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ON BIACCESSIBLE POINTS IN THE JULIA SETS
OF SOME RATIONAL FUNCTIONS

MITSUHIKO IMADA

Abstract

We are interested in biaccessible points in the Julia sets of rational functions. D.
Schleicher and S. Zakeri studied which points can be biaccessible in the Julia sets of
quadratic polynomials with irrationally indifferent fixed points [SZ, Za]. In this paper,
we consider the two polynomial families f;(z) = z¢ + ¢, go(z) = e*™z + z¢ and the cubic
om0 2 24

rational family 7y ,(z) = =

1. Introduction and results

Let C=CU{o} be the Riemann sphere, let /:C — C be a rational
function of degree d > 2. We define the Fatou set of f as the union of all
open sets U — C such that the family of iterates {f*"|,},-, forms a normal
family, and the Julia set of f as the complement of the Fatou set of f. We
denote the Julia set of /" by J; and the Fatou set of /" by Fy. Clearly, the Fatou
set Fy is open and the Julia set J; is closed. A connected component of the
Fatou set is called a Fatou component. Their fundamental properties can be
found in [Mi].

For each fixed point zy, the multiplier at z; is defined as A = f'(z;) when
2o # oo and is defined as A = lmg 1/f'(z) when zy = 0.

A fixed point zj is called superattracting if the multiplier A is equal to zero,
or equivalently zj is a critical point. Then the point z, is contained in the Fatou
set Fy. The Fatou component containing the superattracting fixed point zy is
called the immediate basin of zy, and we denote by .oZ,.

A fixed point zq is called irrationally indifferent if the multiplier 4 satisfies
A/ =1 but A is not a root of unity, or equivalently there exists an irrational
number @ such that 1 =e?>™. So we distinguish between two possibilities.
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If an irrationally indifferent fixed point z, lies in the Fatou set, the point z; is
called a Siegel point. The Fatou component containing a Siegel point zj is called
the Siegel disk with center zp, and we denote by %7,.

If an irrationally indifferent fixed point zy belongs to the Julia set, the point
zqo 1is called a Cremer point. We say that a Cremer point zy has the small cycles
property if every neighborhood of z, contains infinitely many periodic orbits.
For quadratic polynomials, every Cremer point has the small cycles property
[Yol]. However, it is not known whether this is true for arbitrary rational
functions.

An invariant Fatou component 5 is called a Herman ring if # is confor-
mally isomorphic to some annulus. Then the dynamics of f on J# corresponds
to the dynamics of an irrational rotation on this annulus.

Let Q = C be a simply connected domain. Assume that the boundary 0Q
contains at least two points. For the sake of convenience, we assume that Q
contains infinity oo, and consider a conformal isomorphism ® : C — D — Q such
that ®(o0) = oco. For each angle t e R/Z, the external ray is defined as

R, = {®(re*™") : r > 1}.
For each radius r > 1, the equipotential curve is defined as
E, ={®(re*™) : te R/Z}.
If there exists a point z € JQ such that }1{r11 ®(re’™") = z, then we say that the

external ray R; lands at the point z. A point z € 0Q is called accessible from
Q if there exists a continuous curve y:[0,1) — Q such that li}r]l y(s) = z.
S

Then there exists an external ray landing at z (see for example [Me, Corollary
6.4]).

DrerNiTION 1.1. We say that a point z € 0Q is biaccessible from Q if there
exist at least two distinct external rays landing at z (see Figure 1).

FIGURE 1
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In the above definition, the biaccessibility from Q does not depend on the
choice of the Riemann maps ®. In fact, it depends only the topology of the
boundary dQ. By a theorem of F. and M. Riesz (see [Mi]), 0Q — {z} is discon-
nected whenever z € 0Q is biaccessible from Q. Moreover, the converse is true
(see [Me, Theorem 6.6]). Therefore, z € dQ is biaccessible from Q if and only if
zedQ is a cut point of dQ, namely 0Q — {z} is disconnected.

We are interested in the topological structures of the Julia sets and the
boundaries of Fatou components. There are some results about local connec-
tivity (see for example [Mi, P, Ra, Ro]) and (bi)accessibility (see for example [Pe,
Sch, Smi, Zd]). As for Siegel disks, the location of biaccessible points is well
known as given in the following proposition.

ProposITION 1.1.  Let f be a rational function of degree d > 2. Assume that
infinity oo is a Siegel point. Let ¥, be the Siegel disk with center co. If z is
biaccessible from .., then it is a periodic point of f.

Proof. We take a conformal isomorphism ®:C—D — &, such that
®(0) =0 and @' o fo®(w) = iw, where . is the multiplier at . So 1
is written as ¢”’ with an irrational number 6. We consider the dynamics of
external rays in the Siegel disk %,. It is easy to see f°"(R;) = R, for all
n>0.

If z is biaccessible from %, then there exist two distinct external rays R;
and R, landing at z. Since @ is irrational, we may suppose that

s<s+NO<t<t+NO<s+1,

where N is some number. Let U; and U, be two distinct components of
C— (RyU{z}UR,)). So we may assume that f°¥(R,) = U; and f°N(R,) < U,
(see Figure 2).

t+HNO  t  s+NO L TRY

FIGURE 2

Both f°V(Ry) and f°V(R,) land at f°V(z) by the continuity of f°V. There-
fore, f°N(z) = U;NU,, and thus f°N(z) =z. 0

We consider which points can be biaccessible from the immediate basins
of superattracting fixed points. For quadratic polynomials with irrationally
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indifferent fixed points, S. Zakeri [Za] showed the following proposition which is
an improvement of [SZ, Theorem 3].

PrOPOSITION 1.2, Let f.(z) =z>+c¢ be a quadratic polynomial with an
irrationally indifferent fixed point o. Assume that zy is biaccessible from the
immediate basin <4, of infinity. Then:

* if o is a Siegel point, the critical point 0 is contained in the forward orbit

{f;,*on(zo)}nz() Of 20,
* if a is a Cremer point, then the point o is contained in the forward orbit

{/"(20)buz0 of 20-

In the above proposition, if a is a Cremer point, we are interested in whether
the point « is accessible or not. In fact, this is an open problem. If the point «
is accessible, then it follows from the Snail Lemma that infinitely many external
rays land at the point.

In this paper, we shall extend Proposition 1.2 for more general polynomials
and some rational functions of degree 3. In fact, such functions are well known
and selected so as to have simple locations of critical points. However, we deal
with the biaccessibility of Fatou components of genuine rational functions, which
probably has not been studied as yet.

First, we will show the following which is a small extension of the proposi-
tion for polynomials with only one critical point in C.

TueoreM 1.1. Let f.(z) =z%+ ¢ be a polynomial of degree d >2 with
an irrationally indifferent fixed point o. Assume that zy is biaccessible from the
immediate basin <f, of infinity. Then:

* if o is a Siegel point, the critical point 0 is contained in the forward orbit

{/"(z0) b nz0 of z03
« if o is a Cremer point, either the point o is contained in the forward orbit
{f2"(z0)},,50 Of zo or the critical point 0 is contained in the forward orbit

{£"(z0) b0 of 20.

In the above theorem, if o is a Cremer point which has the small cycles
property, then the critical point 0 is not accessible from o7, [Ki, Theorem 1.1].
Then 0 ¢ {f,""(20)},>0, and so we can conclude that o« € {f,*(z0)},5o. Accord-
ing to [Yol], every Cremer point of quadratic polynomials has the small cycles
property, so the conclusion of the second part in Proposition 1.2 is just o€
{/"(20) s o-

The following theorem gives an extension for some polynomials having more
than one critical point in C. However, we can make use to the symmetrical
locations of critical points.

THEOREM 1.2. Let gy(z) = ™z + 29 be a polynomial of degree d >2 so
that the origin is an irrationally indifferent fixed point. Let cy,c1,...,cq-2 be all
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critical points of gy in C.  Assume that z( is biaccessible from the immediate basin
Ay of infinity. Then:
* if the origin is a Siegel point, there exists a critical point cj, which is
contained in the forward orbit {g5"(z0)},0 of Zo;
* if the origin is a Cremer point, either the origin is contained in the forward
orbit {g5"(20)},0 of zo or there exists a critical point c;, which is contained
in the forward orbit {gg"(z0)},-0 of Zo.

In the above theorem, if the origin is a Cremer point which has the small
cycles property, then there exists a critical point ¢;, which is not accessible from
oZy, |[Ki, Theorem 1.1]. In addition, the symmetry of the Julia set implies that
every critical point ¢; is not accessible from .7, (see Section 5). Therefore,
¢ ¢{95"(20)},50 for all j, and so we can conclude that 0 € {g5"(z0)}, -

Finally, we will consider some rational functions of degree 3 which are
corresponding to quadratic polynomials with irrationally indifferent fixed points
in a sense. Indeed, the dynamics of analytic circle diffeomorphisms with irratio-
nal rotation numbers and the local dynamics of irrationally indifferent fixed
points are similar in certain respects. So we will suggest a new application of
Herman compacta to the proof of the following theorem.

THEOREM 1.3.  Let h(z) = hy4(z) = ez’”vzzlz;fl be a rational function so
z

that |a| > 3 and the rotation number Rot(h|q1) is irrational. Let c be the critical
point of h such that |c| > 1. Assume that z, is biaccessible from the immediate
basin <, of infinity. Then the critical point ¢ is contained in the forward orbit

{7*"(20)} 20 of 20-

In the above theorem, we fix |a| > 3 and consider the one-parameter family

v, Z—a . . . o
hg.a(z) = ez’”gzzl—_ with 0 of rational functions. From the continuity and the
az

monotonous increasing of the rotation function 6 — Rot(hy .|g1), we can adjust
the rotation number to be any desired irrational constant (see [MS, Section 1.4]).

2. Local dynamics

In this section, we suppose that f is a rational function of degree d > 2 and
consider the local dynamics of f. We introduce Siegel compacta and Herman
compacta. They are essential for the proofs of the theorems. First, we mention
about the linearizability.

DEerFmNITION 2.1.  Let zg be an irrationally indifferent fixed point of f. Let 4
be the multiplier at zy, so it is written as >’ with an irrational number 6. If
there exists a local holomorphic change of coordinate z = ®(w), with ®(0) = z,
such that @' o f o ® is the irrational rotation w — 2’y near the origin, then
we say that f is linearizable at the point zj.
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An irrationally indifferent fixed point zy of f is either a Siegel point or a
Cremer point, according to whether f is linearizable at the point z; or not.
There are some results about the linearizability of irrationally indifferent fixed
points (see for example [Mi, Section 11]).

DEFINITION 2.2, Assume that flg :S' — S' is an analytic circle diffeo-
morphism whose rotation number Rot(f|q1) is irrational. If there exists an
analytic circle diffeomorphism ® : S — S! such that ® ' o f o ® is the irrational
rotation w — 2 Rot(fls1)yy then we say that f is linearizable on S'.

For a general theory on analytic circle difftomorphisms, we refer to [MS].
There are some results about the linearizability for analytic circle diffeomor-
phisms with irrational rotation numbers (see for example [Yo2]). In addition,
there are fine theorem correspondences between the linearizability of irrationally
indifferent fixed points and the linearizability for analytic circle diffeomorphisms
with irrational rotation numbers (see [PM, Theorem 1.4.1]).

The following two propositions will be used for the proofs of Theorem 1.1
and Theorem 1.2.

PROPOSITION 2.1. Let zy be an irrationally indifferent fixed point of f. Let
U be a bounded neighborhood of zy so that the boundary 0U is a Jordan closed
curve. Assume that f is univalent on a neighborhood of U. Then there exists a
set S with the following properties:
* S is compact, connected, and c-S lS connected,
czoeSc U, SNAU #0, and f(S) =
Moreover, f is linearizable at zy if and only zf the interior Int S of S contains zy.

We say that such a set S is a Siegel compactum for (f,U). Its applications
can be found in [PM, Section IV]. The above proposition is described in [PM,
Theorem 1], however, we do not assume that f~! is defined and univalent on a
neighborhood of U. In fact, the condition leaves no impression on the results.

PROPOSITION 2.2.  Assuming the hypothesis in Proposition 2.1, let S be a
Siegel compactum for (f,U). Then: .
* if zo is a Siegel point, there are no points which are biaccessible from C — S;
* if zo is a Cremer point, then the point zo is the only possible point which is
biaccessible from C — S.

Proof. This proof is referred from the explanations of [Za, Proposition 1]
and [SZ, Proposition 2]. We use proof by contradiction.

First, assume that z; is a Slegel point and there exists a point z which is
biaccessible from € —S. Let ®:C—D — C— S be a conformal isomorphism
such that ®(o0) =o0. So g=® 'o fo® is univalent on an outer neighbor-
hood of S'. Then g is extended and univalent on a neighborhood of S' by the
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reflection principle. Furthermore, the rotation number Rot(g|q:) corresponds to
the irrational number @ which satisfies A = > where A is the multiplier at z
[PM, Theorem 2].

Let R, and R, be two distinct external rays land at z. Let X be the
component of Int .S which contains the Siegel point zy. Clearly, f(X) = X. Let
V' be the component of C — (R;U{z}UR,) which does not contain X. We cut
off V' along an equipotential curve E,, and thus have the Jordan domain W
which is contained in ¥. Then D = ® (W —§) has the interval 7 = S' as a
part of its boundary (see Figure 3).

'
]
'

FIGURE 3

NSince the rotation number Rot(g|g) is irrational, there exists N such that
szo g°/(I) =S'. We could take a more smaller r > 1, so that g,9°%,...,g°Y
arlé univalent on D, and furthermore, Uj—ong (D) is an outer neighborhood of
S.

Then f, f°2,..., f°N are univalent on W — S, and thus U;ﬁof"f(W —S) is
an outer neighborhood of S. So any point of the boundary 0X — 05 can be
approximated by some sequence in U]‘Iio [/ (W —S). Now the injectivity of
f implies that each Jordan domain f°/(W) does not intersect X, therefore,
f°/(W)NX contains at most one point f°/(z). This contradicts that 0X has
infinitely many points.

Now, assume that z is a Cremer point and there exists a point z # zo which
is biaccessible from C —S. Let ®: C — D — C — S be a conformal isomorphism
such that ®(o0) = 0. So g=® 'o fo® is univalent on an outer neighbor-
hood of S'. Then g is extended and univalent on a neighborhood of S' by the
reflection principle. Furthermore, the rotation number Rot(g|g:) corresponds to
the irrational number 6 which satisfies A = ¢?™’, where A is the multiplier at z,
[PM, Theorem 2].

Let Ry, and R, be two distinct external rays land at z. Let ¥ be the
component of C— (R;U{z}UR,) which does not contain z;. We cut off V
along an equipotential curve E,, and thus have the Jordan domain W which is
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contained in V. Then D =® (W —S) has the interval / = S' as a part of
its boundary (see Figure 4).

[l
]
'

FIGURE 4

Since the rotation number Rot(g|g1) is irrational, there exists N such that
UNog°’( )= S'. We could take a more smaller r > 1, so that g,g°%,...,g°Y
are univalent on D, and furthermore, U g°/(D) is an outer neighborhood of
S.

Then f, f°2,..., f°N are univalent on W — S, and thus U foI(W —8) is
an outer nelghborhood of S. So the Cremer point zy € S can be approx1mated
by some sequence in U f/(W —S). However, the injectivity of f implies

that each Jordan domam f °/(W) does not contain zo and each f°/(z) is not zo,
therefore, f°/(W)N{z} = 0. O

The following two propositions will be used for the proof of Theorem 1.3.

PROPOSITION 2.3. Let U be a bounded annular neighborhood of S' such that
the boundary 0U consists of two Jordan closed curves y, = C —D and y, = D.
Assume that f is univalent on a neighborhood of U and f|q :S'— S is an
analytic circle diffeomorphism whose rotation number Rot(f|q1) is irrational.
Assume that f(U) does not contain the bounded component of C-— vo.  Then there
exists a set H with the following properties:
« H is compact, connected, and C — H has just two connected components;
S'lcHCcT, Hﬂylaé(b HNy, #0, and f(H) = H.
Moreover, f is linearizable on S if and only if the interior Int H of H contains S'.

We say that such a set H is a Herman compactum for (f,U). The above
proposition is described in [PM, Theorem V.1.1]. We do not assume that f~! i
defined and univalent on a neighborhood of U, however, we add the assumption
that f(U) does not contain the bounded component of C — yp,.
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PROPOSITION 2.4.  Assuming the hypothesis in Proposition 2.3, let H be a
Herman compactum for (f,U). Then there are no points which are biaccessible
from the unbounded component of C — H.

In the rest of this section, we shall show the above two propositions.

LEMMA 2.1. Let U be a bounded annular neighborhood of S' such that
the boundary 0U consists of two Jordan closed curves y, = C —D and y, = D.
Assume that f is univalent on a neighborhood of U and f|g :S'— S s an
analytic circle diffeomorphism whose rotation number Rot(f|g1) is Diophantine.

Then the Herman ring A intersects both y, and yp,.

Proof. This proof is referred from the proof of [PM, Theorem II.3.1].
Since the rotation number Rot(f|si) is Diophantine, f is linearizable on S' [Yo2,
Theorem 1.4]. So we have the Herman ring # such that S' c .

We use proof by contradiction. Assume that #' Ny, =0. Let {K,},., be
a sequence of closed annuli in the Herman ring # such that f(K,) = K,,

K, = Int K, and U::l K,= . So K, converges to # in the sense of Haus

dorff convergence. Let €, be the unbounded component of C- K, let Q be the
unbounded component of C — #. So Q, converges to Q with respect to oo in
the sense of Carathéodory kernel convergence. We consider the following con-
formal isomorphisms

so that @,(00) = P(0) = o0, lim ®,(z)/z>0 and lim ®(z)/z>0. So D,

converges locally uniformly to ® by the Carathéodory kernel theorem (see for
example [Po, Theorem 1.8]).

Since f is univalent on a neighborhood of U and # Ny, = (), there exists
ro>1 such that g=® 'o fo® is univalent on {z:1<|z| <ry}. So g,=
®,'o fo®, is also univalent on {z:1 < |z| <ry}. By the reflection principle,
gn and g are extended and univalent on {z: 1/ry <|z| <ry}. We fix r such that
1 <r<ry. Since @, converges locally uniformly to ®, g, converges uniformly
to g on rS'. So g, converges uniformly to g on 1/rS'. By the maximum
principle, g, converges uniformly to g on {z:1/r < |z| <r}, particularly on S'.

Let L, be the outer boundary of K, let L be the outer boundary of the
Herman ring #. We notice that the dynamics of g, on S' corresponds to the
dynamics of f on L,. Since L, is a Jordan closed curve in the Herman ring
A such that f(L,) = L,, the dynamics of f on L, corresponds to the dynamics
of the irrational rotation z— eZ#RotIs1)z.  Therefore, the rotation number
Rot(gn|g1) corresponds to Rot(f|gi). Then,

Rot(g|g1) = nEToc Rot(gulg1) = ngr+nm Rot(f[g1) = Rot(fg1).
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Therefore, Rot(g|g:) is Diophantine, and thus g is linearizable on S'. So we can
take a Jordan closed curve # in an outer neighborhood of S! such that ¢(#) = 7,
and thus ®(y) is a Jordan closed curve such that f(®(y)) = ®(y). Let V be
the Jordan annular domain which is surrounded by ®(;) and S' (see Figure 5).

~ o~ ~LcV

FIGURE 5

We notice f(V)= V. Moreover, the dynamics of f on V corresponds
to the dynamics of the irrational rotation z — e>Rot(fls1)z by the classification
theorem of dynamics on hyperbolic surfaces (see for example [Mi, Theorem 5.2]).
Then L = V < Fy. This contradicts that L is the outer boundary of the Herman
ring #. Therefore, we conclude # Ny, # Q. It is possible to see # Ny, # 0,
as in the above argument. O

Proof of Proposition 2.3. This proof is referred from [PM, Section III.2].
Since the rotation number Rot(f/g1) is irrational, there exists a sequence {0},
such that lim &, =0 and each f,(z) =e*™f(z) has the rotation number

n——+o
Rot(fy|g1) which is Diophantine (see also [MS, Lemma 4.1]). So f, is univalent
on a neighborhood of U.

From Lemma 2.1, we take the closed annulus H, in the Herman ring %, of
fn» with the following properties: A

+ H, is compact, connected, and C — H, has just two connected components;

*S'cH,cU, H,Ny, #0, H,Ny, # 0, and f,(H,) = H,,.

Every H, is contained in U, so there exists a subsequence {H,,},., and a set H’
such that H, converges to H' in the sense of Hausdorff convergence. Then H'
has the following properties:

« H' is compact and connected,;

-SlcH U, H' Ny, #+ () and H' Ny, £ 0.

Since f,, converges uniformly to f on U, it follows from [PM, Lemma
I11.1.2] that f,, (H,,) converges to f(H') in the sense of Hausdorff convergence.
Then f,, (H,,) = H,, implies f(H') = H'. Let H be the union of H' and all the
components of C— H' contained in U. So C— H has just two connected
components. Since f(U) does not contain the bounded component of C — y,, it
is not difficult to see f(H)= H, and thus H satisfies the required properties.
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Now, we show the last part of Proposition 2.3. If f is linearizable on S',
it is obvious that S! = Int H. Conversely, assume that S! < Int H. Let V be
the component of Int H which contains S'. So ¥ is conformally isomorphic
to some annulus, and f (V)= V. The dynamics of f on V' corresponds to the
dynamics of the irrational rotation z — e*@ReU/ls1)z by the classification theorem
of dynamics on hyperbolic surfaces. Therefore, f is linearizable on S'. O

The following lemma corresponds to [PM, Theorem 2].

LEmMA 2.2.  Assuming the hypothesis in Proposition 2.3, let H be a Herman
compactum for (f,U). Let Q be the unbounded component of C—H, let
®:C—-D—Q be a conformal isomorphism such that ®(w0) = 0. So g=
@ 'o fo® is univalent on an outer neighborhood of S'. Then g is extended
and univalent on a neighborhood of S' by the reflection principle. Furthermore,
the rotation number Rot(g|gi1) corresponds to the rotation number Rot(f/q1).

Proof. First, we show that there exists a Herman compactum H for (f, U)
such that Rot(g|g1) = Rot(f|q1). It is referred from the proof of [PM, Lemma
II1.3.3]. Since the rotation number Rot(f|qi) is irrational, there exists a se-
quence {o,} such that lim o, =0 and each f,(z) =e?*f(z) has the

n—-+0o0
rotation number Rot(f,|q1) which is Diophantine. So f, is univalent on a

neighborhood of U.

From Lemma 2.1, we take the closed annulus H, in the Herman ring /%, of
f» as the Herman compactum for (f,, U). Every H, is contained in U, so there
exists a subsequence {H,,},., and a set H' such that H,, converges to H' in the
sense of Hausdorff convergence.

Since f,, converges uniformly to f on U, it follows from [PM, Lemma
I11.1.2] that f, (H,,) converges to f(H') in the sense of Hausdorff convergence.
Then f, (H,) = H,, implies f(H') = H'. Let H be the union of H" and all the
components of C— H' contained in U. It is not difficult to see that H is a
Herman compactum for (f, U). R R

Let Q,, be the unbounded component of C — H,,, let ®, : C—D — Q, be a
conformal isomorphism so that @, (c0) = co. For the sake of convenience, we
assume that lLrlgo ®,,(z)/z >0 and ILIIBC ®(z)/z > 0. We notice that Q is the

unbounded component of € — H, and is the unbounded component of C — H' as
well. So Q, converges to Q with respect to oo in the sense of Carathéodory
kernel convergence, and thus ®,, converges locally uniformly to @ by the
Carathéodory kernel theorem.

Since f is univalent on a neighborhood of U, there exists o > 1 such that
g=® "o fo®isunivalent on {z: 1 < |z| <ry}. So g, = (I)n_,-l o fn, 0 Dy, is also
univalent on {z: 1 < |z| < ry}. By the reflection principle, g,, and g are extended
and univalent on {z: 1/ry < |z| <rp}. We fix r such that | <r <ry. Since @,
converges locally uniformly to @, g,, converges uniformly to g on rS'. So In;

n>1
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converges uniformly to g on 1 /rSl. By the maximum principle, g, converges
uniformly to g on {z:1/r <|z| <r}, particularly on S'.

Let L, be the outer boundary of H,. We notice that the dynamics of g,
on S' corresponds to the dynamics of f, on L,. Since L, is a Jordan closed
curve in the Herman ring , such that f, (L,) = L, the dynamics of f, on
L, corresponds to the dynamics of the irrational rotation z i > RotUnlsi)z,
Therefore, the rotation number Rot(g,|g1) corresponds to the rotation number
Rot(fy|g1). Then,

Rot(glg) = lim Rot(gnls) = lim Rot(f,ls) = Rot(flg:)

Now, we show that such the rotation number Rot(g|g1) does not depend on
choosing the Herman compactum H for (f, U). It is referred from the proof of
[PM, Lemma IIT.3.4]. We fix a Herman compactum H for (f, U). A sequence
{zn} ez 1s called a full orbit of zy if z,4; = f(z,) for all neZ, and we denote
by (0(zp). Let Hy be the connected component of the set {ze U :30(z) = U}
which contains S'. Clearly, f(Hy)=Hy and H < Hy. 1t is not difficult to
see that H), is the maximal Herman compactum for (f, U). .

Let Q) be the unbounded component of C — Hy, let @y : C —D — Qy
be a conformal isomorphism such that ®,,(c0) = o0. So gy = d);} o fody is
univalent on an outer neighborhood of S!. Then g, is extended and univalent
on a neighborhood of S' by the reflection principle.

We fix a point ze H Ny < Hy Ny,. Since y, is a Jordan closed curve, the
point z is accessible from the unbounded component of C — U, and is accessible
from Q) as well. Let 5 < Q) < Q be a path converging to z. Then ®!(y)
converges to some point w € S' and d);) (n) converges to some point wy, € S! (see
[Me, Corollary 6.4]). Now the conformal isomorphism @' o ®,, preserves the
cyclic ordering between {g*(®~'(1))},-0 and {g3F (P} (1))},50 (see Figure 6).

Therefore, the cyclic ordering of {g**(w)},., corresponds to the cyclic
ordering of {g3#(wa)},so, and thus Rot(g|g1) = Rot(galg)- O

Proof of Proposition 2.4. The method of the proof is similar to that of
Proposition 2.2. We use proof by contradiction.

First, we consider the case where f is linearizable on S'. Assume that there
exists a point z which is biaccessible from the unbounded component Q of
C—H. Let ®:C—D — Q be a conformal isomorphism such that ®(o0) = oo.
So g=® !0 fo®d is univalent on an outer neighborhood of S!. Then g is
extended and univalent on a neighborhood of S' by the reflection principle.
From Lemma 2.2, the rotation number Rot(g|g:1) corresponds to the rotation
number Rot(f]g1).

Let R, and R, be two distinct external rays land at z. Let X be the com-
ponent of Int H which contains S', let L be the outer boundary of X. Clearly,
f(X)=X and f(L)=L. LetV be the component of C — (R;U{z} U R;) which
does not contain L. We cut off V' along an equipotential curve E,, and thus
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FIGURE 6

have the Jordan domain W which is contained in V. Then D = ® (W — H)
has the interval 7 = S' as a part of its boundary (see Figure 7).

FIGURE 7

Since the rotation number Rot(g[g:) is irrational, there exists N such that
Uj:O g°/(I) =S'. We could take a more lsmaller r> 1, so that g,g°%,...,g9°"
are univalent on D, and furthermore, U/;Og"f (D) is an outer neighborhood
of S'. o
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Then f,f°2,...,f°N are univalent on W — H, and thus U]_]iofo-/(W —H)
is an outer neighborhoodN of H. So any point of L = 0Q can be approximated
by some sequence in Uj:O [/ (W — H). Now the injectivity of f implies that

each Jordan domain f°/(W) does not intersect L, therefore, f°/(W)N L contains
at most one point f°/(z). This contradicts that L has inﬁnitely many points.

Now, we consider the case where f is not linearizable on S'. Assume that
there exists a point z which is biaccessible from the unbounded component Q of
C—H. Let ®:C—D — Q be a conformal isomorphism such that ®(c0) = oo.
So g=® 'o fo® is univalent on an outer neighborhood of S!. Then ¢ is
extended and univalent on a neighborhood of S' by the reflection principle.
From Lemma 2.2, the rotation number Rot(g|q:1) corresponds to the rotation
number Rot(f]g1).

Let R, and R, be two distinct external rays land at z. Let ¥ be the
component of C — (R,U{z}UR,) which does not contain S'. We cut off ¥
along an equipotential curve E,, and thus have the Jordan domain W which
is contained in V. Then D = ® (W — H) has the interval I ¢ S! as a part of
its boundary (see Figure 8).

t

FIGURE 8

NSince the rotation number Rot(g|gi) is irrational, there exists N such that
U/ 09 °/(I) =S'. We could take a more smaller r > 1, so that g,¢°%,...,g°Y
are univalent on D, and furthermore, U Og"’ (D) is an outer neighborhood of
s,

Then f,f°2,...,f°N are univalent on W — H, and thus U fI(W — H)
is an outer nelghborhood of H. So any point of S! = 4Q can be approx1mated
by some sequence in U f°/(W — H). Now the injectivity of f implies that
each Jordan domain f°/(W) does not intersect S!, therefore, f°/(W)NS! con-
tains at most one point f°/(z). This contradicts that S' has infinitely many
points. ]
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3. Preliminaries for proofs

In this section, we shall see preparations for the proofs of the theorems.
The following notion will be often used later.

DeFINITION 3.1, Let Q<= C be a simply connected domain which con-
tains co. Assume that the boundary JQ contains at least two points. Let
®:C—D — Q be a conformal isomorphism such that ®(o0) = co. Let R, and
R, be two distinct external rays land at z. Let U; and U, be two distinct
components of C — (R;U{z} UR,). Then for each / = 1,2, angle of Uj is defined
as
length(® ' (U, N E,))

AU = 2mr

It does not depend on r > 1, so it is well defined. Clearly, 0 < A(U;), A(Uz)
and A(U;) + A(Uy) = 1. The angle between R, and R, is defined as A(R;, R,
min{A(U;),A(U)}. Clearly, A(Ry,R,) < 1/2 (see Figure 9).

<1
)=

t R,

—;

FIGURE 9

The following two lemmas will be used for the proofs of the theorems.

LemMma 3.1. Let K be a compact subset of the complex plane C. Assume
that f is analytic on a neighborhood of K, there are no critical points of f in K
and f is injective on K.  Then there exists ¢ > 0 such that f is univalent on N (K),
where N,(K)={zeC: Lr1n€12 |z — w| < &}

Proof. Assume that f is not univalent on N.(K) for all ne N. Then there
exist x,e€Ni(K) and yp,eNi(K) such that "x, # y, and f(x,) = f(yn).
Since {x,},- is contained in Nj(K), we take a subsequence {x,,},., and a point

Xo such that lim x, = xp. Similarly, we take a subsequence { Yn, }j>1 of
I—+00 =
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{¥n}i>1 and a point yo such that hm Yn, = Yo Then both xy and y, are
belong to K, and J=t

S(x0) = lim f(xy )= Tim f(yn,)=f(¥o)-

Now f is injective on K, and thus xp = yyo. So f is not univalent on any
neighborhood of x(, and thus xy is a critical point of f. This contradicts that
there are no critical points of f in K. O

Lemma 3.2. Let Q be a bounded domain by a cycle y = C which consists
of finite Jordan closed curves. Let f be a complex-valued function defined on a
neighborhood of Q.  Assume that f is analytic on Q and injective on 0Q.  Assume
that f preserves the orientation on each Jordan closed curve which constructs a part
of 0Q. Then Q' is well defined as the bounded domain by the cycle f(0Q) < C,
and [ maps Q conformally onto Q' (see Figure 10).

FIGure 10

Proof. From the open mapping theorem, it is easy to see that Q' is well
defined as the bounded domain by the cycle f(0Q) < C.

Let wo be a point in Q. Let I'(z) = f(z) —wo=w—wo. Then I'(z) is
analytic on Q and does not take the zeros on 0Q. From the argument principle,

1 1
—| dargT'(z) =— d arg(w — wy) = N
> LQ arg I'(z) > L(m) arg(w — wy) ,

where N is the number of the zeros in Q. We obtain N = 1, so there exists the

zero zp of I' in Q. Therefore, zy is the point in Q satisfies f(zg) = wo.
Similarly, we can see that there are no points z € Q such that f(z) = w

when wq ¢ Q. O

4. Proof of Theorem 1.1

In this section, we consider a polynomial fu(z) =z 4+ ¢ of degree d > 2.

For each 0 < j<d—1, let gj(z) = ¥z be a j/d-rotation. Then f.oq; = f,
implies a;(Jy;) = Jy. The origin is only one critical point of f, in C.
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Assume that o is an irrationally indifferent fixed point of f.. Then the
origin is recurrent (see [Ma]), so the superattracting fixed point co is the only
critical point in the immediate basin .o/,. Therefore, there exists a conformal
isomorphism @ : C — D — .7, such that ®(c0) = o0 and @' o f, o D(w) = w¥.

We consider the dynamics of external rays and the equipotential curves
in the immediate basin .<Z,. It is easy to see that f.(R,) = Ru, [ '(R)=

d— o
Uj_ol Ruj, fo(E))=E, and f7'(E,)=Eg. Moreover, oj(/y,) =, implies
—o % A
gjo®=®og;, so that g;(R,) =R, , and o;(E;) = E,.
d
Lemma 4.1. Let Ry and R, be two distinct external rays land at z # 0. Let
U be the component of C— (RyU{z}UR,) such that A(U) = A(Ry,R;). Then
A(U) <1/d and o;(U)Nox(U) =0 for j+#k. Therefore, U does not contain
both two agj-symmetric points and C — U contains the origin.

Proof. Assume that A(U) >1/d. Then A(C — U) > A(Ry,R,) = A(U) >
1/d, so we may suppose that

1 1
- <t<t+-=< 1
s<s+d_ <+d_s+,

and furthermore, o|(R;) = U and o(R;) = C— U (see Figure 11).

//, G] (Rl)

FIGURE 11

Then both R,y and R,,, land at 71(z), so o1(z) e UNC — U = dU, and thus
o1(z) =z. This implies z =0, which contradicts the assumption z # 0.

Now assume that there are two distinct numbers j and k such that
o;/(U)Naop(U) #0. We have A(U) < 1/d, so we may suppose

s+2< ,+1<S+§< ,+§<S+l+ 1.
d d d d d
Two distinct external rays does not intersect, so we conclude that g;(z) = ox(z).

This implies z =0, which contradicts the assumption z # 0. O



152 MITSUHIKO IMADA

LEMMA 4.2. Let Ry and R, be two distinct external rays land at z # 0. Let
U be a component of C — (RU{z} UR,). Then the following three conditions are
equivalent to each other:

(a) A(U) < 1/d,

(b) f. is univalent on U;

(c) U does not contain the origin.

Proof. (a) = (b): Assume that A(U) < 1/d. So we cut off U along an
equipotential curve E,, and thus have the Jordan domain J* which is contained
in U. Then f. is injective on 0V and preserves the orientation, so Lemma 3.2
implies that f, is univalent on V. We could take a more bigger r > 1, so that f.
is univalent on U. Moreover, f.(U) is the component of C — f.(R;U{z} UR,)
such that A(f.(U)) =d - A(U).

(b) = (c): It is obvious.

(c) = (a): Assume that U does not contain the origin. If A(C—U)=
A(Ry, Ry), then Lemma 4.1 implies that U contains the origin. This contradicts
the assumption, and thus A(C — U) # A(R,,R,). Therefore, A(U) = A(R, R,)
and thus Lemma 4.1 implies A(U) < 1/d. O

Lemma 4.3, Assume that z is biaccessible from the immediate basin <., such
that o ¢ {£7(2)},50 and 0 ¢ {f."(2)},~ Then there exist two distinct external
rays R, and R, with a common landing point w such that R, U {w}U R, separates
o from the origin.

Proof. Let R, and R, be two distinct external rays landing at z. Let U be
the component of C — (R;U{z}UR,) which does not contain the origin. Then
Lemma 4.2 implies that f. is univalent on U and thus A(f.(U)) =d - A(U).

If f.(U) does not contain the origin, then we have that f. is univalent on
fo(U) and thus A(f°*(U)) = d* - A(U) as the above argument. Otherwise, f.(U)
contains the origin.

By repeating the above step, we see that there exists N > 0 such that £,°V(U)
does not contain the origin and f°Y*!(U) contains the origin. Then f, is
univalent on f°V(U) and thus A(£°VT1(U)) =d - A(U).

If we f°N(U), then put R,U{w}UR, = f°N(R;U{z}UR,).

Otherwise, if o ¢ f°Y(U), then we may consider the following two cases:

(1) f£°N(U) contains some aj,();

(2) f£°N(U) does not contain any a;(a).

In the case (1), put R,U{w}UR, = a4 ;,(/N(R;U{z} UR))).

In the case (2), if £°N*1(U) contains o, then f°¥(U) contains one point
of inverse image of «. Since f'(x) = {o;(2)|0 < j<d—1}, it follows that
£2N(U) contains some agj, (). However, this contradicts that f,°¥(U) does not
contain any (o). Therefore, f°V*!(U) does not contain o, and thus we put
R,U{w}UR, = fN*1(R,U{z}UR,). O
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Proof of Theorem 1.1. We use proof by contradiction. If o is a Siegel
point, assume that 0 ¢ {f,°"(z0)},>o- If o is a Cremer point, assume that o ¢
{fom(z0)} 50 @and 0 ¢ {£"(z9)},~o- In both cases, it follows that z, is biacces-
sible from .7, such that o ¢ {/(z0)},=0 and 0¢ {/.""(z0)},=0-

Lemma 4.3 implies that there exist two distinct external rays R, and R, with
a common landing point w such that R,U{w}U R, separates o from the origin.
Let U be the component of C — (R,U{w}UR,) which contains o. Then f. is
injective on U. We cut off U along an equipotential curve E,, and thus have the
Jordan domain V' which contains a.

Since ¥ contains no critical points of f,, it follows from Lemma 3.1 that
there exists a Jordan domain W such that ¥ = W and f, is univalent on a
neighborhood of W (see Figure 12).

FIGURE 12

Now we take a Siegel compactum S for (f,., W) by Proposition 2.1. Then S
meets the boundary 0 but not 0V — {w}, so S must contain w. Furthermore,
0(C — S) — {w} is disconnected, and thus the point w is biaccessible from C — S.
However, the biaccessibility of w contradicts Proposition 2.2. O

5. Proof of Theorem 1.2

In this section, we consider a polynomial gy(z) = e’z + z¢ of degree d > 2.
Actually, we may consider the cases of d >3 and thus assume that /_d >3 in
the following arguments. For each 0<,j<d—2, let 7;(z) =e*™71z be a
j/(d —1)-rotation. Then g¢gpot;=r170¢y implies t;(J,)=Jy,. So ¢gp has
d — 1 symmetric critical points ¢; = 7;(c¢), where ¢ is one of the solutions of
20 4 g-d=1 _ ).

Assume that the origin is an irrationally indifferent fixed point of gy. Then
some critical point ¢;, is recurrent (see [Mal]), so gy o 7; = 7; 0 gy implies that every
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critical point ¢; is recurrent. Therefore, the superattracting fixed point co is the
only critical point in the immediate basin .oZ,. Then there exists a conformal
isomorphism ® : C — D — .o/, such that ®(0) = oo and @' 0 gy o D(w) = w?.

We consider the dynamics of external rays and the equipotential curves in the

immediate basin .oz,,. It is easy to see that go(R,) = Ra, g5 (R,) = Ujdjol Ruj,
- d
9o(E,) = E,a and g;'(E,) = E g;. Moreover, t;(.#,) = o, implies 7,0® =
® o1, so that j(R) =R, , and 5(E,) = E,.
d—1
LeEMMA 5.1. Let Ry and R, be two distinct external rays land at z # 0. Let
U be the component of C— (RU{z}UR,) such that A(U) = A(Ry,R,). Then

A(U) <1/(d—=1) and ©(U)N(U) =0 for j+#k Therefore, U does not
contain both two t;-symmetric points and C — U contains the origin.

The method of the proof is similar to that of Lemma 4.1.

LemMMmA 5.2. Let Ry and R, be two distinct external rays land at z #0. Let
U be a component of C — (RU{z} UR,). Then the following three conditions are
equivalent to each other:

(a) A(U) < 1/d,

(b) g is univalent on U,

(¢c) U does not contain any c;.

Proof. The method of the proof of (a) = (b) is similar to that of Lemma
4.2. The proof of (b) = (c) is obvious. We give the proof of (c) = (a) here.

Assume that U does not contain any ¢;. If A(C— U)= A(Ry,R,), then
Lemma 5.1 implies that C — U does not contain both two 7;-symmetric points.
Therefore, U contains at least one point of ¢;. This contradicts the assumption,
and thus we have A(C — U) # A(R, R,). Therefore, A(U) = A(R;, R,) and we
see from Lemma 5.1 that 7;(U) N7 (U) =0 for j # k.
~ If A(U)>=1/d, then A(7;(U)) >1/d and thus gy(z;(U)) = C. Then each
7;(U) contains at least one pgigt of inverse image of some critical value v;,, where
v, = go(cj,). Therefore, Uj;o 7;(U) contains at least d — 1 points of inverse

. . . d-2—— . .
image of v;,. However, this contradicts that C —| | " 7;(U) contains the critical

point c¢j,. Therefore, we conclude A(U) < 1/d. = O

Lemma 5.3.  Assume that z is biaccessible from the immediate basin <., such
that 0 ¢ {g9;"(2)},=0 and cj ¢ {9;"(2)},=o for all j. Then for each j, there exist
two distinct external rays R, and R, with a common landing point w; such that
R, U{w;} UR,, separates c; from the origin.

Proof. By tj-symmetry, it is enough to show Lemma 5.3 for some j;. Now
let R; and R, be two distinct external rays landing at z. Let U be the component
of C — (RyU{z} UR,) which does not contain the origin. If U contains some c;,,
put R, U {w;,}JUR, = R,U{z} UR,.

j,
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On the other hand, assume that U does not contain any ¢;. Then Lemma
5.2 implies gy is univalent on U and thus A(gg(U)) =d - A(U).

If go(U) does not contain any c;, then we have that gy is univalent on gy(U)
and thus A4(gg>(U)) = d*- A(U) as the above argument. Otherwise, gy(U) con-
tains some cj,.

By repeating the above step, we see that there exists N > 0 such that g, (U)
does not contain any ¢; and g;¥ ! (U) contains some ¢j,. Then gy is univalent
on gi¥(U) and thus A(g;V 1 (U)) =dN*1 - A(U).

So we may consider the following three cases:

(1) ggV*!(U) contains only some one of c;;

(2) C—g;V"(U) contains only some one of ¢j;

(3) gg"™(U) contains all ¢;.

In the case (1) and case (2), put R, U{w;}UR, = gV (RyU{z} UR,).

Now, we consider the case (3). To simplify the notation, we set as the
following:

L=gi"(R,U{z}UR), V =g;"(U),

w=c-UL o w =) = ue).

Then both W and W' are t;-symmetrical domains, which contain the origin as
well as all ¢; (see Figure 13).

L

C e
Ci®

W '
go(L) W

FIGURE 13

If W’ contains some critical value v;, = gy(c;,), then each 7;(V) contains one

. . . -3 ——r . .
point of inverse image of v, and thus U;:o 7;(V) contains d — 1 points of
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-2 ——
inverse image of v;,. However, this contradicts that W = C — U( 7;(V) con-

tains the critical point ¢;,. Therefore, W’ does not contain any v; = gy(c;).
Now we may suppose that C — g(;(V) contains some vj, = gy(cj;,). For each
0<j<d-2, we consider the following bijection:

g"'m 2 4(V) = go(ri(V)).

Then the image go(7;(V)) contains gp(L). Therefore, deggy=d implies
WNg,'(go(L)) # 0. Now we set L' = W Ng,'(go(L)).

If L' does not separate cj, from the origin, then there exists a continuous
curve y in W — L’ between ¢;, and the origin. Then gy(y) is a continuous curve
between v;, and the origin. So gy(y) Ngg(L) # 0 and thus yNg,'(ge(L)) # 0.
However, this contradicts y = W — L',

Therefore, it is concluded that L’ separates ¢, from the origin, and thus we
put R, U{w,}UR, =L" O

Proof of Theorem 1.2. We use proof by contradiction. If the origin is a
Siegel point, assume that ¢; ¢ {g"(z0)},>, for all j. If the origin is a Cremer
point, assume that 0 ¢ {g;"(20)},-o and ¢ ¢ {g5"(20)},~ for all J.

In both cases, it follows that z, is biaccessible from .oZ, so that 0¢
{90"(20)},1>0 and ¢ ¢ {g;"(z0)},50 for all j. Lemma 5.3 implies that for
each j, there exist two distinct external rays R,, and R, with a common landing
point w; such that R, U{w;} UR, separates cj from the origin. Then we may
suppose that all R, U{w,}URU are ;- symmetncal

Let U be the component of C — U (R, U{w;} UR,) which contains the

origin. We cut off U along an equlpotentlal curve E, and thus have the ;-
symmetric Jordan domain V which contains the origin. Then gy is injective on
0V and preserves the orientation, so Lemma 3.2 implies that gy is injective on V.

Since ¥ contains no critical points of gy, it follows from Lemma 3.1 that
there exists a Jordan domain W such that ¥V = W and gy is univalent on a
neighborhood of W (see Figure 14).

Now we take a Siegel compactum S for (gy, W) by Proposition 2.1. Then S
meets the boundary dW but not 0V — Uj:o {w;}, so S must contain some wj,.

Furthermore, d(C — S) — {wj,} is disconnected, and thus the point w;, is biacces-
sible from C —S. However, the biaccessibility of w;, contradicts Proposition 2.2.
O

6. Proof of Theorem 1.3

2mi6 2 g  Let
1—az

v(z) = 1/Z be an inversion. Then /i ov = v o h implies v(J,) = J,. The zeros are

In this section, we consider a rational function A(z) =e
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FIiGure 14

the origin and «, and the poles are infinity and v(a). We suppose |a| > 3 such
that Al is an analytic circle difftomorphism. Then both of infinity and the
origin are superattracting fixed points with local degree 2, and thus hov=voh
implies v(.o#,) = 7). Let ¢ be the critical point of / such that |¢| > 1, and thus
v(c) is also a critical point of A.

Assume that the rotation number Rot(/|g:) is irrational. If / is linearizable
on S', then there exists a Herman ring # and thus S' @ # = F,. On the other
hand, if / is not linearizable on S!, then S! = J,. In either case, some critical
point is recurrent (see [Ma]), so that both ¢ and v(c¢) are recurrent by hov =vo h.
Therefore, each of superattracting fixed points infinity and the origin is the only
critical point in each immediate basin. We may consider only the immediate
basin Z,. So there exists a conformal isomorphism ® : C — D — .¢Z, such that
®(0) =0 and O ohod(w) = w2

We consider the dynamics of external rays and the equipotential curves
in the immediate basin .. It is easy to see that A(R,) = Ry, h™'(R)) N .o, =
RyUR., h(E;) = E: and h™'(E) Nt = E .

LEMMA 6.1. There are no points in S' which are biaccessible from .of,,.

Proof. This proof is referred from the last part of the proof of [Za, Theorem
5]. We use proof by contradiction. Assume that there exists a point zj € S'
which is biaccessible from .o7,. Let R; and R, be two distinct external rays
landing at zy, let Uy be the component of C— (R;U{zo}UR,) which does not
contain S'. Let z, = h°"(zo) and U, be the component of C — 7°"(R;U{zo} UR,)
which does not contain S' (see Figure 15).
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FIGURE 15

There are no critical points in S', and so we notice that 4(U,) # 1/2 for all
n>0. First, we show that A(U,) >1/2 for some U, Assume that
A(Uy) < 1/2. By the similar method of the proof of (a) = (b) in Lemma 4.2,
we see h is injective on U,. Since z, is not a critical point, S' & h(U),
therefore, h(Up) = U; and A(U;) =2 A(Uy). If A(U;) < 1/2, then we sim-
ilarly have that #(U;) = U, and A(U,) =2-A(U;). By repeating the above
step, we conclude there exists Uy such that A(Uy) > 1/2.

We shall see contradiction. Let V' =C— Uy. Then A(V)<1/2 by
A(Uy) >1/2. Since the rotation number Rot(h|gi) is irrational, the orbit
{zs},s¢ 1s infinite. So U, < V for all n> N +1 (see Figure 16).

FIGURE 16
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By the above argument, we obtain that 4(U,) = U,,; and A(U,.)
2-A(U,) for all n> N+ 1. This monotonous increasing contradicts 4(U,)
A(V)<1/2 for all n> N + 1.

O Al

In the rest of this section, we shall use the above lemma without any
explanation.

Lemma 6.2. Let Ry and R; be two distinct external rays land at z # c. Let
U be a component of C — (R;U{z}UR,). Then the following two conditions are
equivalent to each other:

(@) A(U) < 1/2;

(b) U does not contain c.

Proof. (a) = (b): Assume that 4(U) < 1/2. Then we cut off U along an
equipotential curve E,, and thus have the Jordan domain ¥ which is contained in
U. Then 4 is injective on 0V and preserves the orientation. We may consider
the following two cases:

(1) S'nv =9,

2) Stcr.

In the case (1), Lemma 3.2 implies that / is injective on V. We could take a
more bigger r > 1, so that /4 is univalent on U. Therefore, U does not contain c.

In the case (2), we set W =V —D (see Figure 17).

B R,

FIGURE 17

Then £ is injective on 0W and preserves the orientation. So Lemma 3.2
implies that /4 is injective on W, and thus ¢ ¢ W. Since ¢ ¢ D, the domain V'
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does not contain ¢. We could take a more bigger r > 1, so that U does not
contain c.

(b) = (a): Assume that U does not contain ¢. Then C — U contains ¢. It
follows from the contraposition of (a) = (b) that A(C — U) > 1/2, and thus
A(U) < 1/2. O

LEmMMA 6.3.  Assume that z is biaccessible from the immediate basin /., such
that ¢ ¢ {h*"(z)},>o. Then there exist two distinct external rays R, and R, with a
common landing point w such that R,U{w}U R, separates S! from c.

Proof. Let Ry and R, be two distinct external rays landing at z. Let U be
the component of C — (R;U {z} U R,) which does not contain ¢. Then U satisfies
A(U) < 1/2 by Lemma 6.2. If S' < U, we put R,U{w}UR, = R,U{z}UR,.
On the other hand, if S'NTU =0, then we see A is univalent on U and thus
A(h(U)) =2 - A(U) by the similar method of the proof of (a) = (b) in Lemma 4.2.

We consider 4(U) instead of U. If h(U) contains neither ¢ nor S', then
we similarly have that /4 is univalent on 4(U) and thus A(h°?(U)) =2%- A(U).
Otherwise, #(U) contains ¢ or S'.

By repeating the above step, we see that there exists N > 0 such that 4°V(U)
does not contain ¢ nor S! and #°N*!(U) contains ¢ or S!. Then / is univalent
on 7°N(U) and thus A(h°N*1(U)) = 2N¥*1. A(U). So we may consider the fol-
lowing three cases:

(1) h°N*+1(U) contains S' but not ¢;

(2) h°N+1(U) contains ¢ but not S';

(3) h°Nt1(U) contains both ¢ and S'.

In the case (1) and case (2), put R,U{w}UR, = h°N*1(R;U{z}UR,).

Now, we consider the case (3). Since h|m cheN(U) — hoN+L(U) s
bijective, 7°N(U) contains the Jordan closed curve y such that A(y) =S'. So
hov=uvoh implies that A~ (S') =S8"UyUu(y) (see Figure 18).

To simplify the notation, we set h°Y(R;) = Ry and h°V(R,) = R,. Let R, =
Ry, Ry=R,.), and w be their landing point. Then h(R,U{w}UR,) =
hNHLH(RU{zYUR,). We shall see that R,U{w}UR, separates S' from ¢ as
following.

Assume that R,U{w}UR, does not separate S' from c. Let ¥ be the
component of C — (R,U{w}UR,) which does not contain ¢, and thus it does
not contain S'.  Then A(V) = A(h°¥(U)) by A(V) < 1/2. So h is univalent on
V and thus A(h(V))=2-A(V). Then A(h(V))=2-A(V)=2-AhN(U)) =
A(h°N+(U)) implies that h(V) = h°N*1(U) > S'. So V¥ contains a preimage of
S'. This is impossible, for A~ 1(S') = S'UyUn(y). O

Proof of Theorem 1.3. We use proof by contradiction, and thus assume that
c¢{h"(z0)},50- Then there exist two distinct external rays R, and R, with a
common landing point w such that R, U {w} U R, separates S' from ¢ by Lemma
6.3. Let U be the component of C — (R,U{w}UR,) which contains S'. We
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o R) s (R)

FIGURE 18

cut off U along an equipotential curve E,, and thus have the Jordan closed curve
y < C—D. Then h is injective on y and preserves the orientation. Let V' be
the Jordan annular domain which is surrounded by y and S'. Since 77 does not
contain the pole v(a), it follows from Lemma 3.2 that / is injective on ¥/. Then
h(V') = C — D implies that ¥’ does not contain the zero a.

We put ¥ = V'US'Un(¥’). So ¥ does not contain any of the pole v(a),
the zero a, two critical points ¢ and v(c) (see Figure 19).

/
/
/

E:-—

FIGURE 19
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Moreover, & is injective on ¥V by hov=wvoh. It follows from Lemma 3.1
that there exists a Jordan annular domain W such that ¥ = W and # is univalent
on a neighborhood of W. We may suppose that both W and h(W) do not
contain the origin.

Now we take a Herman compactum H for (i, W) by Proposition 2.3.  Then
H meets the outer component of the boundary W but not y — {w}, so H must
contain w. Let Q be the unbounded component of C— H. Then 0Q — {w}
is disconnected, and thus the point w is biaccessible from . However, the
biaccessibility of w contradicts Proposition 2.4. O
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