H. MASAOKA
KODAI MATH. J.
33 (2010), 233-239

THE CLASSES OF BOUNDED HARMONIC FUNCTIONS AND
HARMONIC FUNCTIONS WITH FINITE DIRICHLET INTEGRALS
ON HYPERBOLIC RIEMANN SURFACES

HiroAKI MASAOKA

Dedicated to Professor Yoichi Imayoshi on his sixtieth birthday

Introduction

For an open Riemann surface R, we denote by HP(R), HB(R) and HD(R)
the class of differences of positive harmonic functions on R, bounded harmonic
functions on R, and harmonic functions with finite Drichlet integrals on R,
respectively. And denote by HP.(R), HB.(R) and HD,(R) the class of posi-
tive harmonic functions on R, bounded and positive harmonic functions on R,
and positive harmonic functions with finite Drichlet integrals on R, respectively.
Note that HX(R) = HX.(R) — HX.(R), X =P,B,D. 1t is easily seen that
HB(R) = HP(R) and HD(R) = HP(R) (cf. [9]).

We say that an open Riemann surface R is parabolic (resp. hyperbolic) if R
does not admit (resp. admits) Green’s functions on R. It is well-known that, if R
is parabolic, then HP(R), HB(R) and HD(R) consist of constant functions (cf.
19)).

Hereafter, we consider only hyperbolic Riemann surfaces R. Let A =
and A = AIR M the Martin boundary of R and the minimal Martin boundary of R,
respectively. We refer to [2] for details about the Martin boundary.

In [4] (resp. [5]) we gave necessary and sufficient conditions in terms of
Martin boundary in order that the converse HB(R) > HP(R) (resp. HD(R) o
HP(R)) of the above respective inclusion relations hold.

Though the inclusion relation between HB(R) and HD(R) does not generally
hold, it seems to be an interesting problem to give a necessary and sufficient
condition in order that HB(R) coincides with HD(R). The purpose of this
article is to prove the following

AR,M

MAIN THEOREM. Suppose that R is hyperbolic. Then the followings are
equivalent by pairs:
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(i) HB(R) = HD(R);

(i) there exists a null set N of A with respect to the harmonic measure such
that A\\N consists of finitely many points with positive harmonic measures whose
Martin functions have finite Dirichlet integrals;

(iii) dim HB(R) = dim HD(R) < o0,
where dim HX (R) is the dimension of the linear space HX(R), X = B, D.

Finally the author would like to express his deepest gratitude to Prof. S.
Segawa for his valuable comment and at the same time to a referee for his helpful
advice. He told the author that Prof. M. Nakai [8] gave an alternative proof for
Main Theorem.

1. Preliminaries

In this section we state several propositions in order to prove Main Theorem
in Introduction in the next section.

Let zy be a specified point of R, which serves as a reference point. Denote
by w.(-) the harmonic measure on A with respect to ze€ R. We also denote by
ke(z) ((¢,z) e (RUA) x R) the Martin function on R with pole at (.

First we give a characterization for boundedness of Martin function.

ProposiTiON 1 (cf. [2, Hilfssatz 13.3]). Let { belong to Ay.  Then the Martin
Sunction k¢(-) with pole at { is bounded on R if and only if the harmonic measure
@.({C}) of the singleton {(} is positive.

Next we review for fundamental properties concerning HD(R).

DeriNiTION 1. Fix zp € R. For hyue HD(R), set
D(h,u) = J (grad h(z), grad u(z)) dv(z),
R

where grad /i(z) is the gradient of & at z, (grad h(z), grad u(z)) is the usual inner
product of two vectors grad /(z) and grad u(z) in R* and v is the area element
on R.

For h e HD(R), denote by D(h) := D(h,h). We call it the Dirichlet integral
of h. By the discussion in [1, p. 400] we have the following

ProposiTION 2 (cf. [1]). HD(R) is a Hilbert space with the inner product
D(-,-) in the above definition, two functions being identified if their difference is a
constant function.

ProposITION 3 (cf. [3]). he HD(R) if and only if h has the minimal fine limit
h*({) at almost every point {(€ A1) with respect to the harmonic measure w:, such
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that h(z) = [, 1*(0) do-(0), [y, |h*(0)* dew-,({) < 0, and the following property
holds:

j J (h*(0) — B*())*0 (0, €) deoey(£) devzy(€) < o0,
Ay JA,

where 0.,((,) is the Naim kernel on (RUA\{zo}) x (RUA\{z}) (cf. [6]).
Then, moreover,

D(h) = q JA L (h*(Q) = H*(£))20 (£, ) devey(©) davy (),

where q is the absolute constasnt.

Denote by MHB (R) (resp. MHD_(R)) the class of all finite limit functions
of monotone increasing sequences of HB., (R) (resp. HD(R)). Set MHX (R) =
MHX, (R)— MHX,(R) (X = B,D). The class MHB(R) is called the class of
quasi-bounded functions on R. By [2, Folgesatz 13.1, Satz 13.4 and Satz 14.2]
we have the following

Lemma 1 (cf. [2]). It holds that

MHB(R) = {hh has the minimal fine limit h*({) at almost every point

{(e Ay) with respect to w, with u(z) :J

(0 o)},

AM
From Proposition 3 and Lemma 1 the next lemma is easily deduced.
LemMa 2. MHD(R) € MHB(R).

By the above lemma we have the following

PRrOPOSITION 4.  Suppose that dim HB(R) < 0. Then HD(R) < HB(R).

Proof. Suppose that dim HB(R) < co. By [5, Theorem 2], HB(R) =
MHB(R). Hence, it follows from Lemma 2 that HD(R) @ MHD(R)
MHB(R) = HB(R).

2. Proof of Main Theorem

Suppose that (i) holds. Further we suppose that there exists a point { € A
such that w. (U,({)) > 0 for any positive p and «.,({{}) =0, where U,(() is
the disc with center { and radius p with respect to the standard metric on
RUA. Hence, there exists a monotone decreasing sequence {p,},—, with
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lim, . p, =0, @(U,, (O\U,, () >0 (neN) and lim,_.,, w.,(U,, ({)) = 0. Set
uy(z) = a)Z(Upn(C)) (zeR,ne N) Since HB(R) = HD(R), D(u,) < 4+o0. First
we show that {D(u,)},—, is bounded. Suppose that {D(u,)},~, is un-
bounded. Set V, = U, ()\U,, ({) (neN). Then U, () =), V: (neN)
and Vo = A\U, ({). By Proposition 3 we have

%D(”n> = qJU

Pn

iZJV JVH . (1,8) do., () do, (E).

Hence there exists a subsequence {D(uy, )}~ of {D(u,)},—, with

n=1

j 02, (1, €) deouy () deosy (8)
©) JA\U,, ()

J ny, -1 J 020(”75) dwz{)(”/) dwlo(é)
UEEA CR AV ¢

ny1—1 n,—1

=3 2 ] 008 donn don9) = v

=n, ¢=0

Set u=> " u,/v?. It is easily seen that u e HB(R). On the other hand,
we have

oo u—l n 2
§0w>q§j§j<§jj)J"MH | 1 02000 do ) do®) (=0
0

w11
UrZny Uty Vo

1 u—-1 u 2
1
=4 S ) e | 0200 dosm dene
% lJ Urlul“ Vr Uo-‘:Jrn‘l Va

/-1
1
=4 ( 21]_2> J nygq =l JU,’”]IV 920 (’77 f) dCO;O (’7) dwzo(é)

U= ny

1
2 1502 ] ], 09) don ) don @
et Uoil ™'V,

Jul”ﬁ‘ . JU"IIVU o(1,8) dezy () dor, (S

a=0

5 _
> 141 =ql
for every /e N. Hence u¢ HD(R). This is a contradiction.

By definition of u, we find that {u,},-, converges to 0 locally uniformlly on
R. Taking sufficiently large intger mo and replacing {u,},_, with {u,},_, , we

n=mygy>

may suppose that u; <1 on R. This implies that w., (Vo) > 0. Since {u,},—
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converges to 0 locally uniformlly on R and {D(u,)},~, is bounded, by [9, the
discussion in the proof of Theorem in p. 149] we find that, for every v € HD(R),

D(up,v) = 0 (n— o0).

By Mazur’s Theorem (cf. [10, Theorem 2 (p. 120)]) for every v, there exist
an integer n, and non-negative sequences {ocv j}j~1 such that Z Lo ;=1 and
D(307 oy ju) <V ~2. On the other hand, since {Z R NTTS S bounded we
can take a subsequence of {3 ' 1<x”uj}v | such that o0 locvjuj(zo)}v_l con-
verges to a constant o. Hence by [3, Theorems 4.1 and 4.2], {3 " o ju;},2,
converges to o in L*(A,w.,), where L*(A,w.,) is the set of square 1ntegrable
functions on A with respect to w, and hence, by [3, the result in the first
paragraph of section 12], {33 o, ju;},”; converges to « locally uniformlly on
R. Hence, by [3, Theorem 43] and the facts that > " o, ;=1 and that
-, (Vo) >0, we find that o = 0.

Set wy, = > oo ju;.  Take a subsequence {w, };~; of {w,},Z; with w,(z0)
<1/2% Sets=>7,w,. By [3, Theorem 4.2] s is well-defined. We find that
s€ HD(R) and that s is unbounded on any neigborhood of {, that is, se
HD(R)\HB(R). This is a conradiction.

Hence, if {(€ A) satisfies that ., (U,({)) > 0 for every positive p,w-,({(})
> 0. It follows from this fact that there exists a subset N of A such that
., (N) =0 and that A;\N consists of at most countably many points with
positive harmonic measure. To see this set

N = {{ e Althere exists a positive p, with w.,(U,,({)) =0}

and set F =A\N. Clearly FUN=A, FON =0 and «.,({(}) >0 for every
(e F. Hence F is an at most countable subset of A; because w.,(A) =1 and
., (A\A;) =0. Hence it is sufficient to prove that . (N)=0. Set O =
UCEN U,.({). Clearly O is an open subset of RUA and ONA=N. By the
Lrndelof ‘theorem there exists a sequence {¢,},—, of N with O = U . (En)-
Hence w.,(N) < 0,,(0) < Y7, 0, (U, (&) = () and hence, wZO(N) =

Suppose that ﬁ(Al\N):NO, wher”e ﬁ(Al\N) is the cardinal number of
A]\N. Set Al\NZ {Cn}:,c:1

Set u,(z) = CU:({C]};Z,,) (ze R). Since HB(R) = HD(R), D(u,) < oo. First
we show that {D(u,)},., is bounded. Suppose that {D(u,)},”, is unbounded.
By Proposition 3 we have

:
._‘

L D) = 4303 00 (6 Lo (L Do ().

T=n 1

q
Il

Hence there exists a subsequence {D(uy,)}.-, of {D(u,)},~, with

nyp1—1 n,—1

> Z 0y (Les Co)osy ({C Py (L) = v

t=n, o=1
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Set u=> " u,/v?. It is easily seen that u e HB(R). On the other hand,
for any integer /(> 2), we have

o p=1 =1y -1 M 2
D) =gy ) (Z %) 0 (Lo Lo )eom ({0 (12,

pn=2 v=1 t=n, o=n, j:v+lj

o=l m =l -1 “ 2
>¢3" ) (Z ]12) 0y (Lo Gz (E Doz, (G)

u=2 v=1 t=n, o=n, j=v+l1

\Y
NS
MN

DR MRBPHIS) LAY

>

Hence u ¢ HD(R). This is a contradiction.

By definition of u, we find that {u,},”, converges to 0 locally uniformlly on
R. Replacing {u,},-, with {u,},~,, we may suppose that u; <1 on R. This
implies that wm(A\{Cn} 1) > 0. Since {u,},”, converges to 0 locally uniformlly

on R and {D(u,)},., is bounded by [9, the discussion in the proof of Theorem in
p. 149] we find that for every v e HD(R),

D(uy,v) - 0 (n— o0).

By Mazur’s Theorem (cf. [10, Theorem 2 (p. 120)]), for every v, there exist
an integer n, and non-negative sequences {x, j}joi such that 37" o, ;=1 and
DX}y o ju) < v~2. On the other hand, since {Z oy 1“1}1 | Is bounded we
can take a subsequence of {> " o ju;},”; such that {501 o jui(z0) 2y con-
verges to a constant o. Hence, by [3, Theorems 4.1 and 42] {Z] L O U}
converges to o in L*(A,w.,), where L*(A,w.,) is the set of square integrable
functions on A with respect to ., and hence, by [3, the result in the first
paragraph of section 12], {3, o, Juj}v , converges to o locally uniformlly on
R. Hence, by [3, Theorem 4.3], and the facts that > " o, ;=1 and that
AO(A\{C,,}” 1) >0, we find that « =0

Set wy = > " oy ju;.  Take a subsequence {wy, 72, of {w,}2, with w,, ()
<1/2% Set s=3.7 w,. By [3, Theorem 4.2] s is well-defined. Clearly
se€ HD(R). Let & be an accumlating point of {Cj}]ﬁl. We find that s is un-
bounded on any neighborhood of &,. Hence se HD(R)\HB(R). This is a
contradiction. Hence #{(,},-; < .

Hence, setting N = A|\{{ € A : ®,,({) > 0}, by Proposition 1, we find that
w;,(N) =0, #(AI\N) < o0, and k; € HB(R)NHD(R) for all {e A;\N. There-
fore we have (ii).

Suppose that (ii) holds. Hence, there exists a null set N of A with respect to
the harmonic measure such that A;\N consists of finitely many points and the
Martin function k; on R with pole at a point { of A;\N is a bounded and
positive harmonic function with a finite Dirichlet integral. Put #(A;\N) = m.
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AN\N ={{y,...,{,}. Take any h e HB(R) (resp. he HD(R)). Then there exist
h,e HP,(R) (1=1,2) with h=h —h, on R. By the Martin reprensentation
theorem there exist the positive measures g, and u, such that

h,<z>=JA ke(2) di () Zk( (Gl (=1,2).

Hence (2) = (&) —1x(2) = X", ks ()0 ({G)) = (G, Since ks e HD(R)
(resp. k;, €e HB(R)) (j = .,m), heHD(R) (resp. he HB(R)). Hence,
HB(R) < HD(R) (resp. HD (R) < HB(R)), and hence, HB(R) = HD(R). Hence
dim HB(R) = dim HD(R) < 00. Therefore we have (iii).

Suppose that (iii) holds. Since dim HB(R) < o, by Proposition 4, we find
that HD(R) < HB(R). Since HD(R) is a linear subspace of the linear space
HB(R), by the assertion (iii), we find that HB(R) = HD(R). Therefore we have

().
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