J. TU AND X.-D. YANG
KODAI MATH. J.
33 (2010), 251-266

ON THE ZEROS OF SOLUTIONS OF A CLASS OF SECOND
ORDER LINEAR DIFFERENTIAL EQUATIONS*

JIN Tu AND XIANG-DONG YANG

Abstract

In this paper, we investigate the exponent of convergence of the zero-sequence of
solutions of the second order linear differential equation

!
I+ (Z Q_f(z>e”f<:>> =0,
=1

where Pj(z) (j=1,2,...,1>3) are polynomials of degree n>1, Q;(z) are entire
functions of order less than n, and obtain some results which improve and generalize the
previous results in [8, 9, 13].

1. Introduction and results

We shall assume that reader is familiar with the fundamental results and the
standard notations of the Nevanlinna’s value distribution theory of meromorphic
functions (see [7, 10]). We will use the notation p(f) to denote the order of
growth of meromorphic function f(z), A(f) to denote the exponent of conver-
gence of the zero-sequence of f(z).

For second order linear differential equation

(L.1) "+ A=) =0,

where A(z) is an entire function, many authors have investigated the growth and
the convergence of the zero-sequence of solutions of (1.1), and have achieved

many results (see [1, 2, 3, 11]). When A(z) = ") + () 4 Qy(z2), for the fol-
lowing second order linear differential equation

(1.2) "+ (€M + e 1 () f =0,
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where Pj(z), P»(z) are non-constant polynomials
Piz)=0z"++, P2)=62"+-, GG #0, (n,meN).

and Qy(z) is an entire function of order less than max{n,m}. If /1) and )
are linearly independent, K. Ishizaki and K. Tohge have studied the exponent of
convergence of the zero-sequence of solutions of (1.2) and obtained the following
results.

THEOREM A ([9]). Suppose that n=m, and that {| # {, in (1.2). Ifz"’—l is
non-real, then for any solution f #0 of (1.2), we have A(f) = co. &
THEOREM B ([8]). Suppose that n=m, and that %:p>0 in (1.2). If
2
0<p <% or Qy(z) =0, %< p < 1, then for any solution f #0 of (1.2), we have
Mf) =n

When A(z) = Q1(2)eP1®) + 0s(2)e"?) + Q3(2)es), for the following second
order linear differential equation
(13) S+ (@1(2)e"D + 0x(2)e) + 0s(2)e ") £ = 0,

in 2007, J. Tu and Z. X. Chen studied the exponent of convergence of the zero-
sequence of solutions of (1.3) and obtain the following results.

THEOREM C ([13]). Let Qi(z), 02(z), Qs(z) be entire functions of order less
than n, and P\(z), Py(z), P3(z) be polynomials of degree n > 1,

Piz)=0z2"+, P(2)=02"+-, P3(2)=0G2"+---,
where (i, {», {3 are complex numbers.
(i) ]f% is non-real, 0 < 1 = g% < %, then for any solution f # 0 of (1.3), we
have A(f) = o0.
(ii) If0<é<l, 0 </1:C—3< 1, then for any solution f #0 of (1.3), we
have A(f) = n. b4 &

Then a natural question is: what is the case if A(z) = Zjlzl Q;eli®) (1> 3)?
Can we get the same results as Theorem C?

In this paper, we investigate the exponent of convergence of the zero-
sequence of solutions of the following equation

/
(1.4) 1+ <Z Q/(z)ePf(Z>> f=0,
Jj=1

and obtain the following results which improve and generalize the results in [8, 9,
13].
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THEOREM 1. Let Qi(z), Q2(2),...,0i(z) (I =3) be entire functions of order
less than n, and Pi(z), P2(z),...,Pi(z) (I = 3) be polynomials of degree n > 1,

PI(Z):CIZH+"'7 Pz(Z)=C22”+---,..., P](Z):é’lzn_p‘..7

where (1,(5,...,{; are complex numbers.

(i) Ifg% is non-real, 0 < 4; = g—jz < % (j=3,...,1), then any solution f # 0 of
(1.4) satisfies A(f) = o0.

(i) If0<p :g—T< %, Aj :%> 0 and Zjlzylj < 1, then any solution f #0
of (1.4) satisfies A(f) = n.

2. Notations and lemmas

To prove the theorem, we need some notations and a series of lemmas. Let
Pi(z) (j=1,...,I) be polynomials of degree n > 1, where P;(z) = (o + if;)z"
4+ a/’ﬁjeR

Define

O(P;,0) = 06;(0) = o cos nf — f; sinnf, 0el0,2n) (j=1,...,1),
S5 ={016,0) >0}, S ={015,(0) <0} (j=1,....0).

Let f(z) be a meromorphic function in the complex plane, throughout the
paper, S(r,f) will be used to denoted any quantity that satisfies S(r,f) =
o{T(r,f)} as r — oo, outside possibly an exceptional set of r values of finite
linear measure. We will use M to denote a positive constant throughout this
paper, not always the same at each occurrence. We call a meromorphic function
a(z) a small function of f(z) if T'(r,a(z)) = S(r,f). A differential polynomial
P(f) in f is a polynomial in f and its derivatives with small functions of f as
the coefficients (see [7]).

LemMa 1 [S]. Suppose that f(z) is meromorphic and transcendental in the
plane and that

(2.1) S"@)P(f) = Q)

where P(f), Q(f) are differential polynomials in f with small functions of f as the
coefficients and the degree of Q(f) is at most n. Then

(2.2) m(r, P(f)) = S(r. f).

LeEMMA 2 [6]. Let f(z) be a transcendental meromorphic function with p(f) =
p< oo, T ={(ki,j1),..,(km,jm)} be a finite set of distinct pairs of integers which
satisfy ki > ji >0 for i=1,....m.  And let ¢ > 0 be a given constant, then there
exists a set E < [0,2n) which has linear measure zero, such that if ¢ € [0,27)\E,
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there is a constant Ry = Ri(p) > 1, such that for all z satisfying argz = ¢ and
|z| =r > Ry and for all (k,j)eT, we have

)
)

Lemma 3 [12].  Suppose that P(z) = (o4 pi)z" + -+ (o, f are real numbers,
lo| + || #0) is a polynomial with degree n>1, that A(z)(#0) is an entire
function with p(A) <n. Set g(z) = A(z)e"?), z=re", 6(P,0) = o cosnd—
psinnd. Then for any given ¢ > 0, there exists a set Hy < [0,2n) that has the
linear measure zero, such that for any 0 € [0,2n)\(H; U H>), there is a constant
Ry > 0 such that for |z| =r > Ry, we have

(i) If 6(P,0) > 0, then

< ‘Z|(k7j)(o’71+a) )

VAME
(2.3) ‘ 700z

(2.4) exp{(1 — &)d(P,0)r"} < |g(re”)| < exp{(1 + &)o(P, O)r"};
(ii) If o(P,0) <0, then
(2.5) exp{(1 +&)d(P,0)r"} < |g(re™)| < exp{(1 — &)d(P, O)r"},

where H, = {0 € [0,2r);0(P,0) =0} is a finite set.

Remark. Lemma 3 also holds when A(z) is a meromorphic function with
p(A) < n.

LemMa 4 [4]. Let f(z) be an entire function of order p(f) = o < +o0. Then
for any given & > 0, there is a set E < [1,00) that has finite linear measure such
that for all z satisfying |z| =r ¢ [0,1]UE, we have

(2.6) expl{—*} < |£(2)] < explrt).
Lemma 5. Let Pi(z) (j=1,...,1) be polynomials of degree n =1,
Pi(z) ="+ Bi(z), Pay(z) =p(z" + By(2), ..., Piz)=p(z" + Bi(z),

where { = o+ fi, a,feR, |of +|f] #0, 0<p; <1, j=2,....1, Bi(2),...,Bi(z)
are polynomials of degree at most n—1. Let Qi(z) #0, Q2(z),...,Qi(z) be
entire functions of order less than n, then for any given ¢ > 0, there exist a set E
with finite linear measure and a constant E(n — 1 < & < n) such that

2.7) m(r, Q1™ + Qre™ + - 4 Qpe™)
> (1 —e)m(r,e®) +0(%), r— o, (r¢E).

Proof. By definition, for sufficiently large r, we have

1 n i0 1 i0
2. Pry log™ Py (re') _ J logt Py(re™)
(2.8) m(r,e’™) _ZnJO og'|e | dO 3l og'le | dO

1

| -1
==—4+ 00" ).
T + (V )
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If 0e Sy, then 6(P;,0) <0 (j=2,...,[), by Lemma 3 and Lemma 4, for any
given ¢ > 0 and for sufficiently large r, we have

(29) |Q1€P1(l‘€m> + QzePZ("C"()) 44 QlePl(”"l())| < Zexp{(l — 28)5(Pj, 9)7’”} <1
j=1

If 0 e S, since 0 < p; <1 (j=2,...,1), by Lemma 3 and Lemma 4, there exist
a set £ with finite linear measure, for any given ¢ > 0 and for sufficiently large r,
we have

(2.10) 101 + QzePz(rfm)—Pl(Ve"”) 4 QleP/("t’[”)—Pl(rfio)|
rei?y— rei? reify— ret?
01| — | Qa2 e )=P1e?)| L | gl )= Pl

\Y

\

> 3 exp{-r"@)) 2 expl 1), (¢ E)
where p(Q;) < & <n. By (2.8)-(2.10), we have

(2.11)  m(r, 01" + 0re™ + - + Q™)

2n
= %J log* Q11" 1 0yeP20¢") . 4 0P| ag
T Jo
_ LJ log™ (|e" ") |01 + QneP2(¢)-Pire")
2n Sl+
4+ 4 Qlepj(rpfﬂ)_Pl (r(,i())D d&
1 — n
I 049, (em)
By (2.8) and (2.11), we obtain (2.7).
3. Proof of Theorem 1 (i)
Since (; =4, 4, >0, j=3,...,], we have S =S =---=S/, §; =
Sy ---=8;. We see that Sj’ and S;” have n components S;; and S, respectively

(G=1,...,0; ¢g=1,2,...,n). Hence we write
() ot - e
Sj :qUIS_/qv Sj :qUIS/q =12....0).

Let f # 0 be a solution of (1.4). Suppose that A(f) < co. Write f = ne”,
where 7 is the canonical product from zeros of f, and / is an entire func-
tion. From our hypothesis, we have o(n) = A(n) < co. From (1.4), we get

"

/
(3.1) ()2 = —h" — 2%/1/ 7”7 — Qe — Qre? — . — el
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g+F—R
= . =R, we have
O

li / n/ " AN
(3.2) 2U1h’:—h”’+<R—2n—>h”+2<R”__(”_))hurR”__(”_)
T T T T v

/

+ 2 (RO~ Q= gF))e”,

Jj=2

Eliminating e from (3.1) and set

(3.3) Uy =h" - %Rh’.

0

2

/ ’ N/ n m\'

(3.4) 2U2h’_—h’”+(T—2”>h“+2(T”—(”))h’+T”—(”>
T T T T T

i
+(TQ1 = Q1 — Qi PDe™ + ) (RQ; — 0) — Q;P))e”,
j=3

Eliminating > from (3.1) and set =%+ P, =T, we have

(3.5) Uy =h" —%Th’.

We next proceed to prove that p(U;) <n and p(U,) < n. Since max{p(Q;),
Jj=1,...,1} <n, we choose constants &, &, &5 satisfying max{p(Q;),j=1,...,
I} <& <& <& < n, then we have

|Qj(rei9)\£exp{rél}, T(erj):m(erj)Srélv (]:laal)

for sufficiently large r and for any 0 € [0,27). We apply Lemma 1 to (3.1), for
any given ¢ > 0, we have

" !/
T(r, 1) = mir, ') < m( ”) I ( ”) - m(r, 016" + peP®
T T
+oee ot Q") £ S(r ) < OG) + S(r, b)),
which implies p(h') <n. Tt follows from (3.3) and (3.5) that p(U;) <n and
p(Up) < n respectively.
We next show that there exists a set Ey = [0,2x) with m(Ey) = 0 such that if
0 € S;\Ey, then

(3.6) Uy (re)| < O(e™), as r— o0, 0 ¢ Ey,
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where Ej denote a set of linear measure zero, not always the same at each

occurrence. If |A'(re)] < 1, by Lemma 2 and (3.3), we have

h" (re')
h'(ret?)

1 .
—|—§\R(re’€)| <Oo(M) asr— oo, 0¢E.

(3.7) |U, (re?)| <

If |i'(re)| = 1, then from (3.2), we get

) W (r ! rei() W rei()
(3.8) 12U, (relg)‘ < ’h’((re’a)) <|R("e )| +2 ((re”’)) > h/((reiU))
reiﬁ n’(re’”) n”(reia) n/(reia) 2
+ 2<|R( | n(rei) n(reit) n(re®) >
. n//(rei(?) n///(reif)) n//(reif))n/(reiﬁ)
+ |R(re 6)| n(re’ﬁ) n(re”’) + n(re,-g)z

!
+ ) (IR(re™)0;(re™)| + Q] (re™)]
j=2

+1Q;(re™) Pl (re)|) 71|
<0(™), asr— o, 0¢ S5\ Eo.

Since Q and /&’ are of finite order, combining (3.7) and (3.8), we obtain (3.6).
In the following, we prove that for any 0 € [0,2n),

(3.9) Uy (re™)| < O(e”), as r— oo.

We note that there exist 0; (j=1,2,...,/) satisfying J;(0) =0 on the rays
arg z = é,»+qn—n, where ¢ =0,...,2n — 1, which form 2n sectors of opening %

respectively. Without loss of generality, we may assume that éj € [O %) Since

A= §J>O(j:3,...7l), we have 0;=0, (j=3,...,1). Set 0, =0; +q7z

j =1,2, if there are some integers ¢; and ¢, such that élq, = 92{12, then 0; — 92 +

(¢1 — qz)% =0, we have that tan nf;, = %, j=1,2. Which gives
J
= - w1y — wfy ~. L1
0 =tan(nd, — nbh + (q1 — qp)n) = ———— = —3Im
(n6) 2+ (@ = g2)7) w0 + 1, %%

This contradicts the assumption that dl is non-real. Hence we see that each
2

component of S{ and S, contains a component of S NSS. The boundaries of
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the components of S;” NSy are some of the rays arg z = 0;,, we fix a component
of S{ NSy, say S*. We may write

S ={0eS NSy :0; <0<05,6(07) =5,(05) =0}
or

S*={0e S NSy :0; <0<0;,6(07) =0(05) =0}
Furthermore, we define

Diy={0e S/ NS :6:1(0) > (24+2)02(0)},

i+151(6)}7

Dy = {HGSTHS; 52(9) >

1 . .
where 2 =max{/J;: j=3,...,/} < 3 Since each component of S;” and S; is a
sector of opening E, the rays arg z = 0] and arg z = 05 are contained in SJ and
n

S| respectively. We prove the first case, the proof of the second case can be
obtained similarly. Hence there exist #; > 0, 7, > 0 such that
{9:61*<0<9T+171}CD21, {0:9;—ﬂ2<9<9;}CD12.

Hence there exists a @€ (S;, ND)\Ey for any k=1,2,....n. Set 0<
(2A4+2)07 < py < p; <91, 0 <eqy <1—%, 0<sl2<2p72
(j=3,...,0), by Lemma 3, we have “! 2

(3.10)  |QieM0e) - Qe e”) Ly el

P2 _1,

ERRUAN Y

%ePz(re"”)fPl (re')
1

g ePI(relU)*Pl (reil))
0

> (1 —o(1))e!=29™" > (1 —o(1))e”™, as r — .

We assume that there exists an unbounded sequence {rm}f,f:] such that 0 <
|h' (rme™)| < 1. From (3.1), (3.10) and Lemma 2, we get for an N; e N

h//(rmei(-))
h/(rmeiﬂ)

Ny
<r,', as m— oo.

n_//(rmezﬂ)

7(rpei?)

' (rme™)

eMm(l—o(1)) <1+

n(rp,et)

Which is absurd. Hence we may assume that |4'(re’”)| > 1 for sufficiently large
r. It follows from (3.1) and Lemma 2, for an N> e N

(311) |Q1€P1(rei()> + QZEPZ(W”O) bt Qlepl(’.ei())|
- W) e | (2 (re”)
< |h'(re”)*( 1 , ' '
< |h'(re”)] + I (ref?) n(re) 7(rei?)

< W' (re)*(1 + O(™?)), as r— .
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Thus, by (3.10) and (3.11) and for sufficiently large r, we have
(3.12) W' (re™)| > /2",
From Lemma 2, (3.2) and (3.12), we get

" rei() ! }’610 " reiO
(3.13)  2Ui(re”)] < };z’((e’(’)) <R<re JI+2 n((rela) > }}ll’((rei"))
0 n/(reif)) (reiﬁ) n/(reiﬁ) 2
+2<'R(W W atremy| [ 2oy | [2rem) )
7" (r i0 " (r i0 7" (r i0 7' (r i0
+ IR(re”) n(E'eeig)) n(f'efa)) (:(rii())(ze )

!
+ ) (IR(re™)0;(re)| + Q] (re™)]
j=2

eP,-(re”’)

+ |Qj(”ew)3,{(”em)|) 7 (ret®)

< O(r™) + (1 +0(1)) exp{ ((52(1 + 12) —%)r"}

+ zl;(l +o(1)) exp{ <ij52(1 + e1) —%)r”}, as r— oo.
=

’022<0 Ai02(1 +611)*%<0 (j=3,...,1), it gives that for an

N3 e N and for sufficiently large r, we have

Since 52(1 + 612)

(3.14) | Uy (re™)| < s,
Now we fix a p(=yy) € (S5, NDa)\Eo, k=1,2,...,n. Then we find y;,p, €
S5\Eo, 71 <y <y, such that y —y, < %, Py —y < % We first show that (3.9)
holds for any 0 € [y,,y]. Write y —y, = #, 71 > 0, since p(U;) < n, we have
1
.’X+TZ

that |Uj(re”?)] <e™™, 0 <1, <1 for sufficiently large r. Set g(z) = Uj(z)/
exp((ze~ (#7205 then g(z) is analytic in the region {z:y, <argz <7}

Since y; <argz=0<y, y—y < E, we infer that cos(arg((ze~(T7)/2i)5)) > K
for some K > 0. In fact, n

n nés YN —((471)/2)iN G YN néy _m
—— -2 5L < 1 <& < 22 .
5 < = &3 5 = arg((ze )7) <& > =3, < 5



260 JIN TU AND XIANG-DONG YANG

Hence for y; < 0 <y,

U (re)

n+
—| < 0(e" 7)), asr— oo.
ekr3

lg(re)| < \

It follows from (3.6) and (3.14) that for some M >0, as r — oo

, O(e"™?)
e < 25 <
and
iy o(r'™)
lg(re”)| < e <M.

By the Phragmen-Lindel6f theorem, we obtain (3.9). Similarly we see that (3.9)
holds for any 6 € [y,y,]. Hence we conclude that (3.9) holds for any 6 € [0, 27).
We next need to prove that for any 6 € [0,2xn),

(3.15) |Us(re™)| < O(e™), as r— oo.

By recalling the previous reasoning in (3.6) and (3.8), we can also obtain that
there exists a set Ey < [0,2n) with m(Ey) = 0 such that if 8 € S; NS5 \Ep, then

(3.16) |Uy(re™)| < O(e"iz)7 as r— oo.
By the similar proof in (3.9), there exists a @€ (S}, NDy)\Ey for any k=

1,2,....1. Set 0 < (24+2)0; < 2105 < py < p3 <2, 0 < &2y <1—§—3,0<822<
2
’a

—1 A
25, ,0<82/<

P4 .
——1, (j=3,....,]). ByL h
2}752 B (] 37 71) y Leémma 3, we have

(3.17)  |Qie" ") + 0pe ) 4 Qe

gePl(re"”)sz(rem) geP/(;*e"))sz(rei’))
0 0>

> (1 —o(1))el!=202" > (1 —o(1))e”", as r — .

> |Q2€P2(rgi()>| ‘1 .

We assume that there exists an unbounded sequence {r,},_, such that 0 <
|h' (rme™®)| < 1. From (3.1), (3.17) and Lemma 2, we get for an Nye N

h//(rmeié))
h/(rmei())

<rN asm— 0.

n.//(rmezﬁ)

7(rmei?)

' (rpe™)

e’ n(l —o(1)) <1+

n(rp,e')

This is absurd. Hence we may assume that |h’(re”)| > 1 for sufficiently large
r. It follows from (3.1) and Lemma 2, for an Ns e N
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(318) |QleP1(rgi0) + QzePZ(rgiO) - Qlepl(wm”
o2y o [0 || e
< |} i0y2 1 ' > ' '
< W (re)] ( el o))

< W' (re™))*(1 + 0(™)), as r— .
Combining (3.17) and (3.18), we obtain for sufficiently large r
(3.19) | (re'®)| > el1/2rar"
It follows from (3.4) and (3.19) that
(3.20)  [2Us(re")|

h///(rei(i) 0 7.[/(rei(?) h//(rei(?)
= | W (ret?) + (|T(re N+2 n(rei) ) h'(ret?)
0 n/(reif)) n"(rem) n’(re’e)z
—|—2<|T(re ) n(rei?) n(rei) n(rei?)
0 n//(reié)) n///(reiﬁ) n”(rem)n'(}’em)
I remy |+ e | | ey’
. ) ) ) ) Pi(re’)
+ (T 01 e)] +1Q1(re")| + 101 ) P (re ) e
: i0 i (.00 i0\ pt (., i0 efitre”)
+ ) (1T (re™)Q;(re™)| + Q) (re™)| + |Q;(re™) P(re )|)m
Jj=3

< O(r™) + (1 +0(1)) exp{ (51(1 +ep) — %) r"}

+ zl:(l +0(1)) exp{ </1j52(1 + &) —p2—4>r”}, as r— oo.
=3

J
Since 0 (1 + &) —%4 <0, 402(1 + &) —% <0 (j=3,...,]), it gives that for an
Ng¢ € N and for sufficiently large r,

(3.21) |Uy(re')| < r™s.

Now we fix a y'(=p}) € (S5, NDi2)\Eo, k=1,2,...,n. Then we find y;,7, €
ST NSy \Eo, y3 <y <y, such that ' —yp; < %, 1=y < % By the same rea-
soning in (3.14), for any y; < 6 < y,, we have

(3.22) |Us(re'®)| < O(e™), as r — 0.

Hence we conclude that (3.15) holds for any 6 € [0,27).
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To complete the proof of Theorem 1 (i), by (3.2) and (3.5), we have
1
(3.23) U,-U,= fhl(T - R),

since max{p(Q;),j=1,2,...,l} <& < &, by the theorem on the logarithmic
derivative and by (3.1), (3.9), (3.15), (3.23), we have

(3.24) m(r, Qlepl(z) + QzePZ(Z) 4y Q;eP’(Z))
< 2m(r,i') + O(log r) < 2m(r, Uy — U,) + O(log r)
< 0(r%), asr— .

Since il is non-real, S NS; contains an interval I = [p,¢,] satisfying

&)
minges 01(0) = s> 0. By Lemma 3, there exists a constant R,(6)(> 0) such that
for any 0 € and for any given ¢ > 0, we have for sufficiently large r > R,(0)

101" | > exp((1 — e)o1r"),
020" | < exp((1 — &)or"),
10:eP0)| < exp((1 — £)i00"),  (j=3,....1).

Hence,
(3.25)  m(r, 01" + 0re™) 1. Q1))

> (" log"|01e"10¢") 4 Qye™20¢") .. 4 pee)| df
1

(%] 0

> | (1-o(1) log*|Qie" "] a0

4

2]

> | (I—o(1))(1 —e)sr" dO

?1

> (1—o())(1 —&)sr"(py — @y), as r— oo.

Combining (3.24) and (3.25) and recalling that &; < n, we get a contradiction.
Hence, A(f) = .

4. Proof of Theorem 1 (ii)

Let f#0 be a solution of (1.4). Write f = ze”, suppose that A(f) < n.
From our hypothesis, we have p(n) = i(z) < n. Eliminating e’* from (3.1) and

/
recalling that R = % + P{, we have
1
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/ / N/ Vi N\
(3.26) whf:_hfff+(R_2”_)h~+2(R”__(”_))h/+R”__(”_)
T T T T T

)
+) (RO — Q) — O;P))e",

=2
where
(3.27) U=h"- %Rh/.
From (3.26) and (3.27), we get
Ci(2)h' = Co(z),

where
1 n/ ﬂ// n/// n//n/
/
. = U +-RU-2-U+RZ--T
(3.28) Co(z) U +2RU 2nU+ - p- + =
i
+ (RO = 0 = Q;P))e”,
=2
1 J VA 7'\
. = —R ——R*"—R—+42—-2|—].
(3.29) Ci(z) 2U+2R 2 n+ p- <n>

We next show that Cy(z) =0 and Ci(z) =0. If Co(z) #0, Ci(z) #0, by
Nevanlinna’s first fundamental theorem, we obtain

T(r,h") < T(r,Co)+ T(r,C1) + o(1).
Set max{p(Q;) (j=1,....0),A(f)} <& < & <n, from (3.1), we obtain
(3.30)  T(r,01e") + 02e™) ... 4 ey < 2T (r, i) + O(log r).
By Lemma 5, we have
(3.31) m(r, 01e19) 4+ 0ye™) 1 ... 4 Q1)
> (1—am(r,e™) + O0%), r— @, (r¢E),

where E has finite linear measure. From (3.30) and (3.31), we obtain

(3.32) T(r,h') > IEST(r,eP‘)+O(r53), r— oo, (r¢ E).
. ISR N . I
Since 0 <p==<—, L==>0 (j=3,...,0), >34 <1, we get
G 4 &) /
(5(P2,0) :pé(Pl,O), Sﬁ = S;;( == SIZ,

Sp=Sy=--=8;, ((*k=1,...,n).
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By the same reasoning in (3.7) and (3.8), we have
(3.33) |U(re™)| < 0(e'?), as r— o

for any 0 e S;\Ey, m(Ey) =0. Also by the same reasoning in (3.9)—(3.13), we
have

(3.34) |U@re™) <™, as r— o

for any 0e S/\Ey, m(E))=0. Since p(U)<n, by the Phragmen-Lindel6f
theorem, we have

(3.35) \U(re™)| < 0(e"), as r— o

for any 0 €[0,2%). In the following, we estimate 7(r,Cy) and T(r, Cy).

1 i " " "/
T(r, Co) < T<r,U'——RU+2”—U)+T<r,R”——”—+” f)
2 T i1 i1 T

/ 1
+) T(r,RQ;— 0} — O;P)) + > _ T(r.e").
= =
Since max{p(Q;) (j=1,...,0),p(R),p(n)} <n, we have

! i
(336)  T(r,Co) < > T(re™)+0(r") = ( Z ) )+ 00)

j
!
< (1 +22j>pT(r,eP‘)+0(r§3), as r— oo.

From (3.29) and (3.35), we have
(3.37) T(r,C)) < O(r), asr— .
From (3.30), (3.32), (3.36) and (3.37), we get

(3.38) ? T(r,e) + O(r%)

T(r,h')£<l+ZA,>pTre N4+ 00%), r— o, (r¢E).

17
Thus (3.38) implies
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Since 0 < p = g? T 0< ZJ 44 <1, we get a contradiction. Hence Cy(z) =
Ci(z) =0. From (3.28), we obtain

! 1 " 7" n'"n
(339) > (RQ;— Q) — Q;P))e" U’—ERU—&—Z v RY —

Jj=2
We assume that Y ,(RQ; — Q) — QP 0, if L,(RQ; ~ Q) — O;P))e”
= 0, since /lj:§>() (j=3,...,]) and 0 < Z/(:gflj <1, by Lemma 3 and by a
5 .

simple calculation, this is a contradiction. From (3.39), by Lemma 5, we obtain
i
(340)  (1—&)T(r,e™)+0(r%) < Y T(r,(RQ; — Q] — O;P))e")

1
T(r,U' —ERU> + T(r,U) + T(r,R)

+ T(r,%,) + T( ”"> + T(r ”—,> +o(l)

<0(r%), r—w, (r¢E).

From (3.40), we have p(ef?) < & < n, we get a contradiction. Hence A(f) > n.
Thus, we complete the proof of Theorem 1.

Acknowledgement. Authors are thankful to the referee for valuable sugges-
tions to improve our paper.
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