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INVARIANTS OF AMPLE LINE BUNDLES ON PROJECTIVE
VARIETIES AND THEIR APPLICATIONS, II*f

YOsHIAKI FUKUMA

Abstract
Let X be a smooth complex projective variety of dimension n and let L,..., L, ;
be ample line bundles on X, where i is an integer with 0 <7 <n— 1. In the previous
paper, we defined the i-th sectional geometric genus g¢;(X,Li,...,L,—;) of (X,Ly,...,
L,—;). In this part II, we will investigate a lower bound for ¢;(X, Li,...,L,—;). More-
over we will study the first sectional geometric genus of (X,Li,...,L,1).

Introduction

This is the continuation of [13]. This paper (Part II) consists of section 3, 4,
5and 6. Let X be a smooth complex projective variety of dimension n and let
Ly,..., L, ; be ample line bundles on X, where i is an integer with 0 <i<n— 1.
In [13], we defined the ith sectional geometric genus g;(X,Ly,...,L,—;). This
invariant is thought to be a generalization of the ith sectional geometric genus
gi(X,L) of polarized varieties (X,L). Furthermore in [13], we showed some
fundamental properties of this invariant. In this paper and [14], we will study
projective varieties more deeply by using some properties of the ith sectional
geometric genus of multi-polarized varieties which have been proved in [13]. In
this paper, we will mainly study a lower bound of g;(X,Li,...,L,—;) and some
properties of the case where i = 1. The content of this paper is the following.

In section 3 we will give some results and definitions which will be used in

this paper.
In section 4, we will investigate a lower bound for the ith sectional geometric
genus of multi-polarized variety (X, Li,...,L,—;). In particular, we will study a

relation between g;(X,Ly,...,L, ;) and h(Oy).

* Key words and phrases. Polarized varieties, ample line bundles, nef and big line bundles,
sectional genus, ith sectional geometric genus, ith sectional H-arithmetic genus, ith sectional arithmetic
genus, adjoint bundles.
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In section 5, we will study the nefness of Ky +L;+---+ L, for t >n—2.
This investigation will make us possible to study a lower bound for
g1(X,Ly,...,L,1) (see section 6) and some properties of ¢(X,L;,...,L,>)
(see [14]).

In section 6, we mainly consider the case where (X, Ly,..., L, 1) is a multi-
polarized manifold of type n — 1 by using results in section 5, and we will make a
study of the following:

(1) The non-negativity of g;(X,Li,...,Ly,1).

(2) A classification of (X, Ly,...,L,—1) with g;(X,Ly,...,L,—1) < 1.

(3) Under the assumption that |L;| is base point free for any j with 1 <
j<n—1, we will prove that g;(X,Ly,...,L, 1) >h'(Oy). Moreover
we will classify (X, Li,...,L, 1) with g;(X,Ly,...,L, 1) =h'(Ox).

(4) Assume that n =3, h°(L;) =2 and h°(L,) > 1. Then we will prove
g1(X, Ly, Ly) = h'(Ox). Furthermore we will classify multi-polarized 3-
folds (X,Ll,Lz) with gl(X,Ll,Lz) = hl(@X), hO(Ll) > 2 and hO(Lz) > 3.

In this paper we use the same notation as in [13].

3. Preliminaries for the second part

NotATION 3.1. Let X be a projective variety of dimension n, let i be an
integer with 0 <i<n-—1, and let Ly,...,L, ; be line bundles on X. Then
(L} ® -+ @ Ly) is a polynomial in 7,...,1,; of total degree at most n. So
we can write y(L] ® -+~ ® L) uniquely as follows.

ALY @@ L)

n [1+p1—1) (fni+Pni_1>
— (Ly,..., Ly ’
Z Z Xp]v...,p”,,( 1 ) < P DPn—i

p=0p120,....pp-i 20
p1+tpu—i=p

DeriNiTION 3.1 ([13, Definition 2.1]). Let X be a projective variety of
dimension 7, let i be an integer with 0 <i<n, and let L,...,L,; be line
bundles on X.

(1) The ith sectional H-arithmetic genus y#(X,Ly,...,L, ;) is defined by the
following:

Xl ,I(Lla---aLn—i) ifOSiSn—l,

ZiH(X,Lla“'an*i): n—i
7(Ox) if i =n.

(2) The ith sectional geometric genus g;(X,Li,...,L,—;) is defined by the
following:

gi(X,Li,....,Li—i) = (=)' (" (X,Li,...,Li—) — x(0x))
n—i

(1) ().

=0
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(3) The ith sectional arithmetic genus p.(X,Ly,...,L, ;) is defined by the
following:

PUX Ly, L) = (=)' (H(X,Ly,..., L) — h°(Ox)).

Remark 3.1. Let X be a smooth projective variety of dimension n and let
& be an ample vector bundle of rank r on X with 1 <r<n. Then in [10,
Definition 2.1], we defined the ith c,-sectional geometric genus g;(X,&) of (X, &)
for every integer i with 0 <i<mn—r. Let i be an integer with 0 <i<n—1.
Here we note that if i = 1, then ¢g;(X, &) is the genus defined in [15, Definition
1.1}, and moreover if r=n—1, then ¢;(X,&) is the curve genus ¢g(X,é&) of
(X,&) which was defined in [1] and has been studied by many authors (see
[22], [23] and so on). Let Ly,...,L, ; be ample line bundles on X. By setting
=L ® - ®L,; we see that ¢;(X,&) = g:(X,Ly,...,L,—;). In particular if
i=1, then g1(X,Ly,...,L,—1) is equal to the curve genus of (X,&).

DerFmNITION 3.2. Let X and Y be smooth projective varieties with dim X >
dim Y > 1. Then a morphism f : X — Y is called a fiber space if f is surjective
with connected fibers. Let L be a Cartier divisor on X. Then (f,X,Y,L) is
called a polarized (resp. quasi-polarized) fiber space if f: X — Y is a fiber space
and L is ample (resp. nef and big).

DeriNiTION 3.3, Let (X, Ly,...,L;) be an n-dimensional polarized manifold
of type k, where k is a positive integer. Then (X, L,...,L;) is called a scroll
(resp. quadric fibration, Del Pezzo fibration) over a normal variety W if there
exists a fiber space f:X — W such that dim W =n—k+1 (resp. n—k,
n—k—1)and Ky + L +---+ Ly = f*(A4) for an ample line bundle 4 on W.
We say that a polarized manifold (X, L) is a scroll (resp. quadric fibration, Del
Pezzo fibration) over a normal variety Y with dim Y = m if there exists a fiber
space f: X — Y such that Ky + (n—m+ 1)L = f*(A4) (resp. Kx + (n —m)L =
f*(A), Ky + (n—m—1)L = f*(A4)) for an ample line bundle 4 on Y.

THEOREM 3.1. Let (X,L) be a polarized manifold with n=dim X > 3.
Then (X,L) is one of the following types:

(P, Opn(1)).

(Q", Ogr(1)).

A scroll over a smooth curve.

Ky ~—m—1)L, that is, (X,L) is a Del Pezzo manifold.

quadric fibration over a smooth curve.
scroll over a smooth surface.

et (X' L") be a reduction of (X,L).
-1) n 4, (X’ L’) (P*, Ops(2)).

2 n=3 (X L) = (Q@())
3)n=3, (X',L') = (P, 01,3( ))-

(1)
(2)
(3)
(4)
(5)
(6)
(7)

hh;i:;

—~
\]\]\]
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(7-4) n=3, X' is a P>-bundle over a smooth curve and (F',L'|) is
isomorphic to (P?, Up:(2)) for any fiber F' of it.
(7-5) Ky + (n —2)L' is nef.

Proof. See [2, Proposition 7.2.2, Theorem 7.2.4, Theorem 7.3.2 and The-
orem 7.3.4]. O

NortaTioN 3.2. Let X be a projective manifold of dimension n.

+ = denotes the numerical equivalence.

* Z,—1(X): the group of Weil divisors.

* Ni(X) := ({l-cycles}/=) ® R.

+ NE(X): the convex cone in N;(X) generated by the effective 1-cycles.

+ NE(X): the closure of NE(X) in N;(X) with respect to the Euclidean
topology.

* p(X) = dlmR Nl(X)

« If C is a 1-dimensional cycle in X, then we denote [C] its class in N;(X).

* Let D be an effective divisor on X and D = ".a;D; its prime decompo-
sition, where a; > 1 for any i. Then we write Dyq =), D;.

+ &; denotes the symmetric group of order /.

DEFINITION 3.4 ([27, (1.9)]). Let X be a projective manifold of dimension n
and let R be an extremal ray. Then the length I(R) is defined by the following:

[(R) = min{—KxC| C is a rational curve with [C] € R}.

Remark 3.2. By the cone theorem (see [24, Theorem (1.4)], [18] and [20]),
[(R) <n+1 holds.

ProposITION 3.1. Let X be a projective manifold of dimension n.

(1) If there exists an extremal ray R with I(R) =n+ 1, then Pic X = Z and
—Kyx is ample.

(2) If there exists an extremal ray R with I(R) = n, then Pic X = Z and —Kx
is ample, or p(X) =2 and there exists a morphism contg : X — B onto
a smooth curve B whose general fiber is a smooth (n — 1)-manifold that
satisfies conditions of (1).

Proof. See [27, Proposition 2.4]. O

Lemma 3.1, Let (f,X,Y,L) be a quasi-polarized fiber space, where X is a
normal projective variety with only Q-factorial canonical singularities and Y is a
smooth projective variety with dim X =n >dim Y > 1. Assume that Ky,y + tL
is f-nef, where t is a positive integer. Then (Ky;y + tL)L"™' > 0. Moreover if
dim Y =1, then Kyy +tL is nef.

Proof. For any ample Cartier divisor 4 on X and any natural number p,
Kx/y +tL+ (1/p)A is f-nef by assumption. Let m be a natural number such
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that m(Ky,y +tL + (1/p)A) is a Cartier divisor. Since m(Ky,y +tL+ (1/p)A4)
— Ky is f-ample, by the base point free theorem ([19, Theorem 3-1-1]),

1 1
[ fOx <1m<KX/Y + tL —&-;A)) — Oy (lm(KX/Y + tL —|—;A>)

is surjective for any /> 0.
Let u: X1 — X be a resolution of X. We put = fou. Since

W fOx (lm (KX/Y + 1L+ %A)) = h"h,Ox, (lm (le/y +u* (zL + %A)))

we have

(1) h*h*@xl (lm (KX]/Y +u* (IL +%A>)> — /L*@X (lm (KX/Y +tL +%A>)

is surjective. We note that /.0y, (Im(Ky, )y +p*(tL + (1/p)A))) is weakly posi-
tive by [8, Theorem A’ in Page 358] because u*Ox (Im(tL + (1/p)A)) is semiample.
(For the definition of weak positivity, see [26].) Hence by [8, Remark 1.3.2 (1)]
and (1) above u*Ox(Im(Ky/y + tL + (l/p) )) is pseudo-effective. Since p is any
natural number, we get (Ky,y -+ tL)L""' = u*(Ky/y + tL)(u L)' > 0.

If dim Y =1, then we see that h,0y, (Zm(KXl/y +u*(tL+ (1/p)A))) is semi-
positive by [8, Theorem A’ in page 358] since semi-positivity and weak positivity
are equivalent for torsion free sheaves on nonsingular curves. Hence by (1)
above Kyy +tL+ (1/p)A is nef for any natural number p. Since p is any
natural number, Ky y + (L is nef. O

Lemma 3.2. Let X and Y be smooth projective varieties with dim X >
dim Y >1 and let f: X — Y be a surjective morphism with connected fibers.
Then q(X) < q(F) + q(Y), where F is a general fiber of f.

Proof. See [8, Theorem B in Appendix] or [3, Theorem 1.6]. O

Lemma 3.3. Let X be a smooth projective variety, and let Dy and D, be
effective divisors on X. Then h°(Dy + D) = h°(Dy) + h°(D,) — 1.

Proof. See [11, Lemma 1.12] or [21, 15.6.2 Lemma]. O

NortAaTION 3.3. Let X be a smooth projective variety of dimension #n and let
i be an integer with 1 <i<n—1. Let L,...,L, ; be nef and big line bundles
on X. Assume that Bs|L;| = 0 for every integer j with | < j <n—i. Then by
Bertini’s theorem, for every integer j with 1 < j <n—i, there exists a general
member X; € |L;| X, || such that X; is a smooth projective variety of dimen-
sion n— j. (Here we set Xo = X .) Namely there exists an (n — i)-ladder X o
X1 o - > X,—; such that a projective variety X; is smooth with dim X; =n — j.
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4. Properties of the sectional geometric genus

In this section we study the relationship between ¢;(X,Ly,...,L, ;) and
hi(Oy).

LeEMMA 4.1. Let X be a projective variety of dimension n, and let s be an
integer with 0 <s<n—1. Let Ly,...,Lg be Cartier divisors on X. Assume the
following conditions:

(@) There exists an irreducible and reduced divisor Xii1 € [Lit1|y,| for any

integer k with 0 <k <s—2. (Here we put Xp:=X.)

(b) W/ (=0 _ tmLm) = 0 for any integer j and t,, with 0 < j <n—1, t,, >0

Sor any m, and Y, | t,, > 0.

(¢) h°(Lly ) >0 and there exists a member X, € |Ly|y |
Then

(1) A/ (=3 g i1 UmLmly,) =0 for any integer k, j and uy with 1 <k <

s—1,0<j<n—k—1, u, 20 for any m, and ), \ tty > 0.

(2) W (Ox)=h/(0x,)=---=h(0x,_,) for any integer j with 0 < j <n—s.

(3) A" (Ox,,) < h"(0x,).

Proof. (1) First we study the case where k = 1. By the above (b) and the
exact sequence

s s s
0— Oy <_L1 - ZumLm> — Oy <_ ZumLm) - @Xl <_ ZumLm|X1> — 0,
m=2 m=2 m=2

we have h/(— Y, s tmLn|y ) =0 for any integer j and wu, with 0 <j<n—2,
Uy >0 for any m, and Y, _,u, > 0.

Assume that (1) is true for any integer k with k </ — 1, where / is an integer
with 2 </ <s—1. We consider the case where k = /. By the exact sequence

s s
0— @X/,l <_Ll)(,] - Z umLm|XH> i @Xl,l <_ Z umLm|Xll>

m=[+1 m=I+1

K
_)(QXI - § umLm‘Xl _)07
m=I[+1

we have h/(— Z;:Hl umLm|X]) =0 for any integer j and u, with 0 <<
n—1—1, u, 20 for any m, and »_) _,  u, >0. Hence we get the assertion.

Next we prove (2) and (3). By (1) above, we obtain 4/(—Lgs1ly,) =0 for
any integer j and k with 0 <k <s—1 and 0<j<n—k—1. Hence by the
exact sequence

0— @(_Lk+1|X,c) - (QXk - (QXI{H — 0,

we get the assertion. O
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LEMMA 4.2. Let X be a projective variety of dimension n, and let L be
a Cartier divisor on X. Assume that h°(L) >0 and h"'(—L)=0. Then
gn1(X, L) = h""1(Oy,), where X; € |L|.

Proof.  We consider the exact sequence
0——-L— 0Oy — Oy, — 0.

Then

H"'(~L) — H" '(0x) — H" '(Cx,)

— H"(-L) — H"(Ox) — 0
is exact. Since A" '(—L)=0, we see that h"(—L)— h"(Ox)+h""(Oy) =
h"=1(0yx,). By [11, Definition 2.1 and Theorem 2.2] or [13, Corollary 2.2],
we get
gn1(X, L) = h"(=L) = h"(Ox) + h"~'(Ox)

— " (0x,).

Hence we get the assertion. O

THEOREM 4.1. Let X be a projective variety of dimension n, and let i be an
integer with 0 <i<n—1. Let Ly,...,L,_; be Cartier divisors on X. Assume
the following conditions:

(@) There exists an irreducible and reduced divisor X1 € |Lis1|y,| for any

integer k wilh 0<k<n—i-2. (Here we put Xp:=X.)

(b) W/ (=0 twLm) = Oﬁ)r any integer j and t, with 0 < j<n—1, t, =0

for any m and Y ;' by > 0.

(c) hO(L,- ily . ,)>0 and there exists a member X,_; € |Ly |y |

Then

gi(XaLl, s aLnfi) = hl((pX)

Proof. By Lemma 4.1 (2), we have h/(Ox) = h/(Cx, . ,) for every j with
0 < j<i. Therefore

n

(=1)'%(Ox) = Y_(=1)""Th"(Ox)

T.
(=}

1

= (7 Z 1 jhl+1 j (/Xn i—l)'

By [13, Lemma 2.4] we also get
X1, (L1>--~aLnfi):/"(1‘,“‘,1(LZ|X,7-~~»Lnfi|xl>

=X (Ln—i|X,,,,-,1 )-



INVARIANTS OF AMPLE LINE BUNDLES 423

Hence by [11, Definition 2.1] and Definition 3.1 (2) we have
gi(X, Ly, .., Lyi) = gi(Xn—i1, Lu-ily, )

Here we note that by Lemma 4.1 (1) we have //(—L, |y ) =0 for any integer
J with 0 <j <i By Lemma 4.2 we see that ¢;(X, i1, L, ily ) =h'(Cx,,).
Hence by Lemma 4.1 (2) and (3) we get

gi(Xale"'aLn—i) =

9i(Xn—i1, Lu—ily, . )
hi(@ani)
h'(Oy).

Y

Hence we obtain the assertion. O

Lemma 4.3. Let X be a projective variety of dimension n, and let i be an
integer with 0 <i<n—1. Let Ly,...,L,_; be Cartier divisors on X. Then the
following are equivalent: (Here y'(Oy) := Y . (—1)'h/(Ox).)

(a) g,-(X,'Ll,...,Ln,,‘) Zh’(@)(). o .

(b) (1) (X, Ly, Ly i) > (—1)'7/(Cx).

(©) PUX Lis. s Las) = (—1) (£(Cx) — 1).

Proof. By definition, we get

gi(XaLh e 7Ln*l') - hl((gX) = (_l)i(XI,...,l(Lh cee aLnfi) - X((QX))

n—i—1
+ > (=D (0x)
7=0
= (_I)I(XI}I(XaLla e 7L'l—i) _X(@X))
n—i—1
+ ) (=) (o)
j=0

= (_l)iXiH(XaLla cee 7Ln7i) - (_l)i}{i(@){),

and
Pa(X Lt Lui) = (=) (£'(0x) = 1)
= (=D)'"(X Ly, Lyy) = 1) = (=1)'(x'(Ox) = 1)
= (=D)""(X,Li,.... L) — (=1)'%'(Ox).
Hence we get the assertion. O

COROLLARY 4.1. Let X be a projective variety of dimension n, and let i be
an integer with 0 <i<n-—1. Let Ly,...,L, ; be Cartier divisors on X. Assume
the following conditions:
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(a) There exists an irreducible and reduced divisor X1 € |Lyi1ly| for any
integer k with 0 <k <n—i—1. (Here we put Xy :=X.)

(b) W/ (= >0 tmLm) = 0 for any integer j and t,, with 0 < j<n—1, t,, >0
Sor any m, and Y, " t,, > 0.

(©) h°(Luily,_ ) >0 and there exists a member X,_; € |L,_i|y _|.

Then we get the following: (Here x"(GX‘)':: Yico(=1)'1 (0x).)
(1) (—I)IXIH(X7 Li,... ;Ln—i) Zl (—l)l)(l(ax)
() pi(XiLi. . Ly ) = (C)(£(Or) — 1),

Proof. By Lemma 4.3 and Theorem 4.1, we get the assertion. O
If X is normal, then we get the following.

COROLLARY 4.2. Let X be a normal projective variety of dimension n > 3.
Let i be an integer with 0 <i<n—1. Let Ly,L,,...,L, ; be ample line bundles
on X such that Bs|L;| = 0 for every integer j with 1 < j<n—i Assume that
W (=321 teli) = 0 for any integer j and ti with 0 < j <n—1, ti >0 for any k,
and Y 7 _\ tx > 0. Then

gi(X,Ly,...,L,;) > h'(Oy).

Proof. 1If i=n—1, then by [12, Corollary 2.9] we get g,—1(X,L;) >
/’l"il((ﬁ){).

If i=0, then go(X,L1,...,L,) =Ly---L,>1=h"0y).

So we may assume that 1 <i<n—2. For every integer k with 1 <k <
n—i—1,let X; €|Li|y_ | be a general member. Then since Bs|Ly|y, | =0, we
see that X} is a normal projective variety (for example, see [6, (0.2.9) Fact and
(4.3) Theorem] or [2, Theorem 1.7.1]). Since L,_; is ample with Bs|L,_;| = 0, we
have h°(L, |y ) >0 and |L, |y |+#0. Hence by Theorem 4.1, we get the
assertion. O

Here we propose the following conjecture, which is a multi-polarized version
on [11, Conjecture 4.1].

CONJECTURE 4.1. Let n and i be integers withn >2 and 0 <i<n-—1. Let
(X,Ly,...,Ly-;) be an n-dimensional multi-polarized manifold of type (n—i).
Then g;(X,Li,...,L,—)) = h'(Ox) holds.

ProPOSITION 4.1. Let X be a normal projective variety of dimension n > 2.
Let i be an integer with 0 <i<n—1. Let Ly,...,L,_i_1,A, B be ample Cartier
divisors on X.  Assume that h-/(—(zl'};fl t,L,) — aA — bB) = 0 for any integers j,
a, b and t, with 0< j<n—1,a>0,b>0, t,>0, and a+b+> 1, >0, and

that Bs|Lj| =0 for 1 < j<n—i—1, Bs|4| =0, and Bs|B| =0. Then
gi(X7A+BaL17"'aLn—i—l) 2gi(XaAaLh'")Ln—i—l)+gi(X7BaL17"'7Ln—i—l)-
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Proof.  We note that by [13, Corollary 2.4]
gi(X,A+B,Ly,....Ly—i-1) =g:(X,A,Ly,...,Ly_i\)+g:(X,B,Ly,...,Ly—i_1)
+gi1(X,A,B, Ly, ..., Ly_i_1) — h" ' (Ox).
By assumption and Corollary 4.2 we have
(X, A,B,Ly,...,L, i 1) >=h""(0x).

Hence we get the assertion. O

Remark 4.1. 1f i =1, then by [13, Corollary 2.4] for any ample Cartier
divisors A4,B,L;,...,L, » we have

gl(X7A +B7L17"'7Ln72) = gl(XaAale"'anfz) +gl(X7B7Llu"~7Ln72)
because ABL---L, 5 >1=h"0y).

5. Adjunction theory of multi-polarized manifolds

In this section, we are going to investigate the nefness of Ky + L + - - + L.
Results in this section will be used when we study the ith sectional geometric
genus of multi-polarized manifolds in this paper and the Part III [14].

5.1. The nefness of Ky + Ly +---+ L, for t >n—1

By putting & :=L, ®@---@®L; for I=n+1,n,n— 1, we can get the follow-
ing theorem by using a result of Ye and Zhang [28, Theorems 1, 2 and 3]. Here
S denotes the symmetric group of order / (see Notation 3.2).

Tueorem 5.1.1. (1) Let (X,Ly,...,L,1) be an n-dimensional multi-
polarized manifold of type n+ 1 with n >3. Then Ky +L; + -+ L,
is nef.

(2) Let (X, Ly,...,L,) be an n-dimensional multi-polarized manifold of type n
with n >3. Then Ky + L+ ---+ L, is nef unless

(X,Li,....Ly) = (P", Opn(1),....Ops(1)).

(3) Let X be a smooth projective variety of dimension n > 3. Let Ly, Ls,...,
L, | be ample line bundles on X. If Ky +Li+Ly+---+ L, is not
nef, then there exists o € S, 1 such that (X, Ly(1), Ls(2), - - -, Lo(n—1)) Is one
of the following:

(A) (P",Opr(1), Opn(1),...,Opn(1)).

(B) (P",0pn(2), Opn(1),...,0px(1)).

(€) (Q".Cqr(1), Oge(1)..... Cge(1)).

(D) X is a P" '-bundle over a smooth projective curve B and Lj| =
Opn-1(1) for any fiber F and every integer j with 1 < j < n—l
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5.2. The nefness of Ky + L+ ---+ L, >

THEOREM 5.2.1. Let X be a smooth projective variety of dimension n > 4 and

let Ly,...,L,_» be ample line bundles on X. Assume the following:

(@) Ky +Li+---+ L, is not nef.

(b) Ky + (n—1)L; is nef for every integer j with 1< j<n—2.

Then (X,Ly,...,L,—2) is one of the following.

(1) There exists a multi-polarized manifold (Y, Ay, ..., Ay—2) of type (n—2)
such that (Y, Ay,...,An—2) is a reduction of (X,Ly,...,L,—2) (see [13,
Definition 1.5]) and Ky + (n—1)A4; is ample for every integer j.

(2) Kx + (n—1)L; = Ox for every j with 1 < j<n—2. Moreover Lj = Ly
for every pair (j, k) with j# k.

(3) n=4 and (X, Ly, Ly) = (P* 0ps(2), Ops(2)).

(4) There exist a smooth projective curve W and a surjective morphism
f X — W with connected fibers such that (X,L;) is a quadric fibration
over W with respect to f for every integer i with 1 <i<n-—2.

(5) There exist a smooth projective surface S and a surjective morphism
f X — S with connected fibers such that f is a P"-bundle over S and
(X,L;) is a scroll over S with respect to f for every integer j with
1 <j<n-—2, where F is its fiber.

Proof. By assumption, there exists an extremal ray R such that
(Ky+Li+---+L,2)R<0. Here we may assume that LiIR<[,R<--- <
L, >R. Then (Ky+n—-2)L))R<(Kx+L;+---+L,2)R<0 and Ky+
(mn—2)L; is not nef. There exists a rational curve C with [C] € R such that
0<—-KyC<n+1, and

(5.2.1.a) 0> (Ky +Li+ -+ Ly2)C > (KyC) + (n—2).

So we get —KyC>n—1.

(A) The case where there exists an extremal rational curve C such that
K,\/C =-n—1.

In this case 0 > (Ky + (n—2)L;)C=—-n— 14+ (n—2)L,C.

(A.1) Assume that L;C >2. Then —n—1+4+2n—4<-n—1+n-2)L,C
< 0. In particular n =4 by assumption.

By Proposition 3.1 (1), we get Pic(X)=Z in this case. Since Ky +
(n—1)L; = Kx + 3L, is nef by assumption and Ky + (n —2)L; = Ky + 2L, is
not nef, we get L;C =2 and L; = (1) or O(2), where (1) is the ample gen-
erator of Pic(X).

If Ly =0(1), then O(1)C =2 and KyC is even because Pic(X) =~ Z and
O(1) is the ample generator of Pic(X). But then KyC = —n— 1= —5 and this
is impossible. Hence L; = 0(2) and ¢(1)C =1. Therefore Ky = O(—n—1) =
0(-5). We set L, :=0(ay). Since Ky + Li+ Ly = O(a —3) is not nef, we
obtain a, < 2. By assumption, Ky + 3L, = 0(3a; — 5) is nef. Hence a; > 2.
Therefore a; =2. Since —(Ky +40(1)) is ample, by Kobayashi-Ochiai’s theo-
rem (see [6, (1.3) Corollary]), we have X =~ P* Therefore we get the type (3).
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(A.2) Assume that L;C =1. Then (Ky + (n—1)L;)C =-2<0. But this
contradicts the assumption.

(B) The case where there exists an extremal rational curve C such that
K,\/C = —n.

In this case, 0 > (Ky + (n —2)L)C = —n+ (n—2)L;C.

(B.1) If Li;C =2, then 0> (Ky+(n—2)L))C>-n+n—-22=n—-4>0
and this is impossible.

(B2) If LyC =1, then (Ky+(n—1)L;)C=—-n+(n—1)=—1 <0 and this
is a contradiction.

(C) The case where (X,L;,...,L, ) satisfies neither the case (A) nor the
case (B) above.

We set H:=L;+---+ L,—». In this case by (5.2.1.a) for every extremal
rational curve B, KyB=—-n+1 and L;B=1 for every integer i with 1 <i <
n—2. In particular HB = (n — 2)L;B for every i. Let ty (resp. 7;) be the nef
value of (X,H) (resp. (X,L;)).

Cramm 52.1. tg=m—-1)/(n—2) and t;=n—1 for every integer i with
I<i<n-2.

Proof. Assume that there exists C e NE(X) such that

(KX+”_1H>C<0.

n—2

Then by the cone theorem (see also [2, Remark 4.2.6]) C can be written as
> 4C; +7, where C; is an extremal rational curve and y is a 1-cycle such that
the following holds:

1

n—
n—

Hence

n—1
(KX+I12H>Cj <0
for some j. But this is impossible because KyB= —-n+1 and L;B=1 for
any extremal rational curve B. Therefore 7y < (n—1)/(n—2). Furthermore
(Ky +aH)B < 0 for every rational number a < (n—1)/(n—2) and every ex-
tremal rational curve B. Therefore 1y = (n—1)/(n —2). By the same argue-
ment as above, we see that 7, =n — 1. O]

Let ¢, and ¢, be the nef value morphism of (X, H) and (X, L;) respectively.
Let Fy and F; be the corresponding extremal face.

CLAM 5.2.2. ¢y = ¢; for every integer i with 1 <i<n-—2.
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Proof. Let C = X be an irreducible curve with [C] € Fy. Then

n—1

H|C=0.
2)CO

<KX +

Then by the cone theorem there exist extremal rational curves C; such that
C=34C (see [2, Lemma 4.2.14]). Hence

1
O:(Kx—i—n H>C

n—2
n—1
:Z:A, Ky + —H)G

= Z}v'(KX +(n=1L)G

= (K)(+ (I’l — l)L,)C

Therefore [C] € F;,. By the same argument as above, [C] € Fy if C is a curve
in X with [C]e F;,. Hence ¢y = ¢; because ¢y (resp. ¢;) is the contraction
morphism of Fy (resp. F;). O

In particular ¢; = ¢;. By Claim 5.2.1 ; =n—1 for every integer i with
1 <i<n-—2. Hence by [2, Theorem 7.3.2], (X,L,...,L,») is either of the
type (1), (2), (4), or (5) in the statement of Theorem 5.2.1. Here we note that
in the type (1) Ky + (n — 1)4; is ample for every j. Next we consider the type
(2). Then Ky + (n—1)L; =0y for any j. Hence (n—1)L; = (n—1)L; for
j #k. Therefore L; = Ly. But since 4!(0y) =0 and H?(X,Z) is torsion free
in this case, we see that L; = L;.

This completes the proof of Theorem 5.2.1. O

Remark 52.1. In (1) of Theorem 5.2.1, we see that

Kw{%(m ot Aa)
is ample. Therefore by Theorem 5.2.1 we get the following:
Let X be a smooth projective variety of dimension n >4 and let L;,...,L, »
be ample line bundles on X. Assume that Ky + L; +---+ L, » is not nef and
Ky + (n—1)L; is nef for any j. Then (X,Li,...,L,2) is one of the following:
(I) Ky + (n—1)L; = Oy for any j. Moreover L; = L; for any (j, k) with
Jj#k.

(IT) There exist a smooth projective curve W and a surjective morphism
f X — W with connected fibers such that (X, L;) is a quadric fibra-
tion over W with respect to f for every integer { with 1 <i <n—2.

(III) There exist a smooth projective surface S and a surjective morphism

f:X — S with connected fibers such that f is a P"~>-bundle over S
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and (X, L;) is a scroll over S with respect to f for every integer j with
I<j<n-2.

(IV) There exists a reduction (Y, A4y,...,Ay—2) of (X,Ly,...,L,_2) such that
(Y,Ay,...,A4,->) satisfies one of the following.
(IV.1) n=4 and (Y, 4, 42) = (P*,0ps(2), Ops(2)).
(IV2) Ky + A1 + -+ Ap—2 18 nef.

Remark 5.2.2. Let (Y, A,...,A,—2) be a reduction of (X, Ly,...,L,2). If
Y is not isomorphic to X, then Ky + A4y +---+ 4,2+ A; is ample for every
integer j with 1 < j<n-—2.

THEOREM 5.2.2. Let X be a smooth projective variety of dimension n > 4 and
let Ly,...,L,_» be ample line bundles on X. Assume the following:
(@) Kx + Ly + -+ L,_» is not nef.
(b) Kx + (n—1)L; is not nef for some j.
Then there exists o € ©,_2 such that (X, Ly, ..., Lsu—2)) is one of the following:
) (P, Ope(1),...,0pn(1),0p(3)).
Y n>5 and (P Opr(1),...,0p:(1),Opx(2), Opn(2)).
) (P*,Op(1),. (/P”(l)a@P (2)).
) (P*,Op(1),. ~7@P”( ))-
) Q" Oge(1)...., Cor(1), Gge(2).
) (Q",0q(1),...,0q(1)).
) X is a P l-bundle over a smooth curve C and one of the following
holds. (Here F denotes its fiber.)
(7.1) Loj)lp = Opni(1) for every integer j with 1 < j<n-—2.
(
Lo

(1

2
3
(4
(5
6
(7

(7.2) Lo(j)|lp = Opni(1) for every integer j with 1<j<n-—3 and
2l = Cpe (2.

Proof. We may assume that j =1 in (b). Since Ky + (n— 1)L, is not nef,
by [4, Theorem 1 and Theorem 2] or [16, Theorem| we see that X is isomorphic
to one of the following types:

(A) P

(B) .

(C) A P" '-bundle over a smooth curve C.

Next we study each case.

(A) If X =P", then we set L;:= Opr(qj) for 1 < j<n—2. Since Ky+
(n—1)L; is not nef, we have ¢; = 1. Here we may assume that @, < --- < a,_».
Since Ky+L;+---+L,, is not nef, we get (ai,...,ay-4,ay-3,0,-2)=
(1,...,1,1,1), (1, ...,1,172) (1,...,1,2,2) or (1,...,1,1,3). We note that if
n =4, then (a;,a;) = (2,2) cannot occur.

(B) If X =Q" with n>4, then Pic(X) = Z and we set L; := Og(a;) for
1<j<n-2. Since Ky+ (n—1)L; is not nef, we have a; =1. Here we
may assume that a» <--- <a,». Then we note that Ky = Og»(—n). Since
Ky+Li+---+ L, is not nef, we get (ai,...,an_3,a,2)=(1,...,1,1) or
(1,...,1,2).



430 YOSHIAKI FUKUMA

(C) The case where X is a P" !-bundle over a smooth curve C.

(C.1) The case where g(C) > 1.

Since Ky + (n—1)L; is not nef, there exists a vector bundle & on C
with rank(&) =n such that X =P¢(&8) and L, = H(&), where H(&) denotes
the tautological line bundle on X. Then we note that & is ample. Let
n:Pc(6) — C be its projection. Let L;:=a;H(&)+ n*(B;) for every integer
j with 2 < j<n-—2. Here we may assume that a, <--- <a, ;. Since Ky +
Li+---+ L, > is not nef, there exists an extremal rational curve B on X such
that (Ky + L +---+ L,_2)B<0. We note that B is contained in a fiber of
n. Hence

n—2
0> (Kx+Li+--+ Ly 2)B=0Upns (—n+ 1+ Z@)B.
=

Hence we obtain (ay,...,a,-3,a,—2) = (1,...,1,1) or (1,...,1,2).

(C.2) The case where g(C) = 0.

There exists a vector bundle & on P! such that X = P¢(&) and & =~ Oc ®
Oc(d) ®--- @ Oc(d,—1), where d; is a non-negative integer for 1 < j<n—1.
In this case we set L;j:=aH(&)+n*(B;) for 1 <j<n—2. By [2, Lemma
3.2.4] @ > 0 and b; > 0 for any integer j with 1 < j <n — 2, where b; := deg B;.
Since Ky +(n—1)L; is not nef, we have a =1. We may assume that
@< <y

Since Ky = —nH(&) + (¢1(8) — 2)F, we have

a_,) H(&) + (a (&) -2+ f 5_,) F.
j=1

We note that 01(5)—2+Z;;25;20—2+(n—2) >0. Hence Ky + L +---+
L,_, is not nef if and only if —n + 21";12 a; < 0 because H(&) is nef. So we get
([ll,...,[ln,%[ln,z) = (17,1,1) or (1,7172)

This completes the proof. O

n—2
Kx+L] —|—-"—|—Ln_25 (—n—i—
j=1

Remark 5.2.3. Assume that (X,L;,...,L;) is either the type (3) (D) in
Theorem 5.1.1 (k=n—1 in this case) or (7.1) in Theorem 5.2.2 (k=n—2 in
this case). Let f: X — C be its projection. Then for every j with 1 < j <k
there exists an ample line bundle B; e Pic(C) such that Ky +nL; = f*(B)).
Hence n(Ky + Ly, +---+ Ly,) = f*(Bp, +---+ By,) for any (by,...,b,) with
{b1,...,by} ={1,...,k}. On the other hand, by assumption, there exists a
line bundle D € Pic(C) such that Ky + Ly, +---+ Ly, = f*(D). Hence D is
ample because deg D = deg(By, +---+ By,)/n > 0. Therefore we see that
(X,Lp,,...,Lp,) is a scroll over C.

Remark 5.2.4. By Theorem 5.2.1, Remark 5.2.1 and Theorem 5.2.2, we get
the following:
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Let X be a smooth projective variety of dimension n >4 and let
Ly,...,L,» be ample line bundles on X. Let (Y,A4;,...,A4,-2) be a reduction
of (X,Ly,...,L,—»). Assume that Ky + L; +---+ L, is not nef. Then there
exists g € S, 5 such that (X, Lyq),...,Lsu,-2)) is one of the following:

(1) (P",Opr(1), ..., Opr(1)).

(2) n>5 and (P Opr(1),..., Upr(1), Upn(2), Opn(2)).

(3) (Pna(QP”( )v P"(l)a(QP“(Z :

(4) (P, Opi(1),..., P”(l),@‘P”(3))

(5) (Q" Ogr(1), ..., Ogr(1)).

6) Q" @Q"(l) Q"( ): O (2))-

(7) X is a P* -bundle over a smooth curve C and one of the following

holds. (Here F denotes its fiber).

(7.1) Lgj)lp = Opn1(1) for every integer j with 1 < j<n—2.

(7.2) Lgj)lp = Opna(1) for every integer j with 1< j<n-—3 and
L a(n— 2)|F - CP” 1(2)

(8) Kx+ (n—1)L; = Oy for any j. Moreover L; = L; for any (j,k) with
Jj#k.

(9) There exist a smooth projective curve W and a surjective morphism
[+ X — W with connected fibers such that (X, L;) is a quadric fibration
over W with respect to f for every integer i with 1 <i<n—2.

(10) There exist a smooth projective surface S and a surjective morphism
f:X — S with connected fibers such that f is a P">-bundle over S
and (X, L;) is a scroll over S with respect to f for every integer j with
I1<j<n-2.

(11) n =4 and (Y, 4, 42) = (P*, 0ps(2), Ops(2)).

(12) Ky + 41+ -+ Ay is nef.

THEOREM 5.2.3. Let (X,Ly,...,L,2) be an n-dimensional multi-polarized
manifold with n > 4. Assume that Ky + Ly + ---+ L, is nef. Then one of the
following holds.

(1) Ky +Ly+ -+ Ly» = Oy.

(2) ,Ln_2) is a Del Pezzo fibration over a smooth curve.
(3) ..y Ly_2) is a quadric fibration over a normal surface.
4) (X Ly,. ..,L,, 2) is a scroll over a normal 3-fold.

(5) Ky + L+ -+ L, is nef and big.

Proof. It Ky +L;+---+ L, is ample, then (X, L;,...,L,_,) satisfies (5).
So we may assume that Ky + L; +---+ L, » is not ample. Then we can take
the nef value morphism ¢ : X — Y of (X,L; +---+ L,_»), where Y is a normal
projective variety.

Assume that dim Y < dim X. Let F be a general fiber of ¢. Then
Kp+ Li|p+ -+ Ly—2|p = Op. Hence dim F > n — 3 by Remark 3.2. Namely,
dim Y < 3. Therefore we get the type (1), (2), (3) and (4).

Assume that dim ¥ =dim X. Then Ky + L; +---+ L,_» is nef and big.

Therefore we get the assertion. O
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6. The first sectional geometric genus

In this section, we consider the first sectional geometric genus of multi-
polarized manifolds.

6.1. Fundamental results

PROPOSITION 6.1.1.  Let X be a smooth projective variety of dimension n, and
let Ly,...,L, | be line bundles on X. Then

1 n—1
gl(X,Ll,...,Ln,l) =1 +§ (KX+ZLJ>L1 SR S
=1
Proof. We use [13, Corollary 2.7] for i =1. Here we note the following:

the proof of [13, Theorem 2.4] shows that the equality in [13, Corollary 2.7] holds
for any line bundles L;,..., L, ;. By [13, Corollary 2.7], there are the following

terms in ¢(X,Ly,...,L,_1):
n—1
( Lj> Ly L,
j=1

Ly Lo Ty(X).

and

Here 7)(X) denotes the Todd polynomial of weight 1 of the tangent bundle
Jx (see [13, Definition 1.7]). The coefﬁment of (Z”_IIL)LI Ly is 1/2
and the coefficient of L;--- L, Ty (X) is (—=1)"/(1!-- 1') =—1. Since T1(X) =
(1/2)e1(X) = —(1/2)Kx, we obtain

n—1
gl(X7L1>"'aL _1+ ( Lj> Ly +5KyLy--- Ly
J=1

1 n—1
:1+§<K,\/+ Lj)Ll---Lnl.

j=

So we get the assertion. O

By setting & :==L ®---® L, |, we can obtain the following theorems by
Remark 3.1 and [23, Theorems 1 and 2].

THEOREM 6.1.1. Let X be a smooth projective variety of dimension n > 3.
Let Ly,...,L,_1 be ample line bundles on X. Then g;(X,Ly,...,L,—1) =0.

If g1(X,Ly,...,Ly1) =0, then (X, Lyqy,- -, Lou—1y) is one of the following:
(Here c € S,_1.)
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(A) (P, Opr(1),..., Opn(1)).

(B) (P, Cpr(2), Gpr(1),..... Cpr(1)).

(€) (Q".Cgx(1)...... Cge(1)).

(D) X isa P l-bundle over a projective line P' and L;|, = Opri(1) for any
fiber F and j with 1 <j<n-—1.

THEOREM 6.1.2. Let X be a smooth projective variety of dimension n > 3 and
let Ly,...,L,_\ be ample line bundles on X. Assume that g\(X,L1,...,L,—1) = 1.
Then (X,Ly,...,L,1) is one of the following:
(1) (X,Ll, . ,Ln_l) satisfies Ky + L1 +---+ L, = Oy.
(2) X is a P"'-bundle over an elliptic curve C and L;|, = Opr1(1) for any
fiber F and any integer j with 1 < j<n-—1.

Here we note that we can characterize (X,Li,...,L,_) in the case (1) in
Theorem 6.1.2.

THEOREM 6.1.3. Let X be a smooth projective variety of dimension n > 3.
Let Ly,Ly,...,L, | be ample line bundles on X. Assume that Ky + L; +---+
L,y = Ox. Then there exists o€ S, 1 such that (X, Ly, Ly, ..., Lopu-1)) is
one of the following:
(A) (X,L) is a Del Pezzo manifold for some ample line bundle L on X and
L; =L for every integer j with 1 < j<n-—1.

(B) (P",0p(3),Opr(1),...,0px(1)).

( ) n 24 and (Pn @p”(Z) (Cp”(z) @p”(l) ,@p"(l))

(D) (Q",0q(2),0qr(1),...,Og(1)).

(E) X =P >< P, L, = pl(OP 2(2)) + pi(Opi(1))  and Ly = pi(Op(1)) +

3 (Opi(1)), where pi is the ith projection.

Proof. First we note that 4!'(0y) =0 by assumption.
(1) Assume that Ky + (n — 1)L; is nef for any j. Then

._.

n—

(Kx+(n—1) ) (n—l)(Kx+L1+"'+Ln,1)
1

-
Il

= Oy.

Therefore (Ky + (n—1)L;)L!"' =0. Since Ky + (n—1)L; is nef, we have
Ky + (n—1)L; = Oy, that is, (X, L;) is a Del Pezzo manifold. Moreover since
(n—1)L; = (n— 1)Ly for any j#k, we have L; = L. But since h!'(0x) =0
and H*(X,Z) is torsion free, we have L; = L;. So we get the type (A) above.

(2) Assume that Ky + (n —1)L; is not nef for some j. Then by the adjunc-
tion theory, we see that X is one of the following type:

2.1) X = P".

(22) X =Q".

(2.3) X is a P"!-bundle over a smooth curve B.



434 YOSHIAKI FUKUMA

(2.1) First we consider the case where X =~ P". Then by assumption we get
(Ly,...,L,—1) is isomorphic to

(Opn(3), Opn(1),...,0pi(1)) or (Opr(2),0p:(2),0pr(1),...,0pr(1)).

Here we note that n > 4 in the latter case because Ky + (n — 1)L; is not nef for
some j.

(2.2) Next we consider the case where X =~ Q". Then by assumption we get
the type (D) above.

(2.3) Finally we consider the case where X is a P"~!-bundle over a smooth
curve B. Since h'(Ux) =0, we see that B~P!  Then there exists a vector
bundle & of rank n on X such that & = Op1 @ Opi(a1) @ -+ @ Upi(a,—1) and
X = Ppi(&), where a; > 0 for every j. Then by [2, Lemma 3.2.4], aH (&) + bF
is ample if and only if @ > 0 and b > 0. Here we note that by the assumption
that Ox(Ky +Li +---+ L,—1) = Oy, we may assume that Li|; = Op.1(2) and
Lj|p = Opn-1(1) for any fiber F and every integer j with 2 < j <n—1. Hence
we can write L = 2H (&) +n*(By) and L; = H(&) + n*(B;) for every integer j
with 2 < j <n— 1, where B; € Pic(P'). Set b;:=deg B;. Then b; > 1 because
L; is ample. Since Ky = —nH (&) + n*(Kp1 +det &), we have Ky + L; +---+
L, =n"(Kp1 +det&+ By +---+ B,_1). Since deg & >0, we see that

deg(Kp1 +det &+ By + -+ B,_1) =—-2+deg &+ b1+ -+ b,y

>n—-3>0.

By the assumption that Ox(Ky +Li+---+ L,—1) = Ox, we get deg(Kp: +
det&+By+---+B,_1)=0. Hence n=3, degd =0 and b; =1 for every J.
In particular § = Op1 @ Op1 @ Op1. Therefore we get the type (E). O

Remark 6.1.1. In general, let # be an ample vector bundle of rank n — 1
on a smooth projective variety X of dimension n. Then a classification of
(X,7) with Ox(Ky +det #) = Ox has been obtained. See [25].

By Corollary 4.2, we get the following:

THEOREM 6.1.4. Let X be a smooth projective variety of dimension n > 3, let
i be an integer with 0 <i <n—1, and let Ly,...,Ly,; be ample and spanned line
bundles on X. Then gi(X,Ly,...,L,;) = h'(Oy).

By considering this theorem, it is natural to classify (X, L,...,L, ;) such
that Bs|L;/ =0 for any j with 1 < j<n—i and ¢;(X,Li,...,L,;) =h'(COx).
Here we consider the case where i=1. Set § =L ®---®L,_;. Then & is
an ample vector bundle of rank » — 1 on X. Since, as we said in Remark 3.1,
g1(X,Ly,...,L,_) is equal to the curve genus g(X,&) of &, we can get the
following theorem by [22, Theorem].
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THEOREM 6.1.5. Let X be a smooth projective variety of dimension n > 3,
and let Ly,...,L,_ 1 be ample and spanned line bundles on X. If g1(X,Ly,...
L, 1) =h"(Oy), then (X,Ly,...,L, 1) is one of the following:

() g1(X,Ly,...,L,—1)=0.

(2) X is a P""'-bundle over a smooth curve B and L; = H(&)+ f*(D;) for
any jwith 1 < j <n—1, where & is a vector bundle of rank n on B such
that X = Pg(&), H(&) is the tautological line bundle on X, f: X — B is
its fibration, and D; € Pic(B) for any j.

)

/‘\ /—\

Moreover we can also get the following theorem by Remark 3.1 and [15
Theorems 5.2 and 5.3].

THEOREM 6.1.6. Let X be a smooth projective variety of dimension n > 3.
Assume that there exists a fiber space f : X — C, where C is a smooth projective
curve. Let Ly,...,L,_y be ample line bundles on X. Then g,(X,Ly,...,Ly,1)
> g(C).  Moreover if gi(X,Li,...,L, 1) =g(C), then X is a P" '-bundle on C
via f and Lj|p = Opu-1(1) for any fiber F of [ and every integer j with 1 < j <
n—1.

Next we consider Conjecture 4.1 for the case where i = 1 and x(X) =0 or 1.
THEOREM 6.1.7. Let X be a smooth projective variety of dimension n > 3.
Let Ly,...,L,_1 be ample line bundles on X. Assume that Ly---L,_1L; >2 for
any j with 1 <j<n—1 and k(X)=0 or 1. Then g\(X,Ly,...,L,1) > q(X).

Proof. 1f x(X) =0, then 2'(Oy) <n by the classification theory of mani-
folds (see [17, Corollary 2]). Hence

1
gl(X7Lla-~-aLn—l) =1 +§(KX+L1 +"'+Ln—l)Ll "'Ln—l
>14+nm—1)=n=h'(0y).

Next we consider the case where x(X)=1. By taking the litaka fibration of
X, there exists a smooth projective variety X’, a smooth projective curve C’,
a birational morphism x: X' — X and a fiber space f’: X' — C’ such that
k(F') =0 for any general fiber F’ of f’. 1In this case h!'(Ox/) < h'(Oc)+
h'(Op') < g(C") +n—1 by Lemma 3.2 and [17, Corollary 2]. Here we note that
by the proof of [8, Theorem 1.3.3] we have Ky c(u*L1)---(u*L,—1) =20. We
also note that

gl(’\ﬂvﬂ*(l‘l) /"*(Lnfl))
I(KX’/C’ o (Ly) 4+ (Lpmn)) (L) - 1 (L)

=14=
*3
(C") = )" (Ly) - 1 (L) F'.

+(g
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If g(C’) =1, then since u*(Ly)---u*(L,—1)F’ =1 we see that
gl(X7Ll7--~;Ln—l) :gl(X/7ﬂ*Ll7"'7ﬂ*Lnfl)

1
= g(C,) + 5 (ﬂ*Ll +---+ ,u*Lnfl)(,U*Ll) T (,U*Lnfl)
>g(C)+n—1
> ' (Oxr) = h'(Ox).
If g(C") =0, then h'(Ox:) <n—1 and by assumption here we get
1
QI(X7L1,---7Ln—1) =1 +§(Kx+L1 +"'+Ln71)L1 Ly

>14+(n—1)=n>h'"(0Ox)=h"(0y).
This completes the proof of Theorem 6.1.7. O

6.2. The case of 3-folds.
Here we consider the case where X is a 3-fold. The method is similar to
that of [9]. We fix the notation which will be used below.

NotaTiON 6.2.1. Let (X,L;) be a polarized manifold with dim X = 3 and
h°(L;) >2. Let A be a linear pencil which is contained in |L;| such that
A=Ay + Z, where Ay is the movable part of A and Z is the fixed part of
|L;|. We will make a fiber space by using this A. Let ¢:X -— P! be the
rational map associated with Ay, and 0: X’ — X an elimination of indetermi-
nacy of ¢. So we obtain a surjective morphism ¢’ : X’ — P'. By taking the
Stein factorization, if necessary, there exist a smooth projective curve C, a finite
morphism 0 : C — P! and a fiber space f’: X’ — C such that ¢’ =do . Let
ap :=dego and F’ a general fiber of f”.

THEOREM 6.2.1. Let X be a smooth projective variety of dimension 3. Let
Ly, Ly be ample line bundles on X. Assume that h°(Ly) >2 and h°(Ly) > 1.
Then g1(X, L1, L2) > q(X).

Proof. If Ky + L) + L, is not nef, then by Theorem 5.1.1, Remark 5.2.3
and [13, Example 2.1 (A), (B), (E) and (H)] we get g1(X, Ly, Ly) > g(X).

So we may assume that Ky + L + L, is nef. Here we use Notation 6.2.1.

(I) If g(C) =1, then @ is the identity mapping. By Proposition 6.1.1, we
have

1
gi(X,Ly, L) =1 +§(KX + L+ L)L L,

1
=1 +§(Kx/c + L +L2)L1L2 + (g(C) - 1)L1L2F/‘
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Since Ky;c + L1 + Ly is f'-nef and dim C = 1, we see that Ky,c + L1 + L
is nef by Lemma 3.1. Here we note that ap > 2 because ¢g(C) > 1. Since
Ly — apF' is effective, we obtain

—

g1(X,Ly,Ly) =14 = (Ky/c+ L1 + L) L1 Ly 4 (9(C) — 1)L Ly F'

—_ N

>1 +_(KX/C + L -‘r—Lz)(aAF/)Lz + (9(C) — I)LleFl
> g(C) + (Kp' + Li|pr + Lo|p/) Lo pr-
If h'(Op)) =0, then h'(Ox) = g(C). Moreover since K + Li|p + La|p is
nef, we get g1(X, Ly, Ly) > g(C). Hence g;(X, L, L) = ¢g(C) =h'(0x). Hence
we may assume that A'(0p) > 0.

Since h°(Ly|) > 0 and dim F' = 2, we have g(La|p/) = h'(OF) ([7, Lemma
1.2 (2)]). Therefore

g1(X, L1, Ly) = g(C) 4+ 2h' (Op:) — 2 + (L1| ) (La| ).
Then by Lemma 3.2
gl(X,Ll,Lz) > g(C) +h1((91:/) —|—hl((9p«) -2+ (L1|F’)(L2|F')
> g(C) +h'(Cp)
> /’ll(@X).

(IT) Assume that g(C) =0. Let D be an irreducible and reduced divisor on
X such that the strict transform of D by 6 is a general fiber F’. Then L, — D
is linearly equivalent to an effective divisor. Here we note that Ky + L 4+ L, is
nef. So we have

G(X,Li,Ly) = g1(X',0"Ly,0" L)

1
=1+ 5 (K +0°Li + 0" Ly)(0" L1)(0"Lo)

1
= 1+50"(Kyx + Ly + La)(0"Ly) (0" L)

1
> 1+ 50*(1{;( + Ly + L) (0" L) F’
1
=1+ 3 (0" (Kxy + D) +0"(Ly — D)+ 0"Ly) (0" L) F'.
Since 0*(Ly — D)(0"Ly)F’ = 0, we have

1
g(X, Ly, Lz) >1+ § (9*(KX + D) + 9*L2>(9*L2)F/.
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By the same argument as in the proof of [9, Claim 2.4], we can prove
0" (Kxy + D)(0"Ly)F' = (Ky' + F') (0" Ly)F'

Hence
1 * *
gl(X,Ll,Lz) >1 +§(KXr —‘y—F/—I—H Lz)(@ Lz)F/

= 9(0*L2|F/)-

Since h°(0"(Ly)|p/) > 0, we get g(0*(Ly)|p) = h'(CUF/) by [7, Lemma 1.2 (2)].
Therefore by Lemma 3.2

gl(X, Ll,Lz) > g(H*(Lz)‘F/) > hl(@F,) = /’ll((o)(/) = hl(@X)
This completes the proof. O

THEOREM 6.2.2. Let X be a smooth projective variety of dimension 3 and let
Ly and L, be ample line bundles on X with h°(Ly) =2 and h°(Ly) > 1. Let
A < |Ly| be a linear pencil, and we use Notation 6.2.1. Assume that for some
o€y (X, Ly), L)) is neither of the following:

(A) (P @p3( ): Ops(1)).

(B) (P*,0p3(2), Cps(1)).

(C) (Q3 @Q‘( ) @Q‘(l))

(D) X is a P*-bundle over a smooth projective curve and Li|p = Op:2(1) for

any fiber F and j=1,2.
Then

(1) g1(X, Ly, Lz) > anq(X) if g(C) = 0.

() 91X, L1, L2) = g(X) + (ar — Dg(F') if 9(C) = 1

Proof. 1If Kx + L| + L, is not nef, then (X, L, L) is one of the types from
(A) to (D) above by Theorem 5.1.1 (3). So we may assume that Ky + L; + L; is
nef. Let Z, 0, ' and C be as in Notation 6.2.1. Let Z =}"/", b;Z;, and let Z]
be the strict transform of Z; by 0. Let 0’ : X" — X' be a birational morphism
such that Z is a smooth surface, where Z is the strict transform of Z! by
0'. We can take a general element Be |L;| such that B= G, +---+ G,, + Z,
where each G; is the image of a general fiber of f’ by 0. Let h:= f’ o0’ and
n:=000". Then the strict transform of G; by = is a general fiber of h. Let
F! be the strict transform of G; by z. We note that Z/ is the strict transform of
Z; by n. Then we have

1
gl(X,Ll,LQ) = g(X”,n*Ll,n*Lz) =1 +§(KX” —+ H*Ll =+ H*Lz)(ﬂ*Ll)(T[*Lz)

1
= 1+57"(Ky + L1 + Lo)(n" L) (7" B)

1
2 1+ 57" (Ky + Ly + Lo) (1" La) (2" (Brea)-
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Put By := B— Brg. Then by the same argument as in [9, Claim 2.9] we
have ByBrql> > 0. Hence

1 * * *
g1(X, Ly, L) = 1 + 57" (Kx + L1 + L2)(n" L2) (" (Brea))

>1+ ! 5 (0" (Kx + Brea) + 7" L2) (7" L2) (7" (Brea))-

Moreover since 7*(Bred) — Zl‘“l F/"—>"" Z! is a n-exceptional effective divisor,
we get

1
g1(X, L1, Lz) = 1+ 5 (" (Kx + Brea) + 7" L2)(n" L2) (2" (Brea))

o * * "
1+22 (Kx + G) + 7" Ly)(n*Ly)F,

2277.' red 71' Lz)F”

m

+5 Z (Kx + Zi) + " Ly)(n* L) Z!

m

+ = Zn Bred — 71' Lz)Z”

Because L, is ample and B is connected, we have
<Zn Brea — G)(n"Ly) F”+Zn Brea — Zi)(n *LZ)Z>>a,\+m—1
i=1

Therefore

gl(X,Ll,Lz) >1+ (ﬂ*(KX -+ Gl) -+ H*Lz)(ﬂ*Lz)F//

1 m
+ EZ(n*(m{ + 7))+ 1 Ly)(7* L) Z! + (ap +m — 1)

i=1

I
)
>
/N
—
+
M| —

(z*(Kx + G;) + n*Lz)(n*Lz)E”>
& 1
By the same argument as in the proof of [9, Claim 2.4], we can prove that

(" (Kx + G)) + n° Lo)(n* L)Y’ > (Kyr + F' + n° Ly)(n" L)Y
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and
(" (Kx + Zi) + 7 Ly)(n* L) Z! > (Kx» + Z!" + n*Ly) (=" Ly) Z].
So we obtain
an

g1(X, Ly, Ly) > Z(1+ (Ky» + F/ +7* Lz)(nL)F)

i=1

aa m
Z(J n'Ls) |F” ZQ((”*IQHZ,!')-
i=1

i=1

l\)l'—‘

Kyr +Z + ﬂ*Lz)(ﬂ*Lz)Zi”)

We note that g(n*Ls|,») > 0 for any i since dim Z/ = 2 (for example, see [5,
(4.8) Corollary]). '

(I) The case where g(C) = 0.

Because 7°((xn “Lo)|ps) = 1 and dim F/" =2, we have g((n"La)|p) = q(F")
for every i. Since q(F”) > ¢(X") = q(X') = q(X) for every i by Lemma 3.2, we
get gl(X,Ll,Lz) > aAq(X)

(II) The case where g(C) > 1.

Then 0 is the identity mapping and Z; = Z/ for every i. Since L, is ample
and G; is a fiber of f’, there exists a Z; such that Sz + Zi — C is surjective.
We consider the fiber space /4] 702 " — C. By [7, Theorem 2.1 and Theorem
5.5], we have g((n*La)|,») >g(C). On the other hand, g((n *L2)|F//) > q(F/)
holds because h°((n*L,)|z») > 1 and dim F/” = 2. Therefore we get g; (X, L1, L)
> g(C) +ang(F})). Since g(C) + g(F/) = q(X") = g(X') = g(X) by Lemma 3.2
and ¢(F/) =q(F') for every i, we get gi(X,Li,Ly)>q(X)+ (an — 1)q(F').
(Here we note that ap > 2 in this case.)

This completes the proof of Theorem 6.2.2. O

THEOREM 6.2.3. Let X be a smooth projective variety of dimension 3 and let
Ly and L, be ample line bundles on X such that h°(Ly) > 2 and h°(L,) > 1. Let
A < |Ly| be a linear pencil and we use Notation 6.2.1.

If apn =1, then g,(X, Ly, Ly) = q(X) —|—2GZL2, where G is a general element
of Ay and Z is the fixed part of |L|, unless (X, Ly(1), Ly(2)) is one of the following
for some g€ S;:

(A) (P2, Cps(1),Cpo(1).

(B) (P Cps(2), Cpo(1)).

() (@, Cop(1). (o (1),

(D) X is a P*-bundle over a smooth projective curve and L;|, = Op:(1) for
any fiber F and j=1,2.

In particular, g\(X,L1,Ly) > q(X)+1 if Z #0.
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Proof. 1If Kx + L| + L, is not nef, then (X, L, L) is one of the types from
(A) to (D) above by Theorem 5.1.1 (3). So we may assume that Ky + L; + L; is
nef. We note that the strict transform of G by 8 is F'. So we have

1 * * *
g1(X, L1, Lp) =1+ 5 (Ky' + 07 (L1 + L2))(6"L1)(07 L)
1
=1 +§9*(KX + L+ Lz)(e*Ll)(e*Lz)
1
>1 +50*(KX + Ly —|—L2)(0*L2)F,

=1+ % (0" (Kxy + G)+ 0" (L1 — G) + 0" L) (0" L) F’
By the same argument as in the proof of [9, Claim 2.4], we can prove
0" (Kxy + G)(0"Ly)F' = (Kx' + F')(0" L) F'
On the other hand, 0*(L; — G)(6"L,)F' = ZGL,. Hence

1 1
+ 5 (Ky + F' +0"Ly)(0"Ly)F' 4+ 5 ZGL,

X, L, L) >1
gl(vl; 2)— 2( B

X 1
= g((o L2)|F/) + §ZGL2

Because h°((0*L,)|z) =1 and dim F’ =2, we obtain g((0"L,)|p) = q(F’
by [7, Lemma 1.2 (2)]. Since g(C) =0 in this case, we have ¢(F') > ¢(X') =
q(X). Therefore

1 1
g1(X,Ly,Ly) > C](Fl) +§ZGL2 > q(X) +§ZGL2.

If Z+#0, then ZN G # ¢ since G+ Z is connected. Since L, is ample and
G is a general element of Ay, we have ZGL, > 0. Because ¢;(X, L, L) is an
integer, we have ¢;(X,L;,Ly) > q(X)+ 1. This completes the proof. O

THEOREM 6.2.4. Let X be a smooth projective variety with dim X = 3 and
let Ly and L, be ample line bundles on X with h°(L\) =2 and h°(Ly) = 3. If
g1(X, Ly, L) = q(X), then (X, L1y, Ly(2)) is one of the following types for some
g e 22

(A
(B
(C
(D

\—/v

(P Ops(1), Ops(1)).

(P?, 0p3(2), Op3(1)).

(Q*, 0:(1), 0 ¢, o (1)-

X isa Pz-bundle over a smooth projective curve and L;|p = Op2(1) for
any fiber F and j=1,2.

—_ —

Proof. We use Notation 6.2.1.
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If Ky + L + L, is not nef, then by Theorem 5.1.1 (3) we see that (X,L) is
one of the types from (A) to (D) above. So we may assume that Ky + L + L,
is nef. In particular we note that g;(X,L;,L;) > 1.

(1) The case in which ¢(C) > 1.

We note that 0 is the identity mapping and as >2 in this case. By
Theorem 6.2.2 (2), we have ¢(X) =gi(X, L1, Ly) > q(X) + (an — 1)g(F’). Be-
cause ap =2, we obtain ¢(F')=0. Hence ¢(X)<g(C)+¢q(F")=¢g(C) by
Lemma 3.2. But since ¢g(C) < g(X), we get ¢(X) =g(C), and ¢1(X, Ly, Ly) =
q(X) =¢g(C). Then (X,L;,L,) is the type (D) above by Theorem 6.1.6. This
is a contradiction by assumption.

(2) The case in which g(C) = 0.

If an > 2, then g(X) = g1(X, L1,Ls) > 2¢q(X) by Theorem 6.2.2 (1). Hence
q(X)=0, and g(X,L;,L,) =¢g(X)=0. But this is a contradiction.

So we consider the case where apy = 1. By Theorem 6.2.3, we see

(6.2.4.1) Z=0,

that is, |L;| has no fixed component. By the proof of Theorem 6.2.3, we see that
g((0"La)|p) = q(F'). Here we note that

9((0°Lo)\p) — q(F') = h(Kp: + (0°Lo) | ) — h°(Ki)

by the Riemann-Roch theorem and the Kawamata-Viehweg vanishing theorem.
Since h°((0°Ly)|p) =2, we have h°(Kp) =0 by Lemma 3.3. Assume that
k(F') > 0. Then g(F’) <1 because y(Up/) > 0. Hence g((0"Ly)|p) =q(F') < 1.
But since x(F') > 0, we have g((0"L,)|r/) > 2 and this is a contradiction. Hence
we have

(6.2.4.2) K(F') = —c0.

Because g((0"L,)|p) = q(F'), we can prove the following claim.
Cramm 6.2.1. x(Kp + (07 L) |p) = —c0.

Proof. Assume that x(Kp + (0"L,)|p) = 0. Then g((0"Ly)|p) > 1.

Since 0 < ¢((0"La)| /) = q(F'), a (0" La)|/)-minimalization of (F’, (0" Ly)| )
(see [7, Definition 1.9]) is a scroll over a smooth curve B by [7, Theorem 3.1].
Hence there is a surjective morphism /% : F’ — B such that a general fiber F, of
his P'. Hence (Kp + (0°Ly)|;)F; = —1. But this is a contradiction because
F;, is nef. This completes the proof of Claim 6.2.1. O

On the other hand,

Kpr 4+ (0" La)|pr = (K + F' + 0" La) 1,
=0 (Kx + L)+ Ep+ F') 1,

where Ej is a O-exceptional effective divisor.
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Let (M,A) be a reduction of (X,L,;) and let #: X — M be its reduc-
tion map. Assume that Ky + A is nef. Then h°(m(Ky + A4)) >0 for any
large m >0 by the nonvanishing theorem. Here we note that Ky + L, =
n*(Ky + A) + E for an effective m-exceptional divisor E. Hence for any large
m, we have

W (m(Ky + Ly)) = h°(mn*(Ky + A) + mE) > 0.

Therefore 2°(m(0*(Ky + Ly))p) > 1. Since F' is a general fiber of f/, we have

h°((Ep+ F')|p) = 1. Hence h°(m(0*(Kx + Ly) + Ey + F')|,) > 1 for any large

m > 0. But this is a contradiction by Claim 6.2.1. Hence Kj; + 4 is not nef,

and by Theorem 3.1 we see that (M, A) is one of the following types. (Here we

note that dim M =3 in this case.)

) (P2, Ops(1)).

b) (Q%,0gs(1)).

A scroll over a smooth curve C.

M ~ —2A4, that is, (M, A) is a Del Pezzo manifold.

A quadric ﬁbratlon over a smooth curve C.

A scroll over a smooth surface S.

(Q7,0gs(2)).

(P, @ps( )

i) M is a P>-bundle over a smooth curve C with (F,A|;) = (P?,0p:(2))
for any fiber F of it.

If (M, A) is either of the cases (a), (b), (d), (g), and (h), then ¢(X)=0.
Hence by assumption ¢,(X,L;,L;) =¢(X)=0. But this is a contradiction.

If (M, A) is either of the cases (c), (e), and (i), then ¢(X) =¢g(C). Hence
by assumption g(X,L;,L;) = g(X) =¢g(C). So by Theorem 6.1.6, (X, L;, L) is
the type (D) above. But in this case Ky + L + L, is not nef and this is a
contradiction.

So we consider the case in which (M, A4) is the case (f). Let ¢p: M — S be
its P!-bundle, where S is a smooth surface.

(a
(b)
()
(d) K
(e)
(f)
(2)
(h)
(

CLamm 6.2.2. k(S)= —c0.

Proof. We note that Z=0 by (6.2.4.1). We take a general element
Ge|A|. Then G is irreducible and reduced, and the strict transform of G
by 0 is F'. Since 4 is ample, ¢|;: G — S is surjective. Hence we obtain
k(S) = —oo since k(F') = —oo by (6.2.4.2). This completes the proof of this
claim. O

If ¢(S) =0, then ¢(X)=¢(S)=0. Hence by assumption g¢;(X,L;,L,) =
q(X)=4¢q(S)=0. Hence (X,L;,L;) is one of the types from (A) to (D) above
by Theorem 6.1.1. But this is a contradiction by assumption.

If ¢(S)>1, we take the Albanese map of S, o:S — B, where B is a
smooth curve. Then by assumption g;(X, L1, Ly) = ¢(X) = ¢(S) = g(B). Hence
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(X, Ly, Ly) is the type (D) above by Theorem 6.1.6. But this is a contradiction
by the same reason as above. This completes the proof of Theorem 6.2.4. O
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