) is
a2 — 2
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an almost bi-paracontact structure on (M, ;7) We prove that it is integrable,
by showmg that the eigendistributions @’ associated to ¢, define Legendre
foliations, since we already know that 25" = 5 do. First we show that 7| is
a Legendrlan distribution. For any X, X’ e F(@ ™) we have

(5.45) dn(X, X') = dn($ X, ¢ X')

T2 1/}2 (o dn(¢ X, 1 X') + o dn($ X, 3 X")

+ o dn(¢ X 41 X") + B2 dn($3X . $:X")).
Now, notice that dy(¢ X, X') = —dn($: X, X') = —dn(X,X’), and

dn( X, ¢3X') = dn($ X, $19,X") = —dn(X,$,X") = —dn(¢: X, ¢, X'), so that
(5.45) becomes

ol — 2
dn(X,X') = ————=dn(X, X') = —\o? = B~ d(X, X").
a2 — B>
Hence dny(X,X')=0. It remains to prove that 2| is involutive. Take
X, X' e(2]"). By (5.26), the torsion of the canonical connection V¢ of the
contact metric (x,u)-space (M, ¢,¢&,n,g) satisfies T(X,X') =2 dn(X,X")E=0.
Then, using (5.29)—(5.31), we have

$11X, X' = g1 (Vi X' = Vi X)

1 c C C C
= ﬁ (Vi X'+ p Ve X' — 0V X — fp3V§ X)
w —f

(@Vyd X'+ pVy s X' — oV d1 X — V543 X)
22 — B>
= Vidi X' = VidiX
=[X,X’].
In the same way one can prove that also 2|~ is involutive. Thus we conclude

that the almost bi-paracontact structure (¢],¢5,¢;) is integrable. The case
[Im| < 1 can be proved in a similar way. O

Remark 5.15. By a straightforward computation one obtains
B = —\[12 —1h, hy=Iygph+V1 —Kp, hs=0,
h = Lugh+ V1 —x¢, hy =0, hi=1/1-1I%h.
Moreover, the integrability of the almost bi-paracontact structure yields, by Cor-

ollary 3.9, N, =0 on 2. On the other hand, for any X e I'(2), N ( (X,¢) =
—[X, ¢ - ¢ [¢3X & = 2¢5h, = 0. Hence the almost contact structure (¢3,é n) is
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normal. Nevertheless the almost bi-paracontact itself is not normal because /1]
and A} do not vanish. Similar arguments hold for (¢{,47,¢5). Thus we have
obtained a class of examples of integrable, non-normal almost bi-paracontact

structures such that one structure is normal.
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