INVARIANTS OF AMPLE LINE BUNDLES ON PROJECTIVE VARIETIES AND THEIR APPLICATIONS, $II^{*\dagger\ddagger}$ ## Yoshiaki Fukuma #### Abstract Let X be a smooth complex projective variety of dimension n and let L_1,\ldots,L_{n-i} be ample line bundles on X, where i is an integer with $0 \le i \le n-1$. In the previous paper, we defined the i-th sectional geometric genus $g_i(X,L_1,\ldots,L_{n-i})$ of (X,L_1,\ldots,L_{n-i}) . In this part II, we will investigate a lower bound for $g_i(X,L_1,\ldots,L_{n-i})$. Moreover we will study the first sectional geometric genus of (X,L_1,\ldots,L_{n-1}) . ## Introduction This is the continuation of [13]. This paper (Part II) consists of section 3, 4, 5 and 6. Let X be a smooth complex projective variety of dimension n and let L_1, \ldots, L_{n-i} be ample line bundles on X, where i is an integer with $0 \le i \le n-1$. In [13], we defined the ith sectional geometric genus $g_i(X, L_1, \ldots, L_{n-i})$. This invariant is thought to be a generalization of the ith sectional geometric genus $g_i(X, L)$ of polarized varieties (X, L). Furthermore in [13], we showed some fundamental properties of this invariant. In this paper and [14], we will study projective varieties more deeply by using some properties of the ith sectional geometric genus of multi-polarized varieties which have been proved in [13]. In this paper, we will mainly study a lower bound of $g_i(X, L_1, \ldots, L_{n-i})$ and some properties of the case where i = 1. The content of this paper is the following. In section 3 we will give some results and definitions which will be used in this paper. In section 4, we will investigate a lower bound for the *i*th sectional geometric genus of multi-polarized variety $(X, L_1, \ldots, L_{n-i})$. In particular, we will study a relation between $g_i(X, L_1, \ldots, L_{n-i})$ and $h^i(\mathcal{O}_X)$. ^{*} Key words and phrases. Polarized varieties, ample line bundles, nef and big line bundles, sectional genus, ith sectional geometric genus, ith sectional H-arithmetic genus, ith sectional arithmetic genus, adjoint bundles. [†]2000 Mathematics Subject Classification. Primary 14C20; Secondary 14C17, 14C40, 14D06, 14E30, 14J30, 14J35, 14J40. [‡]This research was partially supported by the Grant-in-Aid for Young Scientists (B) (No. 14740018), The Ministry of Education, Culture, Sports, Science and Technology, Japan, and the Grant-in-Aid for Scientific Research (C) (No. 17540033), Japan Society for the Promotion of Science. Received November 11, 2008; revised January 22, 2010. In section 5, we will study the nefness of $K_X + L_1 + \cdots + L_t$ for $t \ge n - 2$. This investigation will make us possible to study a lower bound for $g_1(X, L_1, \ldots, L_{n-1})$ (see section 6) and some properties of $g_2(X, L_1, \ldots, L_{n-2})$ (see [14]). In section 6, we mainly consider the case where (X, L_1, \dots, L_{n-1}) is a multipolarized manifold of type n-1 by using results in section 5, and we will make a study of the following: - (1) The non-negativity of $g_1(X, L_1, \ldots, L_{n-1})$. - (2) A classification of $(X, L_1, \ldots, L_{n-1})$ with $g_1(X, L_1, \ldots, L_{n-1}) \leq 1$. - (3) Under the assumption that |L_j| is base point free for any j with 1 ≤ j ≤ n-1, we will prove that g₁(X, L₁,..., L_{n-1}) ≥ h¹(O_X). Moreover we will classify (X, L₁,..., L_{n-1}) with g₁(X, L₁,..., L_{n-1}) = h¹(O_X). (4) Assume that n = 3, h⁰(L₁) ≥ 2 and h⁰(L₂) ≥ 1. Then we will prove - (4) Assume that n=3, $h^0(L_1) \ge 2$ and $h^0(L_2) \ge 1$. Then we will prove $g_1(X, L_1, L_2) \ge h^1(\mathcal{O}_X)$. Furthermore we will classify multi-polarized 3-folds (X, L_1, L_2) with $g_1(X, L_1, L_2) = h^1(\mathcal{O}_X)$, $h^0(L_1) \ge 2$ and $h^0(L_2) \ge 3$. In this paper we use the same notation as in [13]. ## 3. Preliminaries for the second part NOTATION 3.1. Let X be a projective variety of dimension n, let i be an integer with $0 \le i \le n-1$, and let L_1, \ldots, L_{n-i} be line bundles on X. Then $\chi(L_1^{t_1} \otimes \cdots \otimes L_{n-i}^{t_{n-i}})$ is a polynomial in t_1, \ldots, t_{n-i} of total degree at most n. So we can write $\chi(L_1^{t_1} \otimes \cdots \otimes L_{n-i}^{t_{n-i}})$ uniquely as follows. $$\chi(L_1^{t_1}\otimes\cdots\otimes L_{n-i}^{t_{n-i}})$$ $$=\sum_{p=0}^{n}\sum_{\substack{p_{1}\geq 0,\ldots,p_{n-i}\geq 0\\p_{1}+\cdots+p_{n-i}=p}}\chi_{p_{1},\ldots,p_{n-i}}(L_{1},\ldots,L_{n-i})\binom{t_{1}+p_{1}-1}{p_{1}}\cdots\binom{t_{n-i}+p_{n-i}-1}{p_{n-i}}.$$ DEFINITION 3.1 ([13, Definition 2.1]). Let X be a projective variety of dimension n, let i be an integer with $0 \le i \le n$, and let L_1, \ldots, L_{n-i} be line bundles on X. (1) The *ith sectional H-arithmetic genus* $\chi_i^H(X, L_1, \dots, L_{n-i})$ is defined by the following: $$\chi_i^H(X, L_1, \dots, L_{n-i}) = \begin{cases} \chi_{\underbrace{1, \dots, 1}_{n-i}}(L_1, \dots, L_{n-i}) & \text{if } 0 \leq i \leq n-1, \\ \chi(\mathcal{O}_X) & \text{if } i = n. \end{cases}$$ (2) The *ith sectional geometric genus* $g_i(X, L_1, ..., L_{n-i})$ is defined by the following: $$g_{i}(X, L_{1}, \dots, L_{n-i}) = (-1)^{i} (\chi_{i}^{H}(X, L_{1}, \dots, L_{n-i}) - \chi(\mathcal{O}_{X})) + \sum_{i=0}^{n-i} (-1)^{n-i-j} h^{n-j}(\mathcal{O}_{X}).$$ (3) The ith sectional arithmetic genus $p_a^i(X, L_1, \dots, L_{n-i})$ is defined by the following: $$p_a^i(X, L_1, \dots, L_{n-i}) = (-1)^i(\chi_i^H(X, L_1, \dots, L_{n-i}) - h^0(\mathcal{O}_X)).$$ Remark 3.1. Let X be a smooth projective variety of dimension n and let & be an ample vector bundle of rank r on X with $1 \le r \le n$. Then in [10, Definition 2.1], we defined the *ith* c_r -sectional geometric genus $q_i(X, \mathcal{E})$ of (X, \mathcal{E}) for every integer i with $0 \le i \le n - r$. Let i be an integer with $0 \le i \le n - 1$. Here we note that if i = 1, then $g_1(X, \mathcal{E})$ is the genus defined in [15, Definition 1.1], and moreover if r = n - 1, then $g_1(X, \mathcal{E})$ is the curve genus $g(X, \mathcal{E})$ of (X,\mathcal{E}) which was defined in [1] and has been studied by many authors (see [22], [23] and so on). Let L_1, \ldots, L_{n-i} be ample line bundles on X. By setting $\mathscr{E} := L_1 \oplus \cdots \oplus L_{n-i}$, we see that $g_i(X, \mathscr{E}) = g_i(X, L_1, \ldots, L_{n-i})$. In particular if i=1, then $g_1(X,L_1,\ldots,L_{n-1})$ is equal to the curve genus of (X,\mathscr{E}) . DEFINITION 3.2. Let X and Y be smooth projective varieties with dim X > Xdim $Y \ge 1$. Then a morphism $f: X \to Y$ is called a *fiber space* if f is surjective with connected fibers. Let L be a Cartier divisor on X. Then (f, X, Y, L) is called a polarized (resp. quasi-polarized) fiber space if $f: X \to Y$ is a fiber space and L is ample (resp. nef and big). DEFINITION 3.3. Let (X, L_1, \dots, L_k) be an *n*-dimensional polarized manifold of type k, where k is a positive integer. Then (X, L_1, \dots, L_k) is called a scroll (resp. quadric fibration, Del Pezzo fibration) over a normal variety W if there exists a fiber space $f: X \to W$ such that dim W = n - k + 1 (resp. n - k, n-k-1) and $K_X + L_1 + \cdots + L_k = f^*(A)$ for an ample line bundle A on W. We say that a polarized manifold (X, L) is a scroll (resp. quadric fibration, Del Pezzo fibration) over a normal variety Y with dim Y = m if there exists a fiber space $f: X \to Y$ such that $K_X + (n-m+1)L = f^*(A)$ (resp. $K_X + (n-m)L = f^*(A)$) $\hat{f}^*(A)$, $K_X + (n-m-1)L = f^*(A)$ for an ample line bundle A on Y. Theorem 3.1. Let (X,L) be a polarized manifold with $n = \dim X \ge 3$. Then (X,L) is one of the following types: - (1) $(\mathbf{P}^n, \mathcal{O}_{\mathbf{P}^n}(1))$. - (2) $(\mathbf{Q}^{n}, \mathcal{O}_{\mathbf{Q}^{n}}(1)).$ - (3) A scroll over a smooth curve. - (4) $K_X \sim -(n-1)L$, that is, (X,L) is a Del Pezzo manifold. - (5) A quadric fibration over a smooth curve. - (6) A scroll over a smooth surface. - (7) Let (X', L') be a reduction of (X, L). - (7-1) n = 4, $(X', L') = (\mathbf{P}^4, \mathcal{O}_{\mathbf{P}^4}(2))$. (7-2) n = 3, $(X', L') = (\mathbf{Q}^3, \mathcal{O}_{\mathbf{Q}^3}(2))$. (7-3) n = 3, $(X', L') = (\mathbf{P}^3, \mathcal{O}_{\mathbf{P}^3}(3))$. (7-4) n=3, X' is a \mathbf{P}^2 -bundle over a smooth curve and $(F',L'|_{F'})$ is isomorphic to $(\mathbf{P}^2,\mathcal{O}_{\mathbf{P}^2}(2))$ for any fiber F' of it. (7-5) $K_{X'}+(n-2)L'$ is nef. *Proof.* See [2, Proposition 7.2.2, Theorem 7.2.4, Theorem 7.3.2 and Theorem 7.3.4]. \Box NOTATION 3.2. Let X be a projective manifold of dimension n. - \equiv denotes the numerical equivalence. - $Z_{n-1}(X)$: the group of Weil divisors. - $N_1(X) := (\{1\text{-cycles}\}/\equiv) \otimes \mathbf{R}$. - NE(X): the convex cone in $N_1(X)$ generated by the effective 1-cycles. - $\overline{NE}(X)$: the closure of NE(X) in $N_1(X)$ with respect to the Euclidean topology. - $\rho(X) := \dim_{\mathbf{R}} N_1(X)$. - If C is a 1-dimensional cycle in X, then we denote [C] its class in $N_1(X)$. - Let D be an effective divisor on X and $D = \sum_i a_i D_i$ its prime decomposition, where $a_i \ge 1$ for any i. Then we write $D_{\text{red}} = \sum_i D_i$. - \mathfrak{S}_l denotes the symmetric group of order l. DEFINITION 3.4 ([27, (1.9)]). Let X be a projective manifold of dimension n and let R be an extremal ray. Then the *length* l(R) is defined by the following: $$l(R) = \min\{-K_X C \mid C \text{ is a rational curve with } [C] \in R\}.$$ Remark 3.2. By the cone theorem (see [24, Theorem (1.4)], [18] and [20]), $l(R) \le n+1$ holds. Proposition 3.1. Let X be a projective manifold of dimension n. - (1) If there exists an extremal ray R with l(R) = n + 1, then Pic $X \cong \mathbb{Z}$ and $-K_X$ is ample. - (2) If there exists an extremal ray R with l(R) = n, then $Pic X \cong \mathbb{Z}$ and $-K_X$ is ample, or $\rho(X) = 2$ and there exists a morphism $cont_R : X \to B$ onto a smooth curve B whose general fiber is a smooth (n-1)-manifold that satisfies conditions of
(1). *Proof.* See [27, Proposition 2.4]. \square Lemma 3.1. Let (f, X, Y, L) be a quasi-polarized fiber space, where X is a normal projective variety with only **Q**-factorial canonical singularities and Y is a smooth projective variety with dim $X = n > \dim Y \ge 1$. Assume that $K_{X/Y} + tL$ is f-nef, where t is a positive integer. Then $(K_{X/Y} + tL)L^{n-1} \ge 0$. Moreover if dim Y = 1, then $K_{X/Y} + tL$ is nef. *Proof.* For any ample Cartier divisor A on X and any natural number p, $K_{X/Y} + tL + (1/p)A$ is f-nef by assumption. Let m be a natural number such that $m(K_{X/Y} + tL + (1/p)A)$ is a Cartier divisor. Since $m(K_{X/Y} + tL + (1/p)A) - K_X$ is f-ample, by the base point free theorem ([19, Theorem 3-1-1]), $$f^*f_*\mathcal{O}_X\left(lm\left(K_{X/Y}+tL+\frac{1}{p}A\right)\right) \to \mathcal{O}_X\left(lm\left(K_{X/Y}+tL+\frac{1}{p}A\right)\right)$$ is surjective for any $l \gg 0$. Let $\mu: X_1 \to X$ be a resolution of X. We put $h = f \circ \mu$. Since $$\mu^*f^*f_*\mathcal{O}_X\left(lm\left(K_{X/Y}+tL+\frac{1}{p}A\right)\right)=h^*h_*\mathcal{O}_{X_1}\left(lm\left(K_{X_1/Y}+\mu^*\left(tL+\frac{1}{p}A\right)\right)\right),$$ we have $$(1) \quad h^*h_*\mathcal{O}_{X_1}\left(lm\left(K_{X_1/Y}+\mu^*\left(tL+\frac{1}{p}A\right)\right)\right) \to \mu^*\mathcal{O}_X\left(lm\left(K_{X/Y}+tL+\frac{1}{p}A\right)\right)$$ is surjective. We note that $h_*\mathcal{O}_{X_1}(lm(K_{X_1/Y} + \mu^*(tL + (1/p)A)))$ is weakly positive by [8, Theorem A' in Page 358] because $\mu^*\mathcal{O}_X(lm(tL + (1/p)A))$ is semiample. (For the definition of weak positivity, see [26].) Hence by [8, Remark 1.3.2 (1)] and (1) above $\mu^*\mathcal{O}_X(lm(K_{X/Y} + tL + (1/p)A))$ is pseudo-effective. Since p is any natural number, we get $(K_{X/Y} + tL)L^{n-1} = \mu^*(K_{X/Y} + tL)(\mu^*L)^{n-1} \ge 0$. If dim Y = 1, then we see that $h_* \mathcal{O}_{X_1}(lm(K_{X_1/Y} + \mu^*(tL + (1/p)A)))$ is semi-positive by [8, Theorem A' in page 358] since semi-positivity and weak positivity are equivalent for torsion free sheaves on nonsingular curves. Hence by (1) above $K_{X/Y} + tL + (1/p)A$ is nef for any natural number p. Since p is any natural number, $K_{X/Y} + tL$ is nef. LEMMA 3.2. Let X and Y be smooth projective varieties with dim X > dim $Y \ge 1$ and let $f: X \to Y$ be a surjective morphism with connected fibers. Then $q(X) \le q(F) + q(Y)$, where F is a general fiber of f. *Proof.* See [8, Theorem B in Appendix] or [3, Theorem 1.6]. LEMMA 3.3. Let X be a smooth projective variety, and let D_1 and D_2 be effective divisors on X. Then $h^0(D_1 + D_2) \ge h^0(D_1) + h^0(D_2) - 1$. *Proof.* See [11, Lemma 1.12] or [21, 15.6.2 Lemma]. □ NOTATION 3.3. Let X be a smooth projective variety of dimension n and let i be an integer with $1 \le i \le n-1$. Let L_1, \ldots, L_{n-i} be nef and big line bundles on X. Assume that $\operatorname{Bs}|L_j| = \emptyset$ for every integer j with $1 \le j \le n-i$. Then by Bertini's theorem, for every integer j with $1 \le j \le n-i$, there exists a general member $X_j \in |L_j|_{X_{j-1}}|$ such that X_j is a smooth projective variety of dimension n-j. (Here we set $X_0 := X$.) Namely there exists an (n-i)-ladder $X \supset X_1 \supset \cdots \supset X_{n-i}$ such that a projective variety X_j is smooth with dim $X_j = n-j$. # 4. Properties of the sectional geometric genus In this section we study the relationship between $g_i(X, L_1, \dots, L_{n-i})$ and $h^i(\mathcal{O}_X)$. LEMMA 4.1. Let X be a projective variety of dimension n, and let s be an integer with $0 \le s \le n-1$. Let L_1, \ldots, L_s be Cartier divisors on X. Assume the following conditions: - (a) There exists an irreducible and reduced divisor $X_{k+1} \in |L_{k+1}|_{X_k}$ for any integer k with $0 \le k \le s - 2$. (Here we put $X_0 := X$.) - (b) $h^j(-\sum_{m=1}^s t_m L_m) = 0$ for any integer j and t_m with $0 \le j \le n-1$, $t_m \ge 0$ for any m, and $\sum_{m=1}^s t_m > 0$. - (c) $h^0(L_s|_{X_{s-1}}) > 0$ and there exists a member $X_s \in |L_s|_{X_{s-1}}|$. Then - (1) $h^{j}(-\sum_{m=k+1}^{s} u_{m}L_{m}|_{X_{k}}) = 0$ for any integer k, j and u_{m} with $1 \le k \le s-1$, $0 \le j \le n-k-1$, $u_{m} \ge 0$ for any m, and $\sum_{m=k+1}^{s} u_{m} > 0$. (2) $h^{j}(\mathcal{O}_{X}) = h^{j}(\mathcal{O}_{X_{1}}) = \cdots = h^{j}(\mathcal{O}_{X_{s-1}})$ for any integer j with $0 \le j \le n-s$. (3) $h^{n-s}(\mathcal{O}_{X_{s-1}}) \le h^{n-s}(\mathcal{O}_{X_{s}})$. *Proof.* (1) First we study the case where k = 1. By the above (b) and the exact sequence $$0 o \mathscr{O}_Xigg(-L_1-\sum_{m=2}^s u_mL_migg) o \mathscr{O}_Xigg(-\sum_{m=2}^s u_mL_migg) o \mathscr{O}_{X_1}igg(-\sum_{m=2}^s u_mL_m|_{X_1}igg) o 0,$$ we have $h^j(-\sum_{m=2}^s u_m L_m|_{X_1}) = 0$ for any integer j and u_m with $0 \le j \le n-2$, $u_m \ge 0$ for any m, and $\sum_{m=2}^s u_m > 0$. Assume that (1) is true for any integer k with $k \le l - 1$, where l is an integer with $2 \le l \le s - 1$. We consider the case where k = l. By the exact sequence $$\begin{split} 0 &\to \mathscr{O}_{X_{l-1}}\!\left(-L_l|_{X_{l-1}} - \sum_{m=l+1}^s u_m L_m|_{X_{l-1}}\right) \to \mathscr{O}_{X_{l-1}}\!\left(-\sum_{m=l+1}^s u_m L_m|_{X_{l-1}}\right) \\ &\to \mathscr{O}_{X_l}\!\left(-\sum_{m=l+1}^s u_m L_m|_{X_l}\right) \to 0, \end{split}$$ we have $h^j(-\sum_{m=l+1}^s u_m L_m|_{X_l}) = 0$ for any integer j and u_m with $0 \le j \le n-l-1$, $u_m \ge 0$ for any m, and $\sum_{m=l+1}^s u_m > 0$. Hence we get the assertion. Next we prove (2) and (3). By (1) above, we obtain $h^j(-L_{k+1}|_{X_k}) = 0$ for any integer j and k with $0 \le k \le s-1$ and $0 \le j \le n-k-1$. Hence by the exact sequence $$0 \to \mathscr{O}(-L_{k+1}|_{X_k}) \to \mathscr{O}_{X_k} \to \mathscr{O}_{X_{k+1}} \to 0,$$ we get the assertion. LEMMA 4.2. Let X be a projective variety of dimension n, and let L be a Cartier divisor on X. Assume that $h^0(L) > 0$ and $h^{n-1}(-L) = 0$. Then $g_{n-1}(X,L) = h^{n-1}(\mathcal{O}_{X_1}), \text{ where } X_1 \in |L|.$ *Proof.* We consider the exact sequence $$0 \to -L \to \mathcal{O}_X \to \mathcal{O}_{X_1} \to 0.$$ Then $$H^{n-1}(-L) \to H^{n-1}(\mathcal{O}_X) \to H^{n-1}(\mathcal{O}_{X_1})$$ $\to H^n(-L) \to H^n(\mathcal{O}_X) \to 0$ Since $h^{n-1}(-L) = 0$, we see that $h^n(-L) - h^n(\mathcal{O}_X) + h^{n-1}(\mathcal{O}_X) =$ $h^{n-1}(\mathcal{O}_{X_1})$. By [11, Definition 2.1 and Theorem 2.2] or [13, Corollary 2.2], we get $$g_{n-1}(X,L) = h^n(-L) - h^n(\mathcal{O}_X) + h^{n-1}(\mathcal{O}_X)$$ $$= h^{n-1}(\mathcal{O}_{X_1}).$$ Hence we get the assertion. THEOREM 4.1. Let X be a projective variety of dimension n, and let i be an integer with $0 \le i \le n-1$. Let L_1, \ldots, L_{n-i} be Cartier divisors on X. Assume the following conditions: - (a) There exists an irreducible and reduced divisor $X_{k+1} \in |L_{k+1}|_{X_k}$ for any - integer k with $0 \le k \le n i 2$. (Here we put $X_0 := X$.) (b) $h^j(-\sum_{m=1}^{n-i} t_m L_m) = 0$ for any integer j and t_m with $0 \le j \le n 1$, $t_m \ge 0$ for any m, and $\sum_{m=1}^{n-i} t_m > 0$. - (c) $h^0(L_{n-i}|_{X_{n-i-1}}) > 0$ and there exists a member $X_{n-i} \in |L_{n-i}|_{X_{n-i-1}}|$. Then $$g_i(X, L_1, \ldots, L_{n-i}) \ge h^i(\mathcal{O}_X).$$ *Proof.* By Lemma 4.1 (2), we have $h^{j}(\mathcal{O}_{X}) = h^{j}(\mathcal{O}_{X_{n-i-1}})$ for every j with $0 \le j \le i$. Therefore $$(-1)^{i}\chi(\mathcal{O}_{X}) - \sum_{j=0}^{n-i} (-1)^{n-i-j} h^{n-j}(\mathcal{O}_{X})$$ $$= (-1)^{i}\chi(\mathcal{O}_{X_{n-i-1}}) - \sum_{i=0}^{1} (-1)^{1-j} h^{i+1-j}(\mathcal{O}_{X_{n-i-1}}).$$ By [13, Lemma 2.4] we also get $$\chi_{1,\dots,1}(L_1,\dots,L_{n-i}) = \chi_{1,\dots,1}(L_2|_{X_1},\dots,L_{n-i}|_{X_1})$$ $$= \dots$$ $$= \chi_1(L_{n-i}|_{X_{n-i-1}}).$$ Hence by [11, Definition 2.1] and Definition 3.1 (2) we have $$g_i(X, L_1, \ldots, L_{n-i}) = g_i(X_{n-i-1}, L_{n-i}|_{X_{n-i-1}}).$$ Here we note that by Lemma 4.1 (1) we have $h^{j}(-L_{n-i}|_{X_{n-i-1}}) = 0$ for any integer j with $0 \le j \le i$. By Lemma 4.2 we see that $g_{i}(X_{n-i-1}, L_{n-i}|_{X_{n-i-1}}) = h^{i}(\mathcal{O}_{X_{n-i}})$. Hence by Lemma 4.1 (2) and (3) we get $$g_i(X, L_1, \dots, L_{n-i}) = g_i(X_{n-i-1}, L_{n-i}|_{X_{n-i-1}})$$ = $h^i(\mathcal{O}_{X_{n-i}})$ $\geq h^i(\mathcal{O}_X).$ Hence we obtain the assertion. LEMMA 4.3. Let X be a projective variety of dimension n, and let i be an integer with $0 \le i \le n-1$. Let L_1, \ldots, L_{n-i} be Cartier divisors on X. Then the following are equivalent: (Here $\chi^i(\mathcal{O}_X) := \sum_{j=0}^i (-1)^j h^j(\mathcal{O}_X)$.) - (a) $g_i(X, L_1, ..., L_{n-i}) \ge h^i(\mathcal{O}_X)$. (b) $(-1)^i \chi_i^H(X, L_1, ..., L_{n-i}) \ge (-1)^i \chi^i(\mathcal{O}_X)$. (c) $p_a^i(X, L_1, ..., L_{n-i}) \ge (-1)^i (\chi^i(\mathcal{O}_X) 1)$. *Proof.* By definition, we get $$g_{i}(X, L_{1}, \dots, L_{n-i}) - h^{i}(\mathcal{O}_{X}) = (-1)^{i}(\chi_{1,\dots,1}(L_{1}, \dots, L_{n-i}) - \chi(\mathcal{O}_{X}))$$ $$+ \sum_{j=0}^{n-i-1} (-1)^{n-i-j} h^{n-j}(\mathcal{O}_{X})$$ $$= (-1)^{i}(\chi_{i}^{H}(X, L_{1}, \dots, L_{n-i}) - \chi(\mathcal{O}_{X}))$$ $$+ \sum_{j=0}^{n-i-1} (-1)^{n-i-j} h^{n-j}(\mathcal{O}_{X})$$ $$= (-1)^{i} \chi_{i}^{H}(X, L_{1}, \dots, L_{n-i}) - (-1)^{i} \chi^{i}(\mathcal{O}_{X}),$$ and $$p_a^{i}(X, L_1, \dots, L_{n-i}) - (-1)^{i}(\chi^{i}(\mathcal{O}_X) - 1)$$ $$= (-1)^{i}(\chi_i^{H}(X, L_1, \dots, L_{n-i}) - 1) - (-1)^{i}(\chi^{i}(\mathcal{O}_X) - 1)$$ $$= (-1)^{i}\chi_i^{H}(X, L_1, \dots, L_{n-i}) - (-1)^{i}\chi^{i}(\mathcal{O}_X).$$ Hence we get the assertion. COROLLARY 4.1. Let X be a projective variety of dimension n, and let i be an integer with $0 \le i \le n-1$. Let L_1, \ldots, L_{n-i} be Cartier divisors on X. Assume the following conditions: - (a) There exists an irreducible and reduced divisor $X_{k+1} \in |L_{k+1}|_{X_k}$ for any integer k with $0 \le k \le n - i - 1$. (Here we put $X_0 := X$.) - (b) $h^{j}(-\sum_{m=1}^{n-i}t_{m}L_{m})=0$ for any integer j and t_{m} with $0 \leq j \leq n-1$,
$t_{m} \geq 0$ for any m, and $\sum_{m=1}^{n-i}t_{m}>0$. (c) $h^{0}(L_{n-i}|_{X_{n-i-1}})>0$ and there exists a member $X_{n-i} \in |L_{n-i}|_{X_{n-i-1}}|$. Then we get the following: $(Here \chi^{i}(\mathcal{O}_{X}):=\sum_{j=0}^{i}(-1)^{j}h^{j}(\mathcal{O}_{X}).)$ - (1) $(-1)^{i}\chi_{i}^{H}(X, L_{1}, \dots, L_{n-i}) \geq (-1)^{i}\chi^{i}(\mathcal{O}_{X}).$ (2) $p_{a}^{i}(X, L_{1}, \dots, L_{n-i}) \geq (-1)^{i}(\chi^{i}(\mathcal{O}_{X}) 1).$ *Proof.* By Lemma 4.3 and Theorem 4.1, we get the assertion. If X is normal, then we get the following. COROLLARY 4.2. Let X be a normal projective variety of dimension $n \geq 3$. Let i be an integer with $0 \le i \le n-1$. Let $L_1, L_2, \ldots, L_{n-i}$ be ample line bundles on X such that $Bs|L_j| = \emptyset$ for every integer j with $1 \le j \le n-i$. Assume that $h^{j}(-\sum_{k=1}^{n-i}t_{k}L_{k})=0$ for any integer j and t_{k} with $0 \leq j \leq n-1$, $t_{k} \geq 0$ for any k, and $\sum_{k=1}^{n-i} t_k > 0$. Then $$g_i(X, L_1, \ldots, L_{n-i}) \ge h^i(\mathcal{O}_X).$$ *Proof.* If i = n - 1, then by [12, Corollary 2.9] we get $g_{n-1}(X, L_1) \ge$ $h^{n-1}(\mathcal{O}_X)$. If i = 0, then $g_0(X, L_1, ..., L_n) = L_1 \cdot ... L_n \ge 1 = h^0(\mathcal{O}_X)$. So we may assume that $1 \le i \le n-2$. For every integer k with $1 \le k \le n-2$. n-i-1, let $X_k \in |L_k|_{X_{k-1}}$ be a general member. Then since $\operatorname{Bs}|L_k|_{X_{k-1}}|=\emptyset$, we see that X_k is a normal projective variety (for example, see [6, (0.2.9) Fact and (4.3) Theorem] or [2, Theorem 1.7.1]). Since L_{n-i} is ample with $Bs|L_{n-i}|=\emptyset$, we have $h^0(L_{n-i}|_{X_{n-i-1}}) > 0$ and $|L_{n-i}|_{X_{n-i-1}}| \neq \emptyset$. Hence by Theorem 4.1, we get the assertion. Here we propose the following conjecture, which is a multi-polarized version on [11, Conjecture 4.1]. Conjecture 4.1. Let n and i be integers with $n \ge 2$ and $0 \le i \le n-1$. Let $(X, L_1, \ldots, L_{n-i})$ be an n-dimensional multi-polarized manifold of type (n-i). Then $g_i(X, L_1, \dots, L_{n-i}) \ge h^i(\mathcal{O}_X)$ holds. Proposition 4.1. Let X be a normal projective variety of dimension $n \ge 2$. Let i be an integer with $0 \le i \le n-1$. Let $L_1, \ldots, L_{n-i-1}, A, B$ be ample Cartier divisors on X. Assume that $h^j(-(\sum_{p=1}^{n-i-1}t_pL_p)-aA-bB)=0$ for any integers j, a, b and t_p with $0 \le j \le n-1$, $a \ge 0$, $b \ge 0$, $t_p \ge 0$, and $a+b+\sum t_p > 0$, and that $\operatorname{Bs}|L_j| = \emptyset$ for $1 \le j \le n - i - 1$, $\operatorname{Bs}|A| = \emptyset$, and $\operatorname{Bs}|B| = \emptyset$. $$g_i(X, A + B, L_1, \dots, L_{n-i-1}) \ge g_i(X, A, L_1, \dots, L_{n-i-1}) + g_i(X, B, L_1, \dots, L_{n-i-1}).$$ Proof. We note that by [13, Corollary 2.4] $$g_i(X, A + B, L_1, \dots, L_{n-i-1}) = g_i(X, A, L_1, \dots, L_{n-i-1}) + g_i(X, B, L_1, \dots, L_{n-i-1})$$ + $g_{i-1}(X, A, B, L_1, \dots, L_{n-i-1}) - h^{i-1}(\mathcal{O}_X).$ By assumption and Corollary 4.2 we have $$g_{i-1}(X, A, B, L_1, \dots, L_{n-i-1}) \ge h^{i-1}(\mathcal{O}_X).$$ Hence we get the assertion. Remark 4.1. If i = 1, then by [13, Corollary 2.4] for any ample Cartier divisors $A, B, L_1, \ldots, L_{n-2}$ we have $$g_1(X, A+B, L_1, \dots, L_{n-2}) \ge g_1(X, A, L_1, \dots, L_{n-2}) + g_1(X, B, L_1, \dots, L_{n-2})$$ because $ABL_1 \cdots L_{n-2} \ge 1 = h^0(\mathcal{O}_X)$. ## 5. Adjunction theory of multi-polarized manifolds In this section, we are going to investigate the nefness of $K_X + L_1 + \cdots + L_k$. Results in this section will be used when we study the *i*th sectional geometric genus of multi-polarized manifolds in this paper and the Part III [14]. # **5.1.** The nefness of $K_X + L_1 + \cdots + L_t$ for $t \ge n-1$ By putting $\mathscr{E} := L_1 \oplus \cdots \oplus L_l$ for l = n + 1, n, n - 1, we can get the following theorem by using a result of Ye and Zhang [28, Theorems 1, 2 and 3]. Here \mathfrak{S}_l denotes the symmetric group of order l (see Notation 3.2). - THEOREM 5.1.1. (1) Let $(X, L_1, \ldots, L_{n+1})$ be an n-dimensional multipolarized manifold of type n+1 with $n \ge 3$. Then $K_X + L_1 + \cdots + L_{n+1}$ is nef. - (2) Let $(X, L_1, ..., L_n)$ be an n-dimensional multi-polarized manifold of type n with $n \ge 3$. Then $K_X + L_1 + \cdots + L_n$ is nef unless $$(X, L_1, \ldots, L_n) \cong (\mathbf{P}^n, \mathcal{O}_{\mathbf{P}^n}(1), \ldots, \mathcal{O}_{\mathbf{P}^n}(1)).$$ - (3) Let X be a smooth projective variety of dimension $n \ge 3$. Let $L_1, L_2, \ldots, L_{n-1}$ be ample line bundles on X. If $K_X + L_1 + L_2 + \cdots + L_{n-1}$ is not nef, then there exists $\sigma \in \mathfrak{S}_{n-1}$ such that $(X, L_{\sigma(1)}, L_{\sigma(2)}, \ldots, L_{\sigma(n-1)})$ is one of the following: - (A) $(\mathbf{P}^n, \mathcal{O}_{\mathbf{P}^n}(1), \mathcal{O}_{\mathbf{P}^n}(1), \dots, \mathcal{O}_{\mathbf{P}^n}(1)).$ - (B) $(\mathbf{P}^n, \mathcal{O}_{\mathbf{P}^n}(2), \mathcal{O}_{\mathbf{P}^n}(1), \dots, \mathcal{O}_{\mathbf{P}^n}(1)).$ - (C) $(\mathbf{Q}^n, \mathcal{O}_{\mathbf{Q}^n}(1), \mathcal{O}_{\mathbf{Q}^n}(1), \dots, \mathcal{O}_{\mathbf{Q}^n}(1)).$ - (D) X is a \mathbf{P}^{n-1} -bundle over a smooth projective curve B and $L_j|_F = \mathcal{O}_{\mathbf{P}^{n-1}}(1)$ for any fiber F and every integer j with $1 \le j \le n-1$. # **5.2.** The nefness of $K_X + L_1 + \cdots + L_{n-2}$ THEOREM 5.2.1. Let X be a smooth projective variety of dimension $n \ge 4$ and let L_1, \ldots, L_{n-2} be ample line bundles on X. Assume the following: - (a) $K_X + L_1 + \cdots + L_{n-2}$ is not nef. - (b) $K_X + (n-1)L_j$ is nef for every integer j with $1 \le j \le n-2$. Then $(X, L_1, \ldots, L_{n-2})$ is one of the following. - (1) There exists a multi-polarized manifold $(Y, A_1, ..., A_{n-2})$ of type (n-2) such that $(Y, A_1, ..., A_{n-2})$ is a reduction of $(X, L_1, ..., L_{n-2})$ (see [13, Definition 1.5]) and $K_Y + (n-1)A_j$ is ample for every integer j. - (2) $K_X + (n-1)L_j = \mathcal{O}_X$ for every j with $1 \le j \le n-2$. Moreover $L_j = L_k$ for every pair (j,k) with $j \ne k$. - (3) n = 4 and $(X, L_1, L_2) \cong (\mathbf{P}^4, \mathcal{O}_{\mathbf{P}^4}(2), \mathcal{O}_{\mathbf{P}^4}(2)).$ - (4) There exist a smooth projective curve W and a surjective morphism $f: X \to W$ with connected fibers such that (X, L_i) is a quadric fibration over W with respect to f for every integer i with $1 \le i \le n-2$. - (5) There exist a smooth projective surface S and a surjective morphism $f: X \to S$ with connected fibers such that f is a \mathbf{P}^{n-2} -bundle over S and (X, L_j) is a scroll over S with respect to f for every integer j with $1 \le j \le n-2$, where F is its fiber. *Proof.* By assumption, there exists an extremal ray R such that $(K_X + L_1 + \cdots + L_{n-2})R < 0$. Here we may assume that $L_1R \le L_2R \le \cdots \le L_{n-2}R$. Then $(K_X + (n-2)L_1)R \le (K_X + L_1 + \cdots + L_{n-2})R < 0$ and $K_X + (n-2)L_1$ is not nef. There exists a rational curve C with $[C] \in R$ such that $0 < -K_XC \le n+1$, and $$(5.2.1.a) 0 > (K_X + L_1 + \dots + L_{n-2})C \ge (K_X C) + (n-2).$$ So we get $-K_XC \ge n-1$. (A) The case where there exists an extremal rational curve C such that $K_X C = -n - 1$. In this case $0 > (K_X + (n-2)L_1)C = -n-1 + (n-2)L_1C$. (A.1) Assume that $L_1C \ge 2$. Then $-n-1+2n-4 \le -n-1+(n-2)L_1C < 0$. In particular n=4 by assumption. By Proposition 3.1 (1), we get $Pic(X) \cong \mathbb{Z}$ in this case. Since $K_X + (n-1)L_1 = K_X + 3L_1$ is nef by assumption and $K_X + (n-2)L_1 = K_X + 2L_1$ is not nef, we get $L_1C = 2$ and $L_1 = \mathcal{O}(1)$ or $\mathcal{O}(2)$, where $\mathcal{O}(1)$ is the ample generator of Pic(X). If $L_1=\mathcal{O}(1)$, then $\mathcal{O}(1)C=2$ and K_XC is even because $\operatorname{Pic}(X)\cong \mathbb{Z}$ and $\mathcal{O}(1)$ is the ample generator of $\operatorname{Pic}(X)$. But then $K_XC=-n-1=-5$ and this is impossible. Hence $L_1=\mathcal{O}(2)$ and $\mathcal{O}(1)C=1$. Therefore $K_X=\mathcal{O}(-n-1)=\mathcal{O}(-5)$. We set $L_2:=\mathcal{O}(a_2)$. Since $K_X+L_1+L_2=\mathcal{O}(a_2-3)$ is not nef, we obtain $a_2\leq 2$. By assumption, $K_X+3L_2=\mathcal{O}(3a_2-5)$ is nef. Hence $a_2\geq 2$. Therefore $a_2=2$. Since $-(K_X+4\mathcal{O}(1))$ is ample, by Kobayashi-Ochiai's theorem (see [6, (1.3) Corollary]), we have $X\cong \mathbf{P}^4$. Therefore we get the type (3). - (A.2) Assume that $L_1C = 1$. Then $(K_X + (n-1)L_1)C = -2 < 0$. But this contradicts the assumption. - (B) The case where there exists an extremal rational curve C such that $K_XC=-n$. In this case, $0 > (K_X + (n-2)L_1)C = -n + (n-2)L_1C$. - (B.1) If $L_1C \ge 2$, then $0 > (K_X + (n-2)L_1)C \ge -n + (n-2)2 = n-4 \ge 0$ and this is impossible. - (B.2) If $L_1C = 1$, then $(K_X + (n-1)L_1)C = -n + (n-1) = -1 < 0$ and this is a contradiction. - (C) The case where $(X, L_1, \ldots, L_{n-2})$ satisfies neither the case (A) nor the case (B) above. We set $H := L_1 + \cdots + L_{n-2}$. In this case by (5.2.1.*a*) for every extremal rational curve B, $K_X B = -n + 1$ and $L_i B = 1$ for every integer i with $1 \le i \le n-2$. In particular $HB = (n-2)L_i B$ for every i. Let τ_H (resp. τ_i) be the nef value of (X, H) (resp. (X, L_i)). Claim 5.2.1. $\tau_H = (n-1)/(n-2)$ and $\tau_i = n-1$ for every integer i with $1 \le i \le n-2$. *Proof.* Assume that there exists $C \in \overline{NE}(X)$ such that $$\left(K_X + \frac{n-1}{n-2}H\right)C < 0.$$ Then by the cone theorem (see also [2, Remark 4.2.6]) C can be written as $\sum_{j} \lambda_{j} C_{j} + \gamma$, where C_{j} is an extremal rational curve and γ is a 1-cycle such that the following holds: $$\left(K_X + \frac{n-1}{n-2}H\right)\gamma = 0.$$ Hence $$\left(K_X + \frac{n-1}{n-2}H\right)C_j < 0$$ for some j. But this is impossible because $K_XB = -n + 1$ and $L_iB = 1$ for any extremal rational curve B. Therefore $\tau_H \leq (n-1)/(n-2)$. Furthermore $(K_X + aH)B < 0$ for
every rational number a < (n-1)/(n-2) and every extremal rational curve B. Therefore $\tau_H = (n-1)/(n-2)$. By the same arguement as above, we see that $\tau_i = n - 1$. Let ϕ_H and ϕ_i be the nef value morphism of (X, H) and (X, L_i) respectively. Let F_H and F_i be the corresponding extremal face. CLAIM 5.2.2. $\phi_H = \phi_i$ for every integer i with $1 \le i \le n-2$. *Proof.* Let $C \subset X$ be an irreducible curve with $[C] \in F_H$. Then $$\left(K_X + \frac{n-1}{n-2}H\right)C = 0.$$ Then by the cone theorem there exist extremal rational curves C_j such that $C = \sum_i \lambda_i C_i$ (see [2, Lemma 4.2.14]). Hence $$0 = \left(K_X + \frac{n-1}{n-2}H\right)C$$ $$= \sum_j \lambda_j \left(K_X + \frac{n-1}{n-2}H\right)C_j$$ $$= \sum_j \lambda_j (K_X + (n-1)L_i)C_j$$ $$= (K_X + (n-1)L_i)C.$$ Therefore $[C] \in F_{L_i}$. By the same argument as above, $[C] \in F_H$ if C is a curve in X with $[C] \in F_{L_i}$. Hence $\phi_H = \phi_i$ because ϕ_H (resp. ϕ_i) is the contraction morphism of F_H (resp. F_i). \square In particular $\phi_i = \phi_j$. By Claim 5.2.1 $\tau_i = n-1$ for every integer i with $1 \le i \le n-2$. Hence by [2, Theorem 7.3.2], (X, L_1, \dots, L_{n-2}) is either of the type (1), (2), (4), or (5) in the statement of Theorem 5.2.1. Here we note that in the type (1) $K_Y + (n-1)A_j$ is ample for every j. Next we consider the type (2). Then $K_X + (n-1)L_j = \mathcal{O}_X$ for any j. Hence $(n-1)L_j = (n-1)L_k$ for $j \ne k$. Therefore $L_j \equiv L_k$. But since $h^1(\mathcal{O}_X) = 0$ and $H^2(X, \mathbb{Z})$ is torsion free in this case, we see that $L_j = L_k$. This completes the proof of Theorem 5.2.1. Remark 5.2.1. In (1) of Theorem 5.2.1, we see that $$K_Y + \frac{n-1}{n-2}(A_1 + \cdots + A_{n-2})$$ is ample. Therefore by Theorem 5.2.1 we get the following: Let X be a smooth projective variety of dimension $n \ge 4$ and let L_1, \ldots, L_{n-2} be ample line bundles on X. Assume that $K_X + L_1 + \cdots + L_{n-2}$ is not nef and $K_X + (n-1)L_j$ is nef for any j. Then $(X, L_1, \ldots, L_{n-2})$ is one of the following: - (I) $K_X + (n-1)L_j = \mathcal{O}_X$ for any j. Moreover $L_j = L_k$ for any (j,k) with $j \neq k$. - (II) There exist a smooth projective curve W and a surjective morphism $f: X \to W$ with connected fibers such that (X, L_i) is a quadric fibration over W with respect to f for every integer i with $1 \le i \le n 2$. - (III) There exist a smooth projective surface S and a surjective morphism $f: X \to S$ with connected fibers such that f is a \mathbf{P}^{n-2} -bundle over S - and (X, L_i) is a scroll over S with respect to f for every integer j with $1 \le j \le n - 2$. - (IV) There exists a reduction $(Y, A_1, \ldots, A_{n-2})$ of $(X, L_1, \ldots, L_{n-2})$ such that $(Y, A_1, \ldots, A_{n-2})$ satisfies one of the following. - (IV.1) n = 4 and $(Y, A_1, A_2) \cong (\mathbf{P}^4, \mathcal{O}_{\mathbf{P}^4}(2), \mathcal{O}_{\mathbf{P}^4}(2)).$ - (IV.2) $K_Y + A_1 + \cdots + A_{n-2}$ is nef. Remark 5.2.2. Let $(Y, A_1, \ldots, A_{n-2})$ be a reduction of $(X, L_1, \ldots, L_{n-2})$. If Y is not isomorphic to X, then $K_Y + A_1 + \cdots + A_{n-2} + A_i$ is ample for every integer j with $1 \le j \le n-2$. Theorem 5.2.2. Let X be a smooth projective variety of dimension $n \ge 4$ and let L_1, \ldots, L_{n-2} be ample line bundles on X. Assume the following: - (a) $K_X + L_1 + \cdots + L_{n-2}$ is not nef. - (b) $K_X + (n-1)L_j$ is not nef for some j. Then there exists $\sigma \in \mathfrak{S}_{n-2}$ such that $(X, L_{\sigma(1)}, \ldots, L_{\sigma(n-2)})$ is one of the following: - (1) $(\mathbf{P}^n, \mathcal{O}_{\mathbf{P}^n}(1), \dots, \mathcal{O}_{\mathbf{P}^n}(1), \mathcal{O}_{\mathbf{P}^n}(3)).$ - (2) $n \geq 5$ and $(\mathbf{P}^n, \mathcal{O}_{\mathbf{P}^n}(1), \dots, \mathcal{O}_{\mathbf{P}^n}(1), \mathcal{O}_{\mathbf{P}^n}(2), \mathcal{O}_{\mathbf{P}^n}(2))$. - (3) $(\mathbf{P}^n, \mathcal{O}_{\mathbf{P}^n}(1), \dots, \mathcal{O}_{\mathbf{P}^n}(1), \mathcal{O}_{\mathbf{P}^n}(2)).$ - (4) $(\mathbf{P}^n, \mathcal{O}_{\mathbf{P}^n}(1), \dots, \mathcal{O}_{\mathbf{P}^n}(1)).$ - (5) $(\mathbf{Q}^n, \mathcal{O}_{\mathbf{Q}^n}(1), \dots, \mathcal{O}_{\mathbf{Q}^n}(1), \mathcal{O}_{\mathbf{Q}^n}(2)).$ - (6) $(\mathbf{Q}^n, \mathcal{O}_{\mathbf{Q}^n}(1), \dots, \mathcal{O}_{\mathbf{Q}^n}(1))$. (7) X is a \mathbf{P}^{n-1} -bundle over a smooth curve C and one of the following holds. (Here F denotes its fiber.) - (7.1) $L_{\sigma(j)}|_F = \mathcal{O}_{\mathbf{P}^{n-1}}(1)$ for every integer j with $1 \le j \le n-2$. - (7.2) $L_{\sigma(j)}|_F = \mathcal{O}_{\mathbf{P}^{n-1}}(1)$ for every integer j with $1 \le j \le n-3$ and $L_{\sigma(n-2)}|_F = \mathcal{O}_{\mathbf{P}^{n-1}}(2).$ *Proof.* We may assume that j = 1 in (b). Since $K_X + (n-1)L_1$ is not nef, by [4, Theorem 1 and Theorem 2] or [16, Theorem] we see that X is isomorphic to one of the following types: - (A) \mathbf{P}^n . - (B) \mathbf{Q}^n . - (C) A \mathbf{P}^{n-1} -bundle over a smooth curve C. Next we study each case. - (A) If $X \cong \mathbf{P}^n$, then we set $L_j := \mathcal{O}_{\mathbf{P}^n}(a_j)$ for $1 \le j \le n-2$. Since $K_X +$ $(n-1)L_1$ is not nef, we have $a_1=1$. Here we may assume that $a_2 \leq \cdots \leq a_{n-2}$. Since $K_X + L_1 + \cdots + L_{n-2}$ is not nef, we get $(a_1, \dots, a_{n-4}, a_{n-3}, a_{n-2}) =$ $(1,\ldots,1,1,1), (1,\ldots,1,1,2), (1,\ldots,1,2,2)$ or $(1,\ldots,1,1,3)$. We note that if n = 4, then $(a_1, a_2) = (2, 2)$ cannot occur. - (B) If $X \cong \mathbb{Q}^n$ with $n \geq 4$, then $\text{Pic}(X) \cong \mathbb{Z}$ and we set $L_i := \mathcal{O}_{\mathbb{Q}^n}(a_i)$ for $1 \le j \le n-2$. Since $K_X + (n-1)L_1$ is not nef, we have $a_1 = 1$. Here we may assume that $a_2 \leq \cdots \leq a_{n-2}$. Then we note that $K_X = \mathcal{O}_{\mathbf{Q}^n}(-n)$. Since $K_X + L_1 + \cdots + L_{n-2}$ is not nef, we get $(a_1, \ldots, a_{n-3}, a_{n-2}) = (1, \ldots, 1, 1)$ or $(1, \ldots, 1, 2).$ (C) The case where X is a \mathbf{P}^{n-1} -bundle over a smooth curve C. (C.1) The case where $g(C) \ge 1$. Since $K_X + (n-1)L_1$ is not nef, there exists a vector bundle $\mathscr E$ on C with $\mathrm{rank}(\mathscr E) = n$ such that $X = \mathbf P_C(\mathscr E)$ and $L_1 = H(\mathscr E)$, where $H(\mathscr E)$ denotes the tautological line bundle on X. Then we note that $\mathscr E$ is ample. Let $\pi: \mathbf P_C(\mathscr E) \to C$ be its projection. Let $L_j := a_j H(\mathscr E) + \pi^*(B_j)$ for every integer j with $2 \le j \le n-2$. Here we may assume that $a_2 \le \cdots \le a_{n-2}$. Since $K_X + L_1 + \cdots + L_{n-2}$ is not nef, there exists an extremal rational curve B on X such that $(K_X + L_1 + \cdots + L_{n-2})B < 0$. We note that B is contained in a fiber of π . Hence $$0 > (K_X + L_1 + \cdots + L_{n-2})B = \mathcal{O}_{\mathbf{P}^{n-1}} \left(-n + 1 + \sum_{j=2}^{n-2} a_j \right) B.$$ Hence we obtain $(a_2, \ldots, a_{n-3}, a_{n-2}) = (1, \ldots, 1, 1)$ or $(1, \ldots, 1, 2)$. (C.2) The case where g(C) = 0. There exists a vector bundle $\mathscr E$ on $\mathbf P^1$ such that $X=\mathbf P_C(\mathscr E)$ and $\mathscr E\cong\mathscr O_C\oplus\mathscr O_C(d_1)\oplus\cdots\oplus\mathscr O_C(d_{n-1})$, where d_j is a non-negative integer for $1\leq j\leq n-1$. In this case we set $L_j:=\tilde a_jH(\mathscr E)+\pi^*(\widetilde B_j)$ for $1\leq j\leq n-2$. By [2, Lemma 3.2.4] $\tilde a_j>0$ and $\tilde b_j>0$ for any integer j with $1\leq j\leq n-2$, where $\tilde b_j:=\deg \widetilde B_j$. Since $K_X+(n-1)L_1$ is not nef, we have $\tilde a_1=1$. We may assume that $\tilde a_2\leq\cdots\leq\tilde a_{n-2}$. Since $K_X \equiv -nH(\mathscr{E}) + (c_1(\mathscr{E}) - 2)F$, we have $$K_X + L_1 + \dots + L_{n-2} \equiv \left(-n + \sum_{j=1}^{n-2} \tilde{a}_j\right) H(\mathscr{E}) + \left(c_1(\mathscr{E}) - 2 + \sum_{j=1}^{n-2} \tilde{b}_j\right) F.$$ We note that $c_1(\mathscr{E}) - 2 + \sum_{j=1}^{n-2} \tilde{b}_j \ge 0 - 2 + (n-2) \ge 0$. Hence $K_X + L_1 + \dots + L_{n-2}$ is not nef if and only if $-n + \sum_{j=1}^{n-2} \tilde{a}_j < 0$ because $H(\mathscr{E})$ is nef. So we get $(\tilde{a}_1, \dots, \tilde{a}_{n-3}, \tilde{a}_{n-2}) = (1, \dots, 1, 1)$ or $(1, \dots, 1, 2)$. This completes the proof. \Box Remark 5.2.3. Assume that (X, L_1, \ldots, L_k) is either the type (3) (D) in Theorem 5.1.1 (k = n - 1) in this case) or (7.1) in Theorem 5.2.2 (k = n - 2) in this case). Let $f: X \to C$ be its projection. Then for every j with $1 \le j \le k$ there exists an ample line bundle $B_j \in \operatorname{Pic}(C)$ such that $K_X + nL_j = f^*(B_j)$. Hence $n(K_X + L_{b_1} + \cdots + L_{b_n}) = f^*(B_{b_1} + \cdots + B_{b_n})$ for any (b_1, \ldots, b_n) with $\{b_1, \ldots, b_n\} \subset \{1, \ldots, k\}$. On the other hand, by assumption, there exists a line bundle $D \in \operatorname{Pic}(C)$ such that $K_X + L_{b_1} + \cdots + L_{b_n} = f^*(D)$. Hence D is ample because $\deg D = \deg(B_{b_1} + \cdots + B_{b_n})/n > 0$. Therefore we see that $(X, L_{b_1}, \ldots, L_{b_n})$ is a scroll over C. *Remark* 5.2.4. By Theorem 5.2.1, Remark 5.2.1 and Theorem 5.2.2, we get the following: Let X be a smooth projective variety of dimension $n \ge 4$ and let L_1,\ldots,L_{n-2} be ample line bundles on X. Let (Y,A_1,\ldots,A_{n-2}) be a reduction of (X,L_1,\ldots,L_{n-2}) . Assume that $K_X+L_1+\cdots+L_{n-2}$ is not nef. Then there exists $\sigma \in \mathfrak{S}_{n-2}$ such that $(X,L_{\sigma(1)},\ldots,L_{\sigma(n-2)})$ is one of the following: - (1) $(\mathbf{P}^n, \mathcal{O}_{\mathbf{P}^n}(1), \dots, \mathcal{O}_{\mathbf{P}^n}(1))$. - (2) $n \geq 5$ and $(\mathbf{P}^n, \mathcal{O}_{\mathbf{P}^n}(1), \dots, \mathcal{O}_{\mathbf{P}^n}(1), \mathcal{O}_{\mathbf{P}^n}(2), \mathcal{O}_{\mathbf{P}^n}(2)).$ - (3) $(\mathbf{P}^n, \mathcal{O}_{\mathbf{P}^n}(1), \dots, \mathcal{O}_{\mathbf{P}^n}(1), \mathcal{O}_{\mathbf{P}^n}(2)).$ - (4) $(\mathbf{P}^n,
\mathcal{O}_{\mathbf{P}^n}(1), \dots, \mathcal{O}_{\mathbf{P}^n}(1), \mathcal{O}_{\mathbf{P}^n}(3)).$ - (5) $(\mathbf{Q}^n, \mathcal{O}_{\mathbf{Q}^n}(1), \dots, \mathcal{O}_{\mathbf{Q}^n}(1)).$ - (6) $(\mathbf{Q}^n, \mathcal{O}_{\mathbf{Q}^n}(1), \dots, \mathcal{O}_{\mathbf{Q}^n}(1), \mathcal{O}_{\mathbf{Q}^n}(2)).$ - (7) X is a \mathbf{P}^{n-1} -bundle over a smooth curve C and one of the following holds. (Here F denotes its fiber). - (7.1) $L_{\sigma(j)}|_F = \mathcal{O}_{\mathbf{P}^{n-1}}(1)$ for every integer j with $1 \le j \le n-2$. - (7.2) $L_{\sigma(j)}|_F = \mathcal{O}_{\mathbf{P}^{n-1}}(1)$ for every integer j with $1 \le j \le n-3$ and $L_{\sigma(n-2)}|_F = \mathcal{O}_{\mathbf{P}^{n-1}}(2)$. - (8) $K_X + (n-1)L_j = \mathcal{O}_X$ for any j. Moreover $L_j = L_k$ for any (j,k) with $j \neq k$. - (9) There exist a smooth projective curve W and a surjective morphism $f: X \to W$ with connected fibers such that (X, L_i) is a quadric fibration over W with respect to f for every integer i with $1 \le i \le n 2$. - (10) There exist a smooth projective surface S and a surjective morphism $f: X \to S$ with connected fibers such that f is a \mathbf{P}^{n-2} -bundle over S and (X, L_j) is a scroll over S with respect to f for every integer j with $1 \le j \le n-2$. - (11) n = 4 and $(Y, A_1, A_2) \cong (\mathbf{P}^4, \mathcal{O}_{\mathbf{P}^4}(2), \mathcal{O}_{\mathbf{P}^4}(2)).$ - (12) $K_Y + A_1 + \cdots + A_{n-2}$ is nef. THEOREM 5.2.3. Let $(X, L_1, ..., L_{n-2})$ be an n-dimensional multi-polarized manifold with $n \ge 4$. Assume that $K_X + L_1 + \cdots + L_{n-2}$ is nef. Then one of the following holds. - (1) $K_X + L_1 + \cdots + L_{n-2} = \mathcal{O}_X$. - (2) $(X, L_1, \ldots, L_{n-2})$ is a Del Pezzo fibration over a smooth curve. - (3) $(X, L_1, \ldots, L_{n-2})$ is a quadric fibration over a normal surface. - (4) $(X, L_1, \ldots, L_{n-2})$ is a scroll over a normal 3-fold. - (5) $K_X + L_1 + \cdots + L_{n-2}$ is nef and big. *Proof.* If $K_X + L_1 + \cdots + L_{n-2}$ is ample, then (X, L_1, \dots, L_{n-2}) satisfies (5). So we may assume that $K_X + L_1 + \cdots + L_{n-2}$ is not ample. Then we can take the nef value morphism $\phi: X \to Y$ of $(X, L_1 + \cdots + L_{n-2})$, where Y is a normal projective variety. Assume that dim $Y < \dim X$. Let F be a general fiber of ϕ . Then $K_F + L_1|_F + \cdots + L_{n-2}|_F = \mathcal{O}_F$. Hence dim $F \ge n-3$ by Remark 3.2. Namely, dim $Y \le 3$. Therefore we get the type (1), (2), (3) and (4). Assume that dim $Y = \dim X$. Then $K_X + L_1 + \cdots + L_{n-2}$ is nef and big. Therefore we get the assertion. ## 6. The first sectional geometric genus In this section, we consider the first sectional geometric genus of multipolarized manifolds. ## 6.1. Fundamental results PROPOSITION 6.1.1. Let X be a smooth projective variety of dimension n, and let L_1, \ldots, L_{n-1} be line bundles on X. Then $$g_1(X, L_1, \dots, L_{n-1}) = 1 + \frac{1}{2} \left(K_X + \sum_{j=1}^{n-1} L_j \right) L_1 \cdots L_{n-1}.$$ *Proof.* We use [13, Corollary 2.7] for i = 1. Here we note the following: the proof of [13, Theorem 2.4] shows that the equality in [13, Corollary 2.7] holds for any line bundles L_1, \ldots, L_{n-i} . By [13, Corollary 2.7], there are the following terms in $g_1(X, L_1, \ldots, L_{n-1})$: $$\left(\sum_{j=1}^{n-1} L_j\right) L_1 \cdots L_{n-1}$$ and $$L_1 \cdots L_{n-1} T_1(X)$$. Here $T_1(X)$ denotes the Todd polynomial of weight 1 of the tangent bundle \mathcal{T}_X (see [13, Definition 1.7]). The coefficient of $(\sum_{j=1}^{n-1} L_j)L_1\cdots L_{n-1}$ is 1/2 and the coefficient of $L_1\cdots L_{n-1}T_1(X)$ is $(-1)^1/(1!\cdots 1!)=-1$. Since $T_1(X)=(1/2)c_1(X)=-(1/2)K_X$, we obtain $$g_1(X, L_1, \dots, L_{n-1}) = 1 + \frac{1}{2} \left(\sum_{j=1}^{n-1} L_j \right) L_1 \dots L_{n-1} + \frac{1}{2} K_X L_1 \dots L_{n-1}$$ $$= 1 + \frac{1}{2} \left(K_X + \sum_{j=1}^{n-1} L_j \right) L_1 \dots L_{n-1}.$$ So we get the assertion. By setting $\mathscr{E} := L_1 \oplus \cdots \oplus L_{n-1}$, we can obtain the following theorems by Remark 3.1 and [23, Theorems 1 and 2]. THEOREM 6.1.1. Let X be a smooth projective variety of dimension $n \ge 3$. Let L_1, \ldots, L_{n-1} be ample line bundles on X. Then $g_1(X, L_1, \ldots, L_{n-1}) \ge 0$. If $g_1(X, L_1, \ldots, L_{n-1}) = 0$, then $(X, L_{\sigma(1)}, \ldots, L_{\sigma(n-1)})$ is one of the following: (Here $\sigma \in \mathfrak{S}_{n-1}$.) - (A) $(\mathbf{P}^n, \mathcal{O}_{\mathbf{P}^n}(1), \dots, \mathcal{O}_{\mathbf{P}^n}(1)).$ - (B) $(\mathbf{P}^n, \mathcal{O}_{\mathbf{P}^n}(2), \mathcal{O}_{\mathbf{P}^n}(1), \dots, \mathcal{O}_{\mathbf{P}^n}(1)).$ - (C) $(\mathbf{Q}^n, \mathcal{O}_{\mathbf{Q}^n}(1), \dots, \mathcal{O}_{\mathbf{Q}^n}(1)).$ - (D) X is a \mathbf{P}^{n-1} -bundle over a projective line \mathbf{P}^1 and $L_j|_F = \mathcal{O}_{\mathbf{P}^{n-1}}(1)$ for any fiber F and j with $1 \le j \le n-1$. Theorem 6.1.2. Let X be a smooth projective variety of dimension $n \geq 3$ and let L_1, \ldots, L_{n-1} be ample line bundles on X. Assume that $g_1(X, L_1, \ldots, L_{n-1}) = 1$. Then $(X, L_1, \ldots, L_{n-1})$ is one of the following: - (1) (X, L_1, \dots, L_{n-1}) satisfies $K_X + L_1 + \dots + L_{n-1} = \mathcal{O}_X$. (2) X is a \mathbf{P}^{n-1} -bundle over an elliptic curve C and $L_j|_F = \mathcal{O}_{\mathbf{P}^{n-1}}(1)$ for any fiber F and any integer j with $1 \le j \le n-1$. Here we note that we can characterize (X, L_1, \dots, L_{n-1}) in the case (1) in Theorem 6.1.2. Theorem 6.1.3. Let X be a smooth projective variety of dimension $n \ge 3$. Let $L_1, L_2, \ldots, L_{n-1}$ be ample line bundles on X. Assume that $K_X + L_1 + \cdots +$ $L_{n-1} = \mathcal{O}_X$. Then there exists $\sigma \in \mathfrak{S}_{n-1}$ such that $(X, L_{\sigma(1)}, L_{\sigma(2)}, \dots, L_{\sigma(n-1)})$ is one of the following: - (A) (X, L) is a Del Pezzo manifold for some ample line bundle L on X and $L_i = L$ for every integer j with $1 \le j \le n - 1$. - (B) $(\mathbf{P}^n, \mathcal{O}_{\mathbf{P}^n}(3), \mathcal{O}_{\mathbf{P}^n}(1), \dots, \mathcal{O}_{\mathbf{P}^n}(1)).$ - (C) $n \geq 4$ and $(\mathbf{P}^n, \mathcal{O}_{\mathbf{P}^n}(2), \mathcal{O}_{\mathbf{P}^n}(2), \mathcal{O}_{\mathbf{P}^n}(1), \dots, \mathcal{O}_{\mathbf{P}^n}(1))$. - (D) $(\mathbf{Q}^n, \mathcal{O}_{\mathbf{Q}^n}(2), \mathcal{O}_{\mathbf{Q}^n}(1), \dots, \mathcal{O}_{\mathbf{Q}^n}(1)).$ - (E) $X \cong \mathbf{P}^2 \times \mathbf{P}^1$, $L_1 = p_1^*(\mathcal{O}_{\mathbf{P}^2}(2)) + p_2^*(\mathcal{O}_{\mathbf{P}^1}(1))$ and $L_2 = p_1^*(\mathcal{O}_{\mathbf{P}^2}(1)) + p_2^*(\mathcal{O}_{\mathbf{P}^2}(1))$ $p_2^*(\mathcal{O}_{\mathbf{P}^1}(1))$, where p_i is the ith projection. *Proof.* First we note that $h^1(\mathcal{O}_X) = 0$ by assumption. (1) Assume that $K_X + (n-1)L_j$ is nef for any j. Then $$\sum_{j=1}^{n-1} (K_X + (n-1)L_j) = (n-1)(K_X + L_1 + \dots + L_{n-1})$$ $$= \mathcal{O}_X.$$ Therefore $(K_X + (n-1)L_i)L_i^{n-1} = 0$. Since $K_X + (n-1)L_i$ is nef, we have $K_X + (n-1)L_i = \mathcal{O}_X$, that is, (X, L_i) is a Del Pezzo manifold. Moreover since $(n-1)L_j = (n-1)L_k$ for any $j \neq k$, we have $L_j \equiv L_k$. But since $h^1(\mathcal{O}_X) = 0$ and $H^2(X, \mathbb{Z})$ is torsion free, we have $L_j = L_k$. So we get the type (A) above. - (2) Assume that $K_X + (n-1)L_j$ is not nef for some j. Then by the adjunction theory, we see that X is one of the following type: - (2.1) $X \cong \mathbf{P}^n$. - (2.2) $X \cong \mathbf{Q}^n$. - (2.3) X is a \mathbf{P}^{n-1} -bundle over a smooth curve B. (2.1) First we consider the case where $X \cong \mathbf{P}^n$. Then by assumption we get (L_1, \ldots, L_{n-1}) is isomorphic to $$(\mathcal{O}_{\mathbf{P}^n}(3), \mathcal{O}_{\mathbf{P}^n}(1), \dots, \mathcal{O}_{\mathbf{P}^n}(1))$$ or $(\mathcal{O}_{\mathbf{P}^n}(2), \mathcal{O}_{\mathbf{P}^n}(2), \mathcal{O}_{\mathbf{P}^n}(1), \dots, \mathcal{O}_{\mathbf{P}^n}(1)).$ Here we note that $n \ge 4$ in the latter case because $K_X + (n-1)L_j$ is not nef for some j. - (2.2) Next we consider the case where $X \cong \mathbb{Q}^n$. Then by assumption we get the type (D) above. - (2.3) Finally we consider the case where X is a \mathbf{P}^{n-1} -bundle over a smooth curve B. Since $h^1(\mathcal{O}_X)=0$, we see that $B\cong \mathbf{P}^1$. Then there exists a vector bundle $\mathscr E$ of rank n on X such that $\mathscr E\cong \mathcal{O}_{\mathbf{P}^1}\oplus \mathcal{O}_{\mathbf{P}^1}(a_1)\oplus \cdots \oplus \mathcal{O}_{\mathbf{P}^1}(a_{n-1})$ and $X\cong \mathbf{P}_{\mathbf{P}^1}(\mathscr E)$, where $a_j\geq 0$ for every j. Then by [2, Lemma 3.2.4], $aH(\mathscr E)+bF$ is ample if and only if a>0 and b>0. Here we note that by the assumption that $\mathcal{O}_X(K_X+L_1+\cdots+L_{n-1})=\mathcal{O}_X$, we may assume that $L_1|_F=\mathcal{O}_{\mathbf{P}^{n-1}}(2)$ and $L_j|_F=\mathcal{O}_{\mathbf{P}^{n-1}}(1)$ for any fiber F and every integer j with $2\leq j\leq n-1$. Hence we can write $L_1=2H(\mathscr E)+\pi^*(B_1)$ and $L_j=H(\mathscr E)+\pi^*(B_j)$ for every integer j with $2\leq j\leq n-1$, where $B_j\in \mathrm{Pic}(\mathbf{P}^1)$. Set $b_j:=\deg B_j$. Then $b_j\geq 1$ because L_j is ample. Since $K_X=-nH(\mathscr E)+\pi^*(K_{\mathbf{P}^1}+\det\mathscr E)$, we have $K_X+L_1+\cdots+L_{n-1}=\pi^*(K_{\mathbf{P}^1}+\det\mathscr E+B_1+\cdots+B_{n-1})$. Since $\deg\mathscr E\geq 0$, we see that $$\deg(K_{\mathbf{P}^1} + \det \mathscr{E} + B_1 + \dots + B_{n-1}) = -2 + \deg \mathscr{E} + b_1 + \dots + b_{n-1}$$ $\geq n - 3 \geq 0.$ By the assumption that $\mathcal{O}_X(K_X + L_1 + \cdots + L_{n-1}) = \mathcal{O}_X$, we get $\deg(K_{\mathbf{P}^1} + \det \mathscr{E} + B_1 + \cdots + B_{n-1}) = 0$. Hence n = 3, $\deg \mathscr{E} = 0$ and $b_j = 1$ for every j. In particular $\mathscr{E} \cong \mathcal{O}_{\mathbf{P}^1} \oplus \mathcal{O}_{\mathbf{P}^1} \oplus \mathcal{O}_{\mathbf{P}^1}$. Therefore we get the type (E). Remark 6.1.1.
In general, let \mathscr{F} be an ample vector bundle of rank n-1 on a smooth projective variety X of dimension n. Then a classification of (X,\mathscr{F}) with $\mathscr{O}_X(K_X+\det\mathscr{F})=\mathscr{O}_X$ has been obtained. See [25]. By Corollary 4.2, we get the following: THEOREM 6.1.4. Let X be a smooth projective variety of dimension $n \ge 3$, let i be an integer with $0 \le i \le n-1$, and let L_1, \ldots, L_{n-i} be ample and spanned line bundles on X. Then $g_i(X, L_1, \ldots, L_{n-i}) \ge h^i(\mathcal{O}_X)$. By considering this theorem, it is natural to classify $(X, L_1, \ldots, L_{n-i})$ such that $\operatorname{Bs}|L_j|=\emptyset$ for any j with $1\leq j\leq n-i$ and $g_i(X,L_1,\ldots,L_{n-i})=h^i(\mathcal{O}_X)$. Here we consider the case where i=1. Set $\mathscr{E}:=L_1\oplus\cdots\oplus L_{n-1}$. Then \mathscr{E} is an ample vector bundle of rank n-1 on X. Since, as we said in Remark 3.1, $g_1(X,L_1,\ldots,L_{n-1})$ is equal to the curve genus $g(X,\mathscr{E})$ of \mathscr{E} , we can get the following theorem by [22, Theorem]. Theorem 6.1.5. Let X be a smooth projective variety of dimension $n \geq 3$, and let L_1, \ldots, L_{n-1} be ample and spanned line bundles on X. If $g_1(X, L_1, \ldots, L_n)$ L_{n-1}) = $h^1(\mathcal{O}_X)$, then (X, L_1, \dots, L_{n-1}) is one of the following: - (1) $g_1(X, L_1, \dots, L_{n-1}) = 0$. (2) X is a \mathbf{P}^{n-1} -bundle over a smooth curve B and $L_j = H(\mathscr{E}) + f^*(D_j)$ for any j with $1 \le j \le n-1$, where $\mathscr E$ is a vector bundle of rank n on B such that $X \cong \mathbf{P}_B(\mathscr{E})$, $H(\mathscr{E})$ is the tautological line bundle on X, $f: X \to B$ is its fibration, and $D_i \in Pic(B)$ for any j. Moreover we can also get the following theorem by Remark 3.1 and [15, Theorems 5.2 and 5.3]. Theorem 6.1.6. Let X be a smooth projective variety of dimension $n \geq 3$. Assume that there exists a fiber space $f: X \to C$, where C is a smooth projective curve. Let L_1, \ldots, L_{n-1} be ample line bundles on X. Then $g_1(X, L_1, \ldots, L_{n-1})$ $\geq g(C)$. Moreover if $g_1(X, L_1, \dots, L_{n-1}) = g(C)$, then X is a \mathbf{P}^{n-1} -bundle on C via f and $L_i|_F \cong \mathcal{O}_{\mathbf{p}^{n-1}}(1)$ for any fiber F of f and every integer j with $1 \leq j \leq 1$ n-1. Next we consider Conjecture 4.1 for the case where i = 1 and $\kappa(X) = 0$ or 1. Theorem 6.1.7. Let X be a smooth projective variety of dimension $n \geq 3$. Let L_1, \ldots, L_{n-1} be ample line bundles on X. Assume that $L_1 \cdots L_{n-1}L_j \geq 2$ for any j with $1 \le j \le n-1$ and $\kappa(X) = 0$ or 1. Then $g_1(X, L_1, ..., L_{n-1}) \ge q(X)$. *Proof.* If $\kappa(X) = 0$, then $h^1(\mathcal{O}_X) \leq n$ by the classification theory of manifolds (see [17, Corollary 2]). Hence $$g_1(X, L_1, \dots, L_{n-1}) = 1 + \frac{1}{2}(K_X + L_1 + \dots + L_{n-1})L_1 \dots L_{n-1}$$ $$\geq 1 + (n-1) = n \geq h^1(\mathcal{O}_X).$$ Next we consider the case where $\kappa(X) = 1$. By taking the Iitaka fibration of X, there exists a smooth projective variety X', a smooth projective curve C', a birational morphism $\mu: X' \to X$ and a fiber space $f': X' \to C'$ such that $\kappa(F') = 0$ for any general fiber F' of f'. In this case $h^1(\mathcal{O}_{X'}) \leq h^1(\mathcal{O}_{C'}) + 1$ $h^1(\mathcal{O}_{F'}) \leq g(C') + n - 1$ by Lemma 3.2 and [17, Corollary 2]. Here we note that by the proof of [8, Theorem 1.3.3] we have $K_{X'/C'}(\mu^*L_1)\cdots(\mu^*L_{n-1})\geq 0$. We also note that $$g_1(X', \mu^*(L_1), \dots, \mu^*(L_{n-1}))$$ $$= 1 + \frac{1}{2} (K_{X'/C'} + \mu^*(L_1) + \dots + \mu^*(L_{n-1})) \mu^*(L_1) \dots \mu^*(L_{n-1})$$ $$+ (g(C') - 1) \mu^*(L_1) \dots \mu^*(L_{n-1}) F'.$$ If $g(C') \ge 1$, then since $\mu^*(L_1) \cdots \mu^*(L_{n-1})F' \ge 1$ we see that $$g_1(X, L_1, \dots, L_{n-1}) = g_1(X', \mu^* L_1, \dots, \mu^* L_{n-1})$$ $$\geq g(C') + \frac{1}{2} (\mu^* L_1 + \dots + \mu^* L_{n-1}) (\mu^* L_1) \cdots (\mu^* L_{n-1})$$ $$\geq g(C') + n - 1$$ $$\geq h^1(\mathcal{O}_{X'}) = h^1(\mathcal{O}_{X}).$$ If g(C') = 0, then $h^1(\mathcal{O}_{X'}) \le n-1$ and by assumption here we get $$g_1(X, L_1, \dots, L_{n-1}) = 1 + \frac{1}{2}(K_X + L_1 + \dots + L_{n-1})L_1 \dots L_{n-1}$$ $$\geq 1 + (n-1) = n > h^1(\mathcal{O}_{X'}) = h^1(\mathcal{O}_X).$$ This completes the proof of Theorem 6.1.7. ## 6.2. The case of 3-folds. Here we consider the case where X is a 3-fold. The method is similar to that of [9]. We fix the notation which will be used below. NOTATION 6.2.1. Let (X, L_1) be a polarized manifold with dim X=3 and $h^0(L_1) \geq 2$. Let Λ be a linear pencil which is contained in $|L_1|$ such that $\Lambda = \Lambda_M + Z$, where Λ_M is the movable part of Λ and Z is the fixed part of $|L_1|$. We will make a fiber space by using this Λ . Let $\varphi: X \longrightarrow \mathbf{P}^1$ be the rational map associated with Λ_M , and $\theta: X' \to X$ an elimination of indeterminacy of φ . So we obtain a surjective morphism $\varphi': X' \to \mathbf{P}^1$. By taking the Stein factorization, if necessary, there exist a smooth projective curve C, a finite morphism $\delta: C \to \mathbf{P}^1$ and a fiber space $f': X' \to C$ such that $\varphi' = \delta \circ f'$. Let $a_{\Lambda} := \deg \delta$ and F' a general fiber of f'. THEOREM 6.2.1. Let X be a smooth projective variety of dimension 3. Let L_1 , L_2 be ample line bundles on X. Assume that $h^0(L_1) \ge 2$ and $h^0(L_2) \ge 1$. Then $g_1(X, L_1, L_2) \ge q(X)$. *Proof.* If $K_X + L_1 + L_2$ is not nef, then by Theorem 5.1.1, Remark 5.2.3 and [13, Example 2.1 (A), (B), (E) and (H)] we get $g_1(X, L_1, L_2) \ge q(X)$. So we may assume that $K_X + L_1 + L_2$ is nef. Here we use Notation 6.2.1. (I) If $g(C) \ge 1$, then θ is the identity mapping. By Proposition 6.1.1, we have $$g_1(X, L_1, L_2) = 1 + \frac{1}{2}(K_X + L_1 + L_2)L_1L_2$$ = $1 + \frac{1}{2}(K_{X/C} + L_1 + L_2)L_1L_2 + (g(C) - 1)L_1L_2F'.$ Since $K_{X/C} + L_1 + L_2$ is f'-nef and dim C = 1, we see that $K_{X/C} + L_1 + L_2$ is nef by Lemma 3.1. Here we note that $a_{\Lambda} \ge 2$ because $g(C) \ge 1$. Since $L_1 - a_{\Lambda}F'$ is effective, we obtain $$g_1(X, L_1, L_2) = 1 + \frac{1}{2}(K_{X/C} + L_1 + L_2)L_1L_2 + (g(C) - 1)L_1L_2F'$$ $$\geq 1 + \frac{1}{2}(K_{X/C} + L_1 + L_2)(a_{\Lambda}F')L_2 + (g(C) - 1)L_1L_2F'$$ $$\geq g(C) + (K_{F'} + L_1|_{F'} + L_2|_{F'})L_2|_{F'}.$$ If $h^1(\mathcal{O}_{F'})=0$, then $h^1(\mathcal{O}_X)=g(C)$. Moreover since $K_{F'}+L_1|_{F'}+L_2|_{F'}$ is nef, we get $g_1(X,L_1,L_2)\geq g(C)$. Hence $g_1(X,L_1,L_2)\geq g(C)=h^1(\mathcal{O}_X)$. Hence we may assume that $h^1(\mathcal{O}_{F'})>0$. Since $h^0(L_2|_{F'}) > 0$ and dim F' = 2, we have $g(L_2|_{F'}) \ge h^1(\mathcal{O}_{F'})$ ([7, Lemma 1.2 (2)]). Therefore $$g_1(X, L_1, L_2) \ge g(C) + 2h^1(\mathcal{O}_{F'}) - 2 + (L_1|_{F'})(L_2|_{F'}).$$ Then by Lemma 3.2 $$g_1(X, L_1, L_2) \ge g(C) + h^1(\mathcal{O}_{F'}) + h^1(\mathcal{O}_{F'}) - 2 + (L_1|_{F'})(L_2|_{F'})$$ $$\ge g(C) + h^1(\mathcal{O}_{F'})$$ $$\ge h^1(\mathcal{O}_X).$$ (II) Assume that g(C) = 0. Let D be an irreducible and reduced divisor on X such that the strict transform of D by θ is a general fiber F'. Then $L_1 - D$ is linearly equivalent to an effective divisor. Here we note that $K_X + L_1 + L_2$ is nef. So we have $$\begin{split} g_1(X,L_1,L_2) &= g_1(X',\theta^*L_1,\theta^*L_2) \\ &= 1 + \frac{1}{2}(K_{X'} + \theta^*L_1 + \theta^*L_2)(\theta^*L_1)(\theta^*L_2) \\ &= 1 + \frac{1}{2}\theta^*(K_X + L_1 + L_2)(\theta^*L_1)(\theta^*L_2) \\ &\geq 1 + \frac{1}{2}\theta^*(K_X + L_1 + L_2)(\theta^*L_2)F' \\ &= 1 + \frac{1}{2}(\theta^*(K_X + D) + \theta^*(L_1 - D) + \theta^*L_2)(\theta^*L_2)F'. \end{split}$$ Since $\theta^*(L_1 - D)(\theta^*L_2)F' \ge 0$, we have $$g(X, L_1, L_2) \ge 1 + \frac{1}{2} (\theta^*(K_X + D) + \theta^*L_2)(\theta^*L_2)F'.$$ By the same argument as in the proof of [9, Claim 2.4], we can prove $$\theta^*(K_X + D)(\theta^*L_2)F' \ge (K_{X'} + F')(\theta^*L_2)F'.$$ Hence $$g_1(X, L_1, L_2) \ge 1 + \frac{1}{2} (K_{X'} + F' + \theta^* L_2) (\theta^* L_2) F'$$ = $g(\theta^* L_2|_{F'}).$ Since $h^0(\theta^*(L_2)|_{F'}) > 0$, we get $g(\theta^*(L_2)|_{F'}) \ge h^1(\mathcal{O}_{F'})$ by [7, Lemma 1.2 (2)]. Therefore by Lemma 3.2 $$g_1(X, L_1, L_2) \ge g(\theta^*(L_2)|_{F'}) \ge h^1(\mathcal{O}_{F'}) \ge h^1(\mathcal{O}_{X'}) = h^1(\mathcal{O}_X).$$ This completes the proof. THEOREM 6.2.2. Let X be a smooth projective variety of dimension 3 and let L_1 and L_2 be ample line bundles on X with $h^0(L_1) \ge 2$ and $h^0(L_2) \ge 1$. Let $\Lambda \subset |L_1|$ be a linear pencil, and we use Notation 6.2.1. Assume that for some $\sigma \in \mathfrak{S}_{2} (X, L_{\sigma(1)}, L_{\sigma(2)}) \text{ is neither of the following:}$ $(A) (\mathbf{P}^{3}, \mathcal{O}_{\mathbf{P}^{3}}(1), \mathcal{O}_{\mathbf{P}^{3}}(1)).$ $(B) (\mathbf{P}^{3}, \mathcal{O}_{\mathbf{P}^{3}}(2), \mathcal{O}_{\mathbf{P}^{3}}(1)).$ $(C) (\mathbf{Q}^{3}, \mathcal{O}_{\mathbf{Q}^{3}}(1), \mathcal{O}_{\mathbf{Q}^{3}}(1)).$ $(D) (\mathbf{P}^{3}, \mathcal{O}_{\mathbf{Q}^{3}}(1), \mathcal{O}_{\mathbf{Q}^{3}}(1)).$ - (D) X is a ${f P}^2$ -bundle over a smooth projective curve and $L_j|_F=\mathscr{O}_{{f P}^2}(1)$ for any fiber F and j = 1, 2. Then - (1) $g_1(X, L_1, L_2) \ge a_{\Lambda} q(X)$ if g(C) = 0. - (2) $g_1(X, L_1, L_2) \ge q(X) + (a_{\Lambda} 1)q(F')$ if $g(C) \ge 1$. *Proof.* If $K_X + L_1 + L_2$ is not nef, then (X, L_1, L_2) is one of the types from (A) to (D) above by Theorem 5.1.1 (3). So we may assume that $K_X + L_1 + L_2$ is nef. Let Z, θ , f' and C be as in Notation 6.2.1. Let $Z = \sum_{i=1}^{m} b_i Z_i$, and let Z'_i be the strict transform of Z_i by θ . Let $\theta': X'' \to X'$ be a birational morphism such that Z''_i is a smooth surface, where Z''_i is the strict transform of Z'_i by θ' . We can take a general
element $B \in |L_1|$ such that $B = G_1 + \cdots + G_{a_\Lambda} + Z$, where each G_i is the image of a general fiber of f' by θ . Let $h := f' \circ \widehat{\theta}'$ and $\pi := \theta \circ \theta'$. Then the strict transform of G_i by π is a general fiber of h. Let F_i'' be the strict transform of G_i by π . We note that Z_i'' is the strict transform of Z_i by π . Then we have $$g_1(X, L_1, L_2) = g(X'', \pi^* L_1, \pi^* L_2) = 1 + \frac{1}{2} (K_{X''} + \pi^* L_1 + \pi^* L_2)(\pi^* L_1)(\pi^* L_2)$$ $$= 1 + \frac{1}{2} \pi^* (K_X + L_1 + L_2)(\pi^* L_2)(\pi^* B)$$ $$\geq 1 + \frac{1}{2} \pi^* (K_X + L_1 + L_2)(\pi^* L_2)(\pi^* (B_{red})).$$ Put $B_{nr} := B - B_{red}$. Then by the same argument as in [9, Claim 2.9] we have $B_{nr}B_{red}L_2 \ge 0$. Hence $$g_1(X, L_1, L_2) \ge 1 + \frac{1}{2} \pi^* (K_X + L_1 + L_2) (\pi^* L_2) (\pi^* (B_{\text{red}}))$$ $$\ge 1 + \frac{1}{2} (\pi^* (K_X + B_{\text{red}}) + \pi^* L_2) (\pi^* L_2) (\pi^* (B_{\text{red}})).$$ Moreover since $\pi^*(B_{\text{red}}) - \sum_{i=1}^{a_{\Lambda}} F_i'' - \sum_{i=1}^{m} Z_i''$ is a π -exceptional effective divisor, we get $$g_{1}(X, L_{1}, L_{2}) \geq 1 + \frac{1}{2} (\pi^{*}(K_{X} + B_{\text{red}}) + \pi^{*}L_{2})(\pi^{*}L_{2})(\pi^{*}(B_{\text{red}}))$$ $$= 1 + \frac{1}{2} \sum_{i=1}^{a_{\Lambda}} (\pi^{*}(K_{X} + G_{i}) + \pi^{*}L_{2})(\pi^{*}L_{2})F_{i}^{"}$$ $$+ \frac{1}{2} \sum_{i=1}^{a_{\Lambda}} \pi^{*}(B_{\text{red}} - G_{i})(\pi^{*}L_{2})F_{i}^{"}$$ $$+ \frac{1}{2} \sum_{i=1}^{m} (\pi^{*}(K_{X} + Z_{i}) + \pi^{*}L_{2})(\pi^{*}L_{2})Z_{i}^{"}$$ $$+ \frac{1}{2} \sum_{i=1}^{m} \pi^{*}(B_{\text{red}} - Z_{i})(\pi^{*}L_{2})Z_{i}^{"}.$$ Because L_2 is ample and B is connected, we have $$\frac{1}{2} \left(\sum_{i=1}^{a_{\Lambda}} \pi^* (B_{\text{red}} - G_i) (\pi^* L_2) F_i'' + \sum_{i=1}^m \pi^* (B_{\text{red}} - Z_i) (\pi^* L_2) Z_i'' \right) \ge a_{\Lambda} + m - 1.$$ Therefore $$g_{1}(X, L_{1}, L_{2}) \geq 1 + \frac{1}{2} \sum_{i=1}^{a_{\Lambda}} (\pi^{*}(K_{X} + G_{i}) + \pi^{*}L_{2})(\pi^{*}L_{2})F_{i}''$$ $$+ \frac{1}{2} \sum_{i=1}^{m} (\pi^{*}(K_{X} + Z_{i}) + \pi^{*}L_{2})(\pi^{*}L_{2})Z_{i}'' + (a_{\Lambda} + m - 1)$$ $$= \sum_{i=1}^{a_{\Lambda}} \left(1 + \frac{1}{2}(\pi^{*}(K_{X} + G_{i}) + \pi^{*}L_{2})(\pi^{*}L_{2})F_{i}''\right)$$ $$+ \sum_{i=1}^{m} \left(1 + \frac{1}{2}(\pi^{*}(K_{X} + Z_{i}) + \pi^{*}L_{2})(\pi^{*}L_{2})Z_{i}''\right).$$ By the same argument as in the proof of [9, Claim 2.4], we can prove that $(\pi^*(K_X + G_i) + \pi^*L_2)(\pi^*L_2)F_i'' \ge (K_{X''} + F_i'' + \pi^*L_2)(\pi^*L_2)F_i''$ and $$(\pi^*(K_X + Z_i) + \pi^*L_2)(\pi^*L_2)Z_i'' \ge (K_{X''} + Z_i'' + \pi^*L_2)(\pi^*L_2)Z_i''.$$ So we obtain $$\begin{split} g_1(X,L_1,L_2) &\geq \sum_{i=1}^{a_{\Lambda}} \left(1 + \frac{1}{2} (K_{X''} + F_i'' + \pi^* L_2) (\pi^* L_2) F_i'' \right) \\ &+ \sum_{i=1}^{m} \left(1 + \frac{1}{2} (K_{X''} + Z_i'' + \pi^* L_2) (\pi^* L_2) Z_i'' \right) \\ &= \sum_{i=1}^{a_{\Lambda}} g((\pi^* L_2)|_{F_i''}) + \sum_{i=1}^{m} g((\pi^* L_2)|_{Z_i''}). \end{split}$$ We note that $g(\pi^*L_2|_{Z''_i}) \ge 0$ for any i since dim $Z''_i = 2$ (for example, see [5, (4.8) Corollary]). (I) The case where g(C) = 0. Because $h^0((\pi^*L_2)|_{F_i''}) \ge 1$ and dim $F_i'' = 2$, we have $g((\pi^*L_2)|_{F_i''}) \ge q(F_i'')$ for every i. Since $q(F_i'') \ge q(X'') = q(X') = q(X)$ for every i by Lemma 3.2, we get $g_1(X, L_1, L_2) \ge a_{\Lambda} q(X)$. (II) The case where $g(C) \ge 1$. Then θ is the identity mapping and $Z_i = Z'_i$ for every i. Since L_2 is ample and G_i is a fiber of f', there exists a Z_i such that $f'|_{Z_i}: Z_i \to C$ is surjective. We consider the fiber space $h|_{Z_i''}: Z_i'' \to C$. By [7, Theorem 2.1 and Theorem 5.5], we have $g((\pi^*L_2)|_{Z_i''}) \geq g(C)$. On the other hand, $g((\pi^*L_2)|_{F_i''}) \geq q(F_i'')$ holds because $h^0((\pi^*L_2)|_{F_i''}) \geq 1$ and dim $F_i'' = 2$. Therefore we get $g_1(X, L_1, L_2)$ $\geq g(C) + a_{\Lambda}q(F_{i}^{"})$. Since $g(C) + q(F_{i}^{"}) \geq q(X^{"}) = q(X') = q(X)$ by Lemma 3.2 and $q(F_i'') = q(F')$ for every i, we get $g_1(X, L_1, L_2) \ge q(X) + (a_{\Lambda} - 1)q(F')$. (Here we note that $a_{\Lambda} \geq 2$ in this case.) This completes the proof of Theorem 6.2.2. THEOREM 6.2.3. Let X be a smooth projective variety of dimension 3 and let L_1 and L_2 be ample line bundles on X such that $h^0(L_1) \ge 2$ and $h^0(L_2) \ge 1$. Let $\Lambda \subset |L_1|$ be a linear pencil and we use Notation 6.2.1. If $a_{\Lambda} = 1$, then $g_1(X, L_1, L_2) \ge q(X) + \frac{1}{2}GZL_2$, where G is a general element of Λ_M and Z is the fixed part of $|L_1|$, unless $(X, L_{\sigma(1)}, L_{\sigma(2)})$ is one of the following for some $\sigma \in \mathfrak{S}_2$: - (A) $(\mathbf{P}^3, \mathcal{O}_{\mathbf{P}^3}(1), \mathcal{O}_{\mathbf{P}^3}(1))$. (B) $(\mathbf{P}^3, \mathcal{O}_{\mathbf{P}^3}(2), \mathcal{O}_{\mathbf{P}^3}(1))$. (C) $(\mathbf{Q}^3, \mathcal{O}_{\mathbf{Q}^3}(1), \mathcal{O}_{\mathbf{Q}^3}(1))$. - (D) X is a \mathbf{P}^2 -bundle over a smooth projective curve and $L_j|_F = \mathcal{O}_{\mathbf{P}^2}(1)$ for any fiber F and j = 1, 2. In particular, $g_1(X, L_1, L_2) \ge q(X) + 1$ if $Z \ne 0$. *Proof.* If $K_X + L_1 + L_2$ is not nef, then (X, L_1, L_2) is one of the types from (A) to (D) above by Theorem 5.1.1 (3). So we may assume that $K_X + L_1 + L_2$ is nef. We note that the strict transform of G by θ is F'. So we have $$\begin{split} g_1(X,L_1,L_2) &= 1 + \frac{1}{2}(K_{X'} + \theta^*(L_1 + L_2))(\theta^*L_1)(\theta^*L_2) \\ &= 1 + \frac{1}{2}\theta^*(K_X + L_1 + L_2)(\theta^*L_1)(\theta^*L_2) \\ &\geq 1 + \frac{1}{2}\theta^*(K_X + L_1 + L_2)(\theta^*L_2)F' \\ &= 1 + \frac{1}{2}(\theta^*(K_X + G) + \theta^*(L_1 - G) + \theta^*L_2)(\theta^*L_2)F'. \end{split}$$ By the same argument as in the proof of [9, Claim 2.4], we can prove $$\theta^*(K_X + G)(\theta^*L_2)F' \ge (K_{X'} + F')(\theta^*L_2)F'.$$ On the other hand, $\theta^*(L_1 - G)(\theta^*L_2)F' = ZGL_2$. Hence $$g_1(X, L_1, L_2) \ge 1 + \frac{1}{2} (K_{X'} + F' + \theta^* L_2) (\theta^* L_2) F' + \frac{1}{2} ZGL_2$$ $$= g((\theta^* L_2)|_{F'}) + \frac{1}{2} ZGL_2.$$ Because $h^0((\theta^*L_2)|_{F'}) \ge 1$ and dim F' = 2, we obtain $g((\theta^*L_2)|_{F'}) \ge q(F')$ by [7, Lemma 1.2 (2)]. Since g(C) = 0 in this case, we have $q(F') \ge q(X') =$ q(X). Therefore $$g_1(X, L_1, L_2) \ge q(F') + \frac{1}{2}ZGL_2 \ge q(X) + \frac{1}{2}ZGL_2.$$ If $Z \neq 0$, then $Z \cap G \neq \phi$ since G + Z is connected. Since L_2 is ample and G is a general element of Λ_M , we have $ZGL_2 > 0$. Because $g_1(X, L_1, L_2)$ is an integer, we have $g_1(X, L_1, L_2) \ge q(X) + 1$. This completes the proof. Theorem 6.2.4. Let X be a smooth projective variety with dim X = 3 and let L_1 and L_2 be ample line bundles on X with $h^0(L_1) \ge 2$ and $h^0(L_2) \ge 3$. If $g_1(X,L_1,L_2)=q(X)$, then $(X,L_{\sigma(1)},L_{\sigma(2)})$ is one of the following types for some $\sigma \in \Sigma_2$. - (A) $(\mathbf{P}^{3}, \mathcal{O}_{\mathbf{P}^{3}}(1), \mathcal{O}_{\mathbf{P}^{3}}(1))$. (B) $(\mathbf{P}^{3}, \mathcal{O}_{\mathbf{P}^{3}}(2), \mathcal{O}_{\mathbf{P}^{3}}(1))$. (C) $(\mathbf{Q}^{3}, \mathcal{O}_{\mathbf{Q}^{3}}(1), \mathcal{O}_{\mathbf{Q}^{3}}(1))$. (D) X is a \mathbf{P}^{2} -bundle over a smooth projective curve and $L_{j}|_{F} = \mathcal{O}_{\mathbf{P}^{2}}(1)$ for any fiber F and j = 1, 2. *Proof.* We use Notation 6.2.1. If $K_X + L_1 + L_2$ is not nef, then by Theorem 5.1.1 (3) we see that (X, L) is one of the types from (A) to (D) above. So we may assume that $K_X + L_1 + L_2$ is nef. In particular we note that $g_1(X, L_1, L_2) \ge 1$. (1) The case in which $g(C) \ge 1$. We note that θ is the identity mapping and $a_{\Lambda} \geq 2$ in this case. By Theorem 6.2.2 (2), we have $q(X) = g_1(X, L_1, L_2) \geq q(X) + (a_{\Lambda} - 1)q(F')$. Because $a_{\Lambda} \geq 2$, we obtain q(F') = 0. Hence $q(X) \leq g(C) + q(F') = g(C)$ by Lemma 3.2. But since $g(C) \leq q(X)$, we get q(X) = g(C), and $g_1(X, L_1, L_2) = q(X) = g(C)$. Then (X, L_1, L_2) is the type (D) above by Theorem 6.1.6. This is a contradiction by assumption. (2) The case in which g(C) = 0. If $a_{\Lambda} \geq 2$, then $q(X) = g_1(X, L_1, L_2) \geq 2q(X)$ by Theorem 6.2.2 (1). Hence q(X) = 0, and $g(X, L_1, L_2) = q(X) = 0$. But this is a contradiction. So we consider the case where $a_{\Lambda} = 1$. By Theorem 6.2.3, we see $$(6.2.4.1) Z = 0,$$ that is, $|L_1|$ has no fixed component. By the proof of Theorem 6.2.3, we see that $g((\theta^*L_2)|_{F'}) = q(F')$. Here we note that $$g((\theta^*L_2)|_{F'}) - g(F') = h^0(K_{F'} + (\theta^*L_2)|_{F'}) - h^0(K_{F'})$$ by the Riemann-Roch theorem and the Kawamata-Viehweg vanishing theorem. Since $h^0((\theta^*L_2)|_{F'}) \geq 2$, we have $h^0(K_{F'}) = 0$ by Lemma 3.3. Assume that $\kappa(F') \geq 0$. Then $q(F') \leq 1$ because $\chi(\mathcal{O}_{F'}) \geq 0$. Hence $g((\theta^*L_2)|_{F'}) = q(F') \leq 1$. But since $\kappa(F') \geq 0$, we have $g((\theta^*L_2)|_{F'}) \geq 2$ and this is a contradiction. Hence we have $$\kappa(F') = -\infty.$$ Because $g((\theta^*L_2)|_{F'}) = q(F')$, we can prove the following claim. CLAIM 6.2.1. $$\kappa(K_{F'} + (\theta^* L_2)|_{F'}) = -\infty$$. *Proof.* Assume that $\kappa(K_{F'} + (\theta^*L_2)|_{F'}) \ge 0$. Then $g((\theta^*L_2)|_{F'}) \ge 1$. Since $0 < g((\theta^*L_2)|_{F'}) = q(F')$, a $((\theta^*L_2)|_{F'})$ -minimalization of $(F', (\theta^*L_2)|_{F'})$ (see [7, Definition 1.9]) is a scroll over a smooth curve B by [7, Theorem 3.1]. Hence there is a surjective morphism $h: F' \to B$ such that a general fiber F_h of h is \mathbf{P}^1 . Hence $(K_{F'} + (\theta^*L_2)|_{F'})F_h = -1$. But this is a contradiction because F_h is nef. This completes the proof of Claim 6.2.1. On the other hand, $$K_{F'} + (\theta^* L_2)|_{F'} = (K_{X'} + F' + \theta^* L_2)_{F'}$$ = $(\theta^* (K_X + L_2) + E_\theta
+ F')_{F'},$ where E_{θ} is a θ -exceptional effective divisor. Let (M,A) be a reduction of (X,L_2) and let $\pi:X\to M$ be its reduction map. Assume that $K_M + A$ is nef. Then $h^0(m(K_M + A)) > 0$ for any large $m \gg 0$ by the nonvanishing theorem. Here we note that $K_X + L_2 =$ $\pi^*(K_M + A) + E$ for an effective π -exceptional divisor E. Hence for any large m, we have $$h^0(m(K_X + L_2)) = h^0(m\pi^*(K_M + A) + mE) > 0.$$ Therefore $h^0(m(\theta^*(K_X+L_2))_{F'}) \ge 1$. Since F' is a general fiber of f', we have $h^0((E_\theta+F')|_{F'}) \ge 1$. Hence $h^0(m(\theta^*(K_X+L_2)+E_\theta+F')|_{F'}) \ge 1$ for any large $m \gg 0$. But this is a contradiction by Claim 6.2.1. Hence $K_M + A$ is not nef, and by Theorem 3.1 we see that (M, A) is one of the following types. (Here we note that dim M = 3 in this case.) - (a) $(\mathbf{P}^3, \mathcal{O}_{\mathbf{P}^3}(1))$. - (b) $(\mathbf{Q}^3, \mathcal{O}_{\mathbf{Q}^3}(1))$. - (c) A scroll over a smooth curve C. - (d) $K_M \sim -2A$, that is, (M, A) is a Del Pezzo manifold. - (e) A quadric fibration over a smooth curve C. - (f) A scroll over a smooth surface S. - (g) $(\mathbf{Q}^3, \mathcal{O}_{\mathbf{Q}^3}(2))$. (h) $(\mathbf{P}^3, \mathcal{O}_{\mathbf{P}^3}(3))$. - (i) M is a \mathbf{P}^2 -bundle over a smooth curve C with $(F, A|_F) = (\mathbf{P}^2, \mathcal{O}_{\mathbf{P}^2}(2))$ for any fiber F of it. If (M,A) is either of the cases (a), (b), (d), (g), and (h), then q(X)=0. Hence by assumption $g_1(X, L_1, L_2) = q(X) = 0$. But this is a contradiction. If (M, A) is either of the cases (c), (e), and (i), then q(X) = g(C). Hence by assumption $g(X, L_1, L_2) = g(X) = g(C)$. So by Theorem 6.1.6, (X, L_1, L_2) is the type (D) above. But in this case $K_X + L_1 + L_2$ is not nef and this is a contradiction. So we consider the case in which (M, A) is the case (f). Let $\varphi: M \to S$ be its P^1 -bundle, where S is a smooth surface. Claim 6.2.2. $$\kappa(S) = -\infty$$. *Proof.* We note that Z=0 by (6.2.4.1). We take a general element $G \in |A|$. Then G is irreducible and reduced, and the strict transform of G by θ is F'. Since A is ample, $\varphi|_G:G\to S$ is surjective. Hence we obtain $\kappa(S) = -\infty$ since $\kappa(F') = -\infty$ by (6.2.4.2). This completes the proof of this claim. If q(S) = 0, then q(X) = q(S) = 0. Hence by assumption $g_1(X, L_1, L_2) =$ q(X) = q(S) = 0. Hence (X, L_1, L_2) is one of the types from (A) to (D) above by Theorem 6.1.1. But this is a contradiction by assumption. If $q(S) \ge 1$, we take the Albanese map of S, $\alpha: S \to B$, where B is a smooth curve. Then by assumption $g_1(X, L_1, L_2) = q(X) = q(S) = g(B)$. Hence (X, L_1, L_2) is the type (D) above by Theorem 6.1.6. But this is a contradiction by the same reason as above. This completes the proof of Theorem 6.2.4. ### REFERENCES - [1] E. Ballico, On vector bundles on 3-folds with sectional genus 1, Trans. Amer. Math. Soc. 324 (1991), 135–147. - [2] M. C. Beltrametti and A. J. Sommese, The adjunction theory of complex projective varieties, de Gruyter expositions in math. 16, Walter de Gruyter, Berlin, New York, 1995. - [3] O. Fujino, Remarks on algebraic fiber spaces, J. Math. Kyoto Univ. 45 (2005), 683-699. - [4] T. Fujita, On polarized manifolds whose adjoint bundles are not semipositive, Advanced Studies in Pure Math. 10 (1985), 167–178. - [5] T. Fujita, Remarks on quasi-polarized varieties, Nagoya Math. J. 115 (1989), 105–123. - [6] Т. FUJITA, Classification theories of polarized varieties, London Math. Soc. lecture note ser. 155, 1990. - [7] Y. FUKUMA, A lower bound for the sectional genus of quasi-polarized surfaces, Geom. Dedicata 64 (1997), 229–251. - [8] Y. FUKUMA, A lower bound for sectional genus of quasi-polarized manifolds, J. Math. Soc. Japan 49 (1997), 339–362. - [9] Y. FUKUMA, On sectional genus of quasi-polarized 3-folds, Trans. Amer. Math. Soc. 351 (1999), 363–377. - [10] Y. FUKUMA, On the c_r-sectional geometric genus of generalized polarized manifolds, Japan. J. Math. 29 (2003), 335–355. - [11] Y. FUKUMA, On the sectional geometric genus of quasi-polarized varieties, I, Comm. Algebra 32 (2004), 1069–1100. - [12] Y. FUKUMA, On the sectional geometric genus of quasi-polarized varieties, II, Manuscripta Math. 113 (2004), 211–237. - [13] Y. FUKUMA, Invariants of ample line bundles on projective varieties and their applications, I, Kodai. Math. J. 31 (2008), 219–256. - [14] Y. FUKUMA, Invariants of ample line bundles on projective varieties and their applications, III, in preparation. - [15] Y. FUKUMA AND H. ISHIHARA, A generalization of curve genus for ample vector bundles, II, Pacific J. Math. 193 (2000), 307–326. - [16] P. IONESCU, Generalized adjunction and applications, Math. Proc. Camb. Phil. Soc. 99 (1986), 457–472. - [17] Y. KAWAMATA, Characterization of Abelian varieties, Compositio Math. 43 (1981), 253-276. - [18] Y. KAWAMATA, The cone of curves of algebraic varieties, Ann. of Math. 119 (1984), 603-633. - [19] Y. KAWAMATA, K. MATSUDA AND K. MATSUKI, Introduction to the minimal model problem, Advanced Studies in Pure Math. 10 (1985), 283–360. - [20] J. Kollár, The cone theorem, Ann. of Math. 120 (1984), 1-5. - [21] J. Kollár, Shafarevich maps and automorphic forms, M. B. Porter lectures, Princeton University Press, Princeton, NJ, 1995. - [22] A. LANTERI, H. MAEDA AND A. J. SOMMESE, Ample and spanned vector bundles of minimal curve genus, Arch. Math. 66 (1996), 141–149. - [23] H. Maeda, Ample vector bundles of small curve genera, Arch. Math. 70 (1998), 239-243. - [24] S. Mori, Threefolds whose canonical bundles are not numerically effective, Ann. of Math. 116 (1982), 133–176. - [25] T. PETERNELL, M. SZUREK AND J. A. WISNIEWSKI, Fano manifolds and vector bundles, Math. Ann. 294 (1992), 151–165. - [26] E. VIEHWEG, Weak positivity and the additivity of the Kodaira dimension for certain fiber spaces, Advanced studies in pure math. 1 (1983), 329–353. - [27] J. A. Wiśniewski, Length of extremal rays and generalized adjunction, Math. Z. 200 (1989), 409–427. - [28] Y.-G. YE AND Q. ZHANG, On ample vector bundles whose adjunction bundles are not numerically effective, Duke Math. J. **60** (1990), 671–687. Yoshiaki Fukuma DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE KOCHI UNIVERSITY AKEBONO-CHO, KOCHI 780-8520 JAPAN E-mail: fukuma@kochi-u.ac.jp