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ON BIACCESSIBLE POINTS IN THE JULIA SETS

OF SOME RATIONAL FUNCTIONS

Mitsuhiko Imada

Abstract

We are interested in biaccessible points in the Julia sets of rational functions. D.

Schleicher and S. Zakeri studied which points can be biaccessible in the Julia sets of

quadratic polynomials with irrationally indi¤erent fixed points [SZ, Za]. In this paper,

we consider the two polynomial families fcðzÞ ¼ zd þ c, gyðzÞ ¼ e2piyzþ zd and the cubic

rational family hy; aðzÞ ¼ e2piyz2
z� a

1� az
.

1. Introduction and results

Let ĈC ¼ CU fyg be the Riemann sphere, let f : ĈC ! ĈC be a rational
function of degree db 2. We define the Fatou set of f as the union of all
open sets U H ĈC such that the family of iterates f f �njUgnb0 forms a normal
family, and the Julia set of f as the complement of the Fatou set of f . We
denote the Julia set of f by Jf and the Fatou set of f by Ff . Clearly, the Fatou
set Ff is open and the Julia set Jf is closed. A connected component of the
Fatou set is called a Fatou component. Their fundamental properties can be
found in [Mi].

For each fixed point z0, the multiplier at z0 is defined as l ¼ f 0ðz0Þ when
z0 0y and is defined as l ¼ lim

z!y
1= f 0ðzÞ when z0 ¼ y.

A fixed point z0 is called superattracting if the multiplier l is equal to zero,
or equivalently z0 is a critical point. Then the point z0 is contained in the Fatou
set Ff . The Fatou component containing the superattracting fixed point z0 is
called the immediate basin of z0, and we denote by Az0 .

A fixed point z0 is called irrationally indi¤erent if the multiplier l satisfies
jlj ¼ 1 but l is not a root of unity, or equivalently there exists an irrational
number y such that l ¼ e2piy. So we distinguish between two possibilities.
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If an irrationally indi¤erent fixed point z0 lies in the Fatou set, the point z0 is
called a Siegel point. The Fatou component containing a Siegel point z0 is called
the Siegel disk with center z0, and we denote by Sz0 .

If an irrationally indi¤erent fixed point z0 belongs to the Julia set, the point
z0 is called a Cremer point. We say that a Cremer point z0 has the small cycles
property if every neighborhood of z0 contains infinitely many periodic orbits.
For quadratic polynomials, every Cremer point has the small cycles property
[Yo1]. However, it is not known whether this is true for arbitrary rational
functions.

An invariant Fatou component H is called a Herman ring if H is confor-
mally isomorphic to some annulus. Then the dynamics of f on H corresponds
to the dynamics of an irrational rotation on this annulus.

Let WH ĈC be a simply connected domain. Assume that the boundary qW
contains at least two points. For the sake of convenience, we assume that W
contains infinity y, and consider a conformal isomorphism F : ĈC�D ! W such
that FðyÞ ¼ y. For each angle t A R=Z, the external ray is defined as

Rt ¼ fFðre2pitÞ : r > 1g:
For each radius r > 1, the equipotential curve is defined as

Er ¼fFðre2pitÞ : t A R=Zg:
If there exists a point z A qW such that lim

r&1
Fðre2pitÞ ¼ z, then we say that the

external ray Rt lands at the point z. A point z A qW is called accessible from
W if there exists a continuous curve g : ½0; 1Þ ! W such that lim

s%1
gðsÞ ¼ z.

Then there exists an external ray landing at z (see for example [Mc, Corollary
6.4]).

Definition 1.1. We say that a point z A qW is biaccessible from W if there
exist at least two distinct external rays landing at z (see Figure 1).

Figure 1
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In the above definition, the biaccessibility from W does not depend on the
choice of the Riemann maps F. In fact, it depends only the topology of the
boundary qW. By a theorem of F. and M. Riesz (see [Mi]), qW� fzg is discon-
nected whenever z A qW is biaccessible from W. Moreover, the converse is true
(see [Mc, Theorem 6.6]). Therefore, z A qW is biaccessible from W if and only if
z A qW is a cut point of qW, namely qW� fzg is disconnected.

We are interested in the topological structures of the Julia sets and the
boundaries of Fatou components. There are some results about local connec-
tivity (see for example [Mi, P, Ra, Ro]) and (bi)accessibility (see for example [Pe,
Sch, Smi, Zd]). As for Siegel disks, the location of biaccessible points is well
known as given in the following proposition.

Proposition 1.1. Let f be a rational function of degree db 2. Assume that
infinity y is a Siegel point. Let Sy be the Siegel disk with center y. If z is
biaccessible from Sy, then it is a periodic point of f .

Proof. We take a conformal isomorphism F : ĈC�D ! Sy such that
FðyÞ ¼ y and F�1 � f �FðwÞ ¼ lw, where l is the multiplier at y. So l
is written as e2piy with an irrational number y. We consider the dynamics of
external rays in the Siegel disk Sy. It is easy to see f �nðRtÞ ¼ Rtþny for all
nb 0.

If z is biaccessible from Sy, then there exist two distinct external rays Rs

and Rt landing at z. Since y is irrational, we may suppose that

s < sþNy < t < tþNy < sþ 1;

where N is some number. Let U1 and U2 be two distinct components of
C� ðRs U fzgURtÞ. So we may assume that f �NðRsÞHU1 and f �NðRtÞHU2

(see Figure 2).

Both f �NðRsÞ and f �NðRtÞ land at f �NðzÞ by the continuity of f �N . There-
fore, f �NðzÞHU1 VU2, and thus f �NðzÞ ¼ z. r

We consider which points can be biaccessible from the immediate basins
of superattracting fixed points. For quadratic polynomials with irrationally

Figure 2
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indi¤erent fixed points, S. Zakeri [Za] showed the following proposition which is
an improvement of [SZ, Theorem 3].

Proposition 1.2. Let fcðzÞ ¼ z2 þ c be a quadratic polynomial with an
irrationally indi¤erent fixed point a. Assume that z0 is biaccessible from the
immediate basin Ay of infinity. Then:

� if a is a Siegel point, the critical point 0 is contained in the forward orbit
f f �n

c ðz0Þgnb0 of z0;
� if a is a Cremer point, then the point a is contained in the forward orbit
f f �n

c ðz0Þgnb0 of z0.

In the above proposition, if a is a Cremer point, we are interested in whether
the point a is accessible or not. In fact, this is an open problem. If the point a
is accessible, then it follows from the Snail Lemma that infinitely many external
rays land at the point.

In this paper, we shall extend Proposition 1.2 for more general polynomials
and some rational functions of degree 3. In fact, such functions are well known
and selected so as to have simple locations of critical points. However, we deal
with the biaccessibility of Fatou components of genuine rational functions, which
probably has not been studied as yet.

First, we will show the following which is a small extension of the proposi-
tion for polynomials with only one critical point in C.

Theorem 1.1. Let fcðzÞ ¼ zd þ c be a polynomial of degree db 2 with
an irrationally indi¤erent fixed point a. Assume that z0 is biaccessible from the
immediate basin Ay of infinity. Then:

� if a is a Siegel point, the critical point 0 is contained in the forward orbit
f f �n

c ðz0Þgnb0 of z0;
� if a is a Cremer point, either the point a is contained in the forward orbit
f f �n

c ðz0Þgnb0 of z0 or the critical point 0 is contained in the forward orbit
f f �n

c ðz0Þgnb0 of z0.

In the above theorem, if a is a Cremer point which has the small cycles
property, then the critical point 0 is not accessible from Ay [Ki, Theorem 1.1].
Then 0 B f f �n

c ðz0Þgnb0, and so we can conclude that a A f f �n
c ðz0Þgnb0. Accord-

ing to [Yo1], every Cremer point of quadratic polynomials has the small cycles
property, so the conclusion of the second part in Proposition 1.2 is just a A
f f �n

c ðz0Þgnb0.
The following theorem gives an extension for some polynomials having more

than one critical point in C. However, we can make use to the symmetrical
locations of critical points.

Theorem 1.2. Let gyðzÞ ¼ e2piyzþ zd be a polynomial of degree db 2 so
that the origin is an irrationally indi¤erent fixed point. Let c0; c1; . . . ; cd�2 be all
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critical points of gy in C. Assume that z0 is biaccessible from the immediate basin
Ay of infinity. Then:

� if the origin is a Siegel point, there exists a critical point cj0 which is
contained in the forward orbit fg�n

y ðz0Þgnb0 of z0;
� if the origin is a Cremer point, either the origin is contained in the forward
orbit fg�n

y ðz0Þgnb0 of z0 or there exists a critical point cj0 which is contained
in the forward orbit fg�n

y ðz0Þgnb0 of z0.

In the above theorem, if the origin is a Cremer point which has the small
cycles property, then there exists a critical point cj0 which is not accessible from
Ay [Ki, Theorem 1.1]. In addition, the symmetry of the Julia set implies that
every critical point cj is not accessible from Ay (see Section 5). Therefore,
cj B fg�n

y ðz0Þgnb0 for all j, and so we can conclude that 0 A fg�n
y ðz0Þgnb0.

Finally, we will consider some rational functions of degree 3 which are
corresponding to quadratic polynomials with irrationally indi¤erent fixed points
in a sense. Indeed, the dynamics of analytic circle di¤eomorphisms with irratio-
nal rotation numbers and the local dynamics of irrationally indi¤erent fixed
points are similar in certain respects. So we will suggest a new application of
Herman compacta to the proof of the following theorem.

Theorem 1.3. Let hðzÞ ¼ hy;aðzÞ ¼ e2piyz2
z� a

1� az
be a rational function so

that jaj > 3 and the rotation number RotðhjS1Þ is irrational. Let c be the critical
point of h such that jcj > 1. Assume that z0 is biaccessible from the immediate
basin Ay of infinity. Then the critical point c is contained in the forward orbit
fh�nðz0Þgnb0 of z0.

In the above theorem, we fix jaj > 3 and consider the one-parameter family

hy;aðzÞ ¼ e2piyz2
z� a

1� az
with y of rational functions. From the continuity and the

monotonous increasing of the rotation function y 7! Rotðhy;ajS1Þ, we can adjust
the rotation number to be any desired irrational constant (see [MS, Section I.4]).

2. Local dynamics

In this section, we suppose that f is a rational function of degree db 2 and
consider the local dynamics of f . We introduce Siegel compacta and Herman
compacta. They are essential for the proofs of the theorems. First, we mention
about the linearizability.

Definition 2.1. Let z0 be an irrationally indi¤erent fixed point of f . Let l
be the multiplier at z0, so it is written as e2piy with an irrational number y. If
there exists a local holomorphic change of coordinate z ¼ FðwÞ, with Fð0Þ ¼ z0,
such that F�1 � f �F is the irrational rotation w 7! e2piyw near the origin, then
we say that f is linearizable at the point z0.
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An irrationally indi¤erent fixed point z0 of f is either a Siegel point or a
Cremer point, according to whether f is linearizable at the point z0 or not.
There are some results about the linearizability of irrationally indi¤erent fixed
points (see for example [Mi, Section 11]).

Definition 2.2. Assume that f jS1 : S1 ! S1 is an analytic circle di¤eo-
morphism whose rotation number Rotð f jS1Þ is irrational. If there exists an

analytic circle di¤eomorphism F : S1 ! S1 such that F�1 � f �F is the irrational

rotation w 7! e2piRotð f j
S1
Þw, then we say that f is linearizable on S1.

For a general theory on analytic circle di¤eomorphisms, we refer to [MS].
There are some results about the linearizability for analytic circle di¤eomor-
phisms with irrational rotation numbers (see for example [Yo2]). In addition,
there are fine theorem correspondences between the linearizability of irrationally
indi¤erent fixed points and the linearizability for analytic circle di¤eomorphisms
with irrational rotation numbers (see [PM, Theorem I.4.1]).

The following two propositions will be used for the proofs of Theorem 1.1
and Theorem 1.2.

Proposition 2.1. Let z0 be an irrationally indi¤erent fixed point of f . Let
U be a bounded neighborhood of z0 so that the boundary qU is a Jordan closed
curve. Assume that f is univalent on a neighborhood of U. Then there exists a
set S with the following properties:

� S is compact, connected, and ĈC� S is connected;
� z0 A SHU , S V qU 0j, and f ðSÞ ¼ S.

Moreover, f is linearizable at z0 if and only if the interior Int S of S contains z0.

We say that such a set S is a Siegel compactum for ð f ;UÞ. Its applications
can be found in [PM, Section IV]. The above proposition is described in [PM,
Theorem 1], however, we do not assume that f �1 is defined and univalent on a
neighborhood of U . In fact, the condition leaves no impression on the results.

Proposition 2.2. Assuming the hypothesis in Proposition 2.1, let S be a
Siegel compactum for ð f ;UÞ. Then:

� if z0 is a Siegel point, there are no points which are biaccessible from ĈC� S;
� if z0 is a Cremer point, then the point z0 is the only possible point which is
biaccessible from ĈC� S.

Proof. This proof is referred from the explanations of [Za, Proposition 1]
and [SZ, Proposition 2]. We use proof by contradiction.

First, assume that z0 is a Siegel point and there exists a point z which is

biaccessible from ĈC� S. Let F : ĈC�D ! ĈC� S be a conformal isomorphism
such that FðyÞ ¼ y. So g ¼ F�1 � f �F is univalent on an outer neighbor-
hood of S1. Then g is extended and univalent on a neighborhood of S1 by the
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reflection principle. Furthermore, the rotation number RotðgjS1Þ corresponds to
the irrational number y which satisfies l ¼ e2piy, where l is the multiplier at z0
[PM, Theorem 2].

Let Rs and Rt be two distinct external rays land at z. Let X be the
component of Int S which contains the Siegel point z0. Clearly, f ðX Þ ¼ X . Let
V be the component of C� ðRs U fzgURtÞ which does not contain X . We cut
o¤ V along an equipotential curve Er, and thus have the Jordan domain W
which is contained in V . Then D ¼ F�1ðW � SÞ has the interval I HS1 as a
part of its boundary (see Figure 3).

Since the rotation number RotðgjS1Þ is irrational, there exists N such that[N

j¼0
g� jðIÞ ¼ S1. We could take a more smaller r > 1, so that g; g�2; . . . ; g�N

are univalent on D, and furthermore,
[N

j¼0
g� jðDÞ is an outer neighborhood of

S1.
Then f ; f �2; . . . ; f �N are univalent on W � S, and thus

[N

j¼0
f � jðW � SÞ is

an outer neighborhood of S. So any point of the boundary qX H qS can be

approximated by some sequence in
[N

j¼0
f � jðW � SÞ. Now the injectivity of

f implies that each Jordan domain f � jðWÞ does not intersect X , therefore,

f � jðWÞVX contains at most one point f � jðzÞ. This contradicts that qX has
infinitely many points.

Now, assume that z0 is a Cremer point and there exists a point z0 z0 which
is biaccessible from ĈC� S. Let F : ĈC�D ! ĈC� S be a conformal isomorphism
such that FðyÞ ¼ y. So g ¼ F�1 � f �F is univalent on an outer neighbor-
hood of S1. Then g is extended and univalent on a neighborhood of S1 by the
reflection principle. Furthermore, the rotation number RotðgjS1Þ corresponds to
the irrational number y which satisfies l ¼ e2piy, where l is the multiplier at z0
[PM, Theorem 2].

Let Rs and Rt be two distinct external rays land at z. Let V be the
component of C� ðRs U fzgURtÞ which does not contain z0. We cut o¤ V
along an equipotential curve Er, and thus have the Jordan domain W which is

Figure 3
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contained in V . Then D ¼ F�1ðW � SÞ has the interval I HS1 as a part of
its boundary (see Figure 4).

Since the rotation number RotðgjS1Þ is irrational, there exists N such that[N

j¼0
g� jðIÞ ¼ S1. We could take a more smaller r > 1, so that g; g�2; . . . ; g�N

are univalent on D, and furthermore,
[N

j¼0
g� jðDÞ is an outer neighborhood of

S1.
Then f ; f �2; . . . ; f �N are univalent on W � S, and thus

[N

j¼0
f � jðW � SÞ is

an outer neighborhood of S. So the Cremer point z0 A qS can be approximated

by some sequence in
[N

j¼0
f � jðW � SÞ. However, the injectivity of f implies

that each Jordan domain f � jðWÞ does not contain z0 and each f � jðzÞ is not z0,
therefore, f � jðWÞV fz0g ¼ j. r

The following two propositions will be used for the proof of Theorem 1.3.

Proposition 2.3. Let U be a bounded annular neighborhood of S1 such that
the boundary qU consists of two Jordan closed curves g1 HC�D and g2 HD.

Assume that f is univalent on a neighborhood of U and f jS1 : S1 ! S1 is an
analytic circle di¤eomorphism whose rotation number Rotð f jS1Þ is irrational.

Assume that f ðUÞ does not contain the bounded component of ĈC� g2. Then there
exists a set H with the following properties:

� H is compact, connected, and ĈC�H has just two connected components;
� S1 HHHU , H V g1 0j, H V g2 0j, and f ðHÞ ¼ H.

Moreover, f is linearizable on S1 if and only if the interior Int H of H contains S1.

We say that such a set H is a Herman compactum for ð f ;UÞ. The above
proposition is described in [PM, Theorem V.1.1]. We do not assume that f �1 is
defined and univalent on a neighborhood of U , however, we add the assumption
that f ðUÞ does not contain the bounded component of ĈC� g2.

Figure 4
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Proposition 2.4. Assuming the hypothesis in Proposition 2.3, let H be a
Herman compactum for ð f ;UÞ. Then there are no points which are biaccessible
from the unbounded component of ĈC�H.

In the rest of this section, we shall show the above two propositions.

Lemma 2.1. Let U be a bounded annular neighborhood of S1 such that
the boundary qU consists of two Jordan closed curves g1 HC�D and g2 HD.

Assume that f is univalent on a neighborhood of U and f jS1 : S1 ! S1 is an
analytic circle di¤eomorphism whose rotation number Rotð f jS1Þ is Diophantine.
Then the Herman ring H intersects both g1 and g2.

Proof. This proof is referred from the proof of [PM, Theorem II.3.1].
Since the rotation number Rotð f jS1Þ is Diophantine, f is linearizable on S1 [Yo2,
Theorem 1.4]. So we have the Herman ring H such that S1 HH.

We use proof by contradiction. Assume that HV g1 ¼ j. Let fKngnb1 be
a sequence of closed annuli in the Herman ring H such that f ðKnÞ ¼ Kn,

Kn H Int Knþ1 and
[þy

n¼1
Kn ¼ H. So Kn converges to H in the sense of Haus

dor¤ convergence. Let Wn be the unbounded component of ĈC� Kn, let W be the
unbounded component of ĈC�H. So Wn converges to W with respect to y in
the sense of Carathéodory kernel convergence. We consider the following con-
formal isomorphisms

Fn : ĈC�D ! Wn; F : ĈC�D ! W

so that FnðyÞ ¼ FðyÞ ¼ y, lim
z!y

FnðzÞ=z > 0 and lim
z!y

FðzÞ=z > 0. So Fn

converges locally uniformly to F by the Carathéodory kernel theorem (see for
example [Po, Theorem 1.8]).

Since f is univalent on a neighborhood of U and HV g1 ¼ j, there exists
r0 > 1 such that g ¼ F�1 � f �F is univalent on fz : 1 < jzj < r0g. So gn ¼
F�1

n � f �Fn is also univalent on fz : 1 < jzj < r0g. By the reflection principle,
gn and g are extended and univalent on fz : 1=r0 < jzj < r0g. We fix r such that
1 < r < r0. Since Fn converges locally uniformly to F, gn converges uniformly
to g on rS1. So gn converges uniformly to g on 1=rS1. By the maximum
principle, gn converges uniformly to g on fz : 1=ra jzja rg, particularly on S1.

Let Ln be the outer boundary of Kn, let L be the outer boundary of the
Herman ring H. We notice that the dynamics of gn on S1 corresponds to the
dynamics of f on Ln. Since Ln is a Jordan closed curve in the Herman ring
H such that f ðLnÞ ¼ Ln, the dynamics of f on Ln corresponds to the dynamics

of the irrational rotation z 7! e2piRotð f j
S1
Þz. Therefore, the rotation number

RotðgnjS1Þ corresponds to Rotð f jS1Þ. Then,

RotðgjS1Þ ¼ lim
n!þy

RotðgnjS1Þ ¼ lim
n!þy

Rotð f jS1Þ ¼ Rotð f jS1Þ:
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Therefore, RotðgjS1Þ is Diophantine, and thus g is linearizable on S1. So we can
take a Jordan closed curve h in an outer neighborhood of S1 such that gðhÞ ¼ h,
and thus FðhÞ is a Jordan closed curve such that f ðFðhÞÞ ¼ FðhÞ. Let V be
the Jordan annular domain which is surrounded by FðhÞ and S1 (see Figure 5).

We notice f ðVÞ ¼ V . Moreover, the dynamics of f on V corresponds
to the dynamics of the irrational rotation z 7! e2piRotð f j

S1
Þz by the classification

theorem of dynamics on hyperbolic surfaces (see for example [Mi, Theorem 5.2]).
Then LHV HFf . This contradicts that L is the outer boundary of the Herman
ring H. Therefore, we conclude HV g1 0j. It is possible to see HV g2 0j,
as in the above argument. r

Proof of Proposition 2.3. This proof is referred from [PM, Section III.2].
Since the rotation number Rotð f jS1Þ is irrational, there exists a sequence fangnb1

such that lim
n!þy

an ¼ 0 and each fnðzÞ ¼ e2pian f ðzÞ has the rotation number

Rotð fnjS1Þ which is Diophantine (see also [MS, Lemma 4.1]). So fn is univalent
on a neighborhood of U .

From Lemma 2.1, we take the closed annulus Hn in the Herman ring Hn of
fn with the following properties:

� Hn is compact, connected, and ĈC�Hn has just two connected components;
� S1 HHn HU , Hn V g1 0j, Hn V g2 0j, and fnðHnÞ ¼ Hn.

Every Hn is contained in U , so there exists a subsequence fHnigib1 and a set H 0

such that Hni converges to H 0 in the sense of Hausdor¤ convergence. Then H 0

has the following properties:
� H 0 is compact and connected;
� S1 HH 0 HU , H 0 V g1 0j and H 0 V g2 0j.
Since fni converges uniformly to f on U , it follows from [PM, Lemma

III.1.2] that fniðHniÞ converges to f ðH 0Þ in the sense of Hausdor¤ convergence.
Then fniðHniÞ ¼ Hni implies f ðH 0Þ ¼ H 0. Let H be the union of H 0 and all the
components of ĈC�H 0 contained in U . So ĈC�H has just two connected
components. Since f ðUÞ does not contain the bounded component of ĈC� g2, it
is not di‰cult to see f ðHÞ ¼ H, and thus H satisfies the required properties.

Figure 5
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Now, we show the last part of Proposition 2.3. If f is linearizable on S1,
it is obvious that S1 H Int H. Conversely, assume that S1 H Int H. Let V be
the component of Int H which contains S1. So V is conformally isomorphic
to some annulus, and f ðVÞ ¼ V . The dynamics of f on V corresponds to the
dynamics of the irrational rotation z 7! e2piRotð f j

S1
Þz by the classification theorem

of dynamics on hyperbolic surfaces. Therefore, f is linearizable on S1. r

The following lemma corresponds to [PM, Theorem 2].

Lemma 2.2. Assuming the hypothesis in Proposition 2.3, let H be a Herman
compactum for ð f ;UÞ. Let W be the unbounded component of ĈC�H, let
F : ĈC�D ! W be a conformal isomorphism such that FðyÞ ¼ y. So g ¼
F�1 � f �F is univalent on an outer neighborhood of S1. Then g is extended
and univalent on a neighborhood of S1 by the reflection principle. Furthermore,
the rotation number RotðgjS1Þ corresponds to the rotation number Rotð f jS1Þ.

Proof. First, we show that there exists a Herman compactum H for ð f ;UÞ
such that RotðgjS1Þ ¼ Rotð f jS1Þ. It is referred from the proof of [PM, Lemma
III.3.3]. Since the rotation number Rotð f jS1Þ is irrational, there exists a se-
quence fangnb1 such that lim

n!þy
an ¼ 0 and each fnðzÞ ¼ e2pian f ðzÞ has the

rotation number Rotð fnjS1Þ which is Diophantine. So fn is univalent on a
neighborhood of U .

From Lemma 2.1, we take the closed annulus Hn in the Herman ring Hn of
fn as the Herman compactum for ð fn;UÞ. Every Hn is contained in U , so there
exists a subsequence fHnigib1 and a set H 0 such that Hni converges to H 0 in the
sense of Hausdor¤ convergence.

Since fni converges uniformly to f on U , it follows from [PM, Lemma
III.1.2] that fniðHniÞ converges to f ðH 0Þ in the sense of Hausdor¤ convergence.
Then fniðHniÞ ¼ Hni implies f ðH 0Þ ¼ H 0. Let H be the union of H 0 and all the
components of ĈC�H 0 contained in U . It is not di‰cult to see that H is a
Herman compactum for ð f ;UÞ.

Let Wni be the unbounded component of ĈC�Hni , let Fni : ĈC�D ! Wni be a
conformal isomorphism so that FniðyÞ ¼ y. For the sake of convenience, we
assume that lim

z!y
FniðzÞ=z > 0 and lim

z!y
FðzÞ=z > 0. We notice that W is the

unbounded component of ĈC�H, and is the unbounded component of ĈC�H 0 as
well. So Wni converges to W with respect to y in the sense of Carathéodory
kernel convergence, and thus Fni converges locally uniformly to F by the
Carathéodory kernel theorem.

Since f is univalent on a neighborhood of U , there exists r0 > 1 such that
g ¼ F�1 � f �F is univalent on fz : 1 < jzj < r0g. So gni ¼ F�1

ni
� fni �Fni is also

univalent on fz : 1 < jzj < r0g. By the reflection principle, gni and g are extended
and univalent on fz : 1=r0 < jzj < r0g. We fix r such that 1 < r < r0. Since Fni

converges locally uniformly to F, gni converges uniformly to g on rS1. So gni
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converges uniformly to g on 1=rS1. By the maximum principle, gni converges
uniformly to g on fz : 1=ra jzja rg, particularly on S1.

Let Lni be the outer boundary of Hni . We notice that the dynamics of gni
on S1 corresponds to the dynamics of fni on Lni . Since Lni is a Jordan closed
curve in the Herman ring Hni such that fniðLniÞ ¼ Lni , the dynamics of fni on

Lni corresponds to the dynamics of the irrational rotation z 7! e2piRotð fni jS1 Þz.
Therefore, the rotation number Rotðgni jS1Þ corresponds to the rotation number
Rotð fni jS1Þ. Then,

RotðgjS1Þ ¼ lim
i!þy

Rotðgni jS1Þ ¼ lim
i!þy

Rotð fni jS1Þ ¼ Rotð f jS1Þ:

Now, we show that such the rotation number RotðgjS1Þ does not depend on
choosing the Herman compactum H for ð f ;UÞ. It is referred from the proof of
[PM, Lemma III.3.4]. We fix a Herman compactum H for ð f ;UÞ. A sequence
fzngn AZ is called a full orbit of z0 if znþ1 ¼ f ðznÞ for all n A Z, and we denote
by Oðz0Þ. Let HM be the connected component of the set fz A U : bOðzÞHUg
which contains S1. Clearly, f ðHMÞ ¼ HM and HHHM . It is not di‰cult to
see that HM is the maximal Herman compactum for ð f ;UÞ.

Let WM be the unbounded component of ĈC�HM , let FM : ĈC�D ! WM

be a conformal isomorphism such that FMðyÞ ¼ y. So gM ¼ F�1
M � f �FM is

univalent on an outer neighborhood of S1. Then gM is extended and univalent

on a neighborhood of S1 by the reflection principle.
We fix a point z A H V g1 HHM V g1. Since g1 is a Jordan closed curve, the

point z is accessible from the unbounded component of ĈC�U , and is accessible
from WM as well. Let hHWM HW be a path converging to z. Then F�1ðhÞ
converges to some point w A S1 and F�1

M ðhÞ converges to some point wM A S1 (see
[Mc, Corollary 6.4]). Now the conformal isomorphism F�1 �FM preserves the
cyclic ordering between fg�nðF�1ðhÞÞgnb0 and fg�n

M ðF�1
M ðhÞÞgnb0 (see Figure 6).

Therefore, the cyclic ordering of fg�nðwÞgnb0 corresponds to the cyclic
ordering of fg�n

M ðwMÞgnb0, and thus RotðgjS1Þ ¼ RotðgM jS1Þ. r

Proof of Proposition 2.4. The method of the proof is similar to that of
Proposition 2.2. We use proof by contradiction.

First, we consider the case where f is linearizable on S1. Assume that there
exists a point z which is biaccessible from the unbounded component W of
ĈC�H. Let F : ĈC�D ! W be a conformal isomorphism such that FðyÞ ¼ y.
So g ¼ F�1 � f �F is univalent on an outer neighborhood of S1. Then g is
extended and univalent on a neighborhood of S1 by the reflection principle.
From Lemma 2.2, the rotation number RotðgjS1Þ corresponds to the rotation
number Rotð f jS1Þ.

Let Rs and Rt be two distinct external rays land at z. Let X be the com-
ponent of Int H which contains S1, let L be the outer boundary of X . Clearly,
f ðX Þ ¼ X and f ðLÞ ¼ L. Let V be the component of C� ðRs U fzgURtÞ which
does not contain L. We cut o¤ V along an equipotential curve Er, and thus
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have the Jordan domain W which is contained in V . Then D ¼ F�1ðW �HÞ
has the interval I HS1 as a part of its boundary (see Figure 7).

Since the rotation number RotðgjS1Þ is irrational, there exists N such that[N

j¼0
g� jðIÞ ¼ S1. We could take a more smaller r > 1, so that g; g�2; . . . ; g�N

are univalent on D, and furthermore,
[N

j¼0
g� jðDÞ is an outer neighborhood

of S1.

Figure 7

Figure 6
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Then f ; f �2; . . . ; f �N are univalent on W �H, and thus
[N

j¼0
f � jðW �HÞ

is an outer neighborhood of H. So any point of LH qW can be approximated

by some sequence in
[N

j¼0
f � jðW �HÞ. Now the injectivity of f implies that

each Jordan domain f � jðWÞ does not intersect L, therefore, f � jðWÞVL contains
at most one point f � jðzÞ. This contradicts that L has infinitely many points.

Now, we consider the case where f is not linearizable on S1. Assume that
there exists a point z which is biaccessible from the unbounded component W of
ĈC�H. Let F : ĈC�D ! W be a conformal isomorphism such that FðyÞ ¼ y.
So g ¼ F�1 � f �F is univalent on an outer neighborhood of S1. Then g is
extended and univalent on a neighborhood of S1 by the reflection principle.
From Lemma 2.2, the rotation number RotðgjS1Þ corresponds to the rotation
number Rotð f jS1Þ.

Let Rs and Rt be two distinct external rays land at z. Let V be the
component of C� ðRs U fzgURtÞ which does not contain S1. We cut o¤ V
along an equipotential curve Er, and thus have the Jordan domain W which
is contained in V . Then D ¼ F�1ðW �HÞ has the interval I HS1 as a part of
its boundary (see Figure 8).

Since the rotation number RotðgjS1Þ is irrational, there exists N such that[N

j¼0
g� jðIÞ ¼ S1. We could take a more smaller r > 1, so that g; g�2; . . . ; g�N

are univalent on D, and furthermore,
[N

j¼0
g� jðDÞ is an outer neighborhood of

S1.
Then f ; f �2; . . . ; f �N are univalent on W �H, and thus

[N

j¼0
f � jðW �HÞ

is an outer neighborhood of H. So any point of S1 H qW can be approximated

by some sequence in
[N

j¼0
f � jðW �HÞ. Now the injectivity of f implies that

each Jordan domain f � jðWÞ does not intersect S1, therefore, f � jðWÞVS1 con-
tains at most one point f � jðzÞ. This contradicts that S1 has infinitely many
points. r

Figure 8
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3. Preliminaries for proofs

In this section, we shall see preparations for the proofs of the theorems.
The following notion will be often used later.

Definition 3.1. Let WH ĈC be a simply connected domain which con-
tains y. Assume that the boundary qW contains at least two points. Let
F : ĈC�D ! W be a conformal isomorphism such that FðyÞ ¼ y. Let Rs and
Rt be two distinct external rays land at z. Let U1 and U2 be two distinct
components of C� ðRs U fzgURtÞ. Then for each l ¼ 1; 2, angle of Ul is defined
as

AðUlÞ ¼
lengthðF�1ðUl VErÞÞ

2pr
:

It does not depend on r > 1, so it is well defined. Clearly, 0 < AðU1Þ, AðU2Þ < 1
and AðU1Þ þ AðU2Þ ¼ 1. The angle between Rs and Rt is defined as AðRs;RtÞ ¼
minfAðU1Þ;AðU2Þg. Clearly, AðRs;RtÞa 1=2 (see Figure 9).

The following two lemmas will be used for the proofs of the theorems.

Lemma 3.1. Let K be a compact subset of the complex plane C. Assume
that f is analytic on a neighborhood of K , there are no critical points of f in K
and f is injective on K. Then there exists e > 0 such that f is univalent on NeðKÞ,
where NeðKÞ ¼ fz A C : min

w AK
jz� wj < eg.

Proof. Assume that f is not univalent on N1
n
ðKÞ for all n A N. Then there

exist xn A N1
n
ðKÞ and yn A N1

n
ðKÞ such that xn 0 yn and f ðxnÞ ¼ f ðynÞ.

Since fxngnb1 is contained in N1ðKÞ, we take a subsequence fxnigib1 and a point
x0 such that lim

i!þy
xni ¼ x0. Similarly, we take a subsequence fynij gjb1 of

Figure 9
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fynigib1 and a point y0 such that lim
j!þy

ynij ¼ y0. Then both x0 and y0 are
belong to K , and

f ðx0Þ ¼ lim
j!þy

f ðxnij Þ ¼ lim
j!þy

f ðynij Þ ¼ f ðy0Þ:

Now f is injective on K, and thus x0 ¼ y0. So f is not univalent on any
neighborhood of x0, and thus x0 is a critical point of f . This contradicts that
there are no critical points of f in K . r

Lemma 3.2. Let W be a bounded domain by a cycle gHC which consists
of finite Jordan closed curves. Let f be a complex-valued function defined on a
neighborhood of W. Assume that f is analytic on W and injective on qW. Assume
that f preserves the orientation on each Jordan closed curve which constructs a part
of qW. Then W 0 is well defined as the bounded domain by the cycle f ðqWÞHC,
and f maps W conformally onto W 0 (see Figure 10).

Proof. From the open mapping theorem, it is easy to see that W 0 is well
defined as the bounded domain by the cycle f ðqWÞHC.

Let w0 be a point in W 0. Let GðzÞ ¼ f ðzÞ � w0 ¼ w� w0. Then GðzÞ is
analytic on W and does not take the zeros on qW. From the argument principle,

1

2p

ð
qW

d arg GðzÞ ¼ 1

2p

ð
f ðqWÞ

d argðw� w0Þ ¼ N;

where N is the number of the zeros in W. We obtain N ¼ 1, so there exists the
zero z0 of G in W. Therefore, z0 is the point in W satisfies f ðz0Þ ¼ w0.

Similarly, we can see that there are no points z A W such that f ðzÞ ¼ w0

when w0 B W 0. r

4. Proof of Theorem 1.1

In this section, we consider a polynomial fcðzÞ ¼ zd þ c of degree db 2.

For each 0a ja d � 1, let sjðzÞ ¼ e2pi
j

d z be a j=d-rotation. Then fc � sj ¼ fc
implies sjðJfcÞ ¼ Jfc . The origin is only one critical point of fc in C.

Figure 10
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Assume that a is an irrationally indi¤erent fixed point of fc. Then the
origin is recurrent (see [Ma]), so the superattracting fixed point y is the only
critical point in the immediate basin Ay. Therefore, there exists a conformal
isomorphism F : ĈC�D ! Ay such that FðyÞ ¼ y and F�1 � fc �FðwÞ ¼ wd .

We consider the dynamics of external rays and the equipotential curves
in the immediate basin Ay. It is easy to see that fcðRtÞ ¼ Rdt, f �1

c ðRtÞ ¼[d�1

j¼0
Rtþ j

d

, fcðErÞ ¼ Erd and f �1
c ðErÞ ¼ E ffiffi

rd
p . Moreover, sjðAyÞ ¼Ay implies

sj �F ¼ F � sj, so that sjðRtÞ ¼ R
tþ j

d

and sjðErÞ ¼ Er.

Lemma 4.1. Let Rs and Rt be two distinct external rays land at z0 0. Let
U be the component of C� ðRs U fzgURtÞ such that AðUÞ ¼ AðRs;RtÞ. Then
AðUÞ < 1=d and sjðUÞV skðUÞ ¼ j for j0 k. Therefore, U does not contain
both two sj -symmetric points and C�U contains the origin.

Proof. Assume that AðUÞb 1=d. Then AðC�UÞbAðRs;RtÞ ¼ AðUÞb
1=d, so we may suppose that

s < sþ 1

d
a t < tþ 1

d
a sþ 1;

and furthermore, s1ðRsÞHU and s1ðRtÞHC�U (see Figure 11).

Then both Rsþ1
d
and Rtþ1

d
land at s1ðzÞ, so s1ðzÞ A U VC�U ¼ qU , and thus

s1ðzÞ ¼ z. This implies z ¼ 0, which contradicts the assumption z0 0.
Now assume that there are two distinct numbers j and k such that

sjðUÞV skðUÞ0j. We have AðUÞ < 1=d, so we may suppose

sþ j

d
< tþ j

d
< sþ k

d
< tþ k

d
< sþ j

d
þ 1:

Two distinct external rays does not intersect, so we conclude that sjðzÞ ¼ skðzÞ.
This implies z ¼ 0, which contradicts the assumption z0 0. r

Figure 11
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Lemma 4.2. Let Rs and Rt be two distinct external rays land at z0 0. Let
U be a component of C� ðRs U fzgURtÞ. Then the following three conditions are
equivalent to each other:

(a) AðUÞ < 1=d;
(b) fc is univalent on U ;
(c) U does not contain the origin.

Proof. (a) ) (b): Assume that AðUÞ < 1=d. So we cut o¤ U along an
equipotential curve Er, and thus have the Jordan domain V which is contained
in U . Then fc is injective on qV and preserves the orientation, so Lemma 3.2
implies that fc is univalent on V . We could take a more bigger r > 1, so that fc
is univalent on U . Moreover, fcðUÞ is the component of C� fcðRs U fzgURtÞ
such that Að fcðUÞÞ ¼ d � AðUÞ.

(b) ) (c): It is obvious.
(c) ) (a): Assume that U does not contain the origin. If AðC�UÞ ¼

AðRs;RtÞ, then Lemma 4.1 implies that U contains the origin. This contradicts
the assumption, and thus AðC�UÞ0AðRs;RtÞ. Therefore, AðUÞ ¼ AðRs;RtÞ
and thus Lemma 4.1 implies AðUÞ < 1=d. r

Lemma 4.3. Assume that z is biaccessible from the immediate basin Ay such
that a B f f �n

c ðzÞgnb0 and 0 B f f �n
c ðzÞgnb0. Then there exist two distinct external

rays Ru and Rv with a common landing point w such that Ru U fwgURv separates
a from the origin.

Proof. Let Rs and Rt be two distinct external rays landing at z. Let U be
the component of C� ðRs U fzgURtÞ which does not contain the origin. Then
Lemma 4.2 implies that fc is univalent on U and thus Að fcðUÞÞ ¼ d � AðUÞ.

If fcðUÞ does not contain the origin, then we have that fc is univalent on
fcðUÞ and thus Að f �2

c ðUÞÞ ¼ d 2 � AðUÞ as the above argument. Otherwise, fcðUÞ
contains the origin.

By repeating the above step, we see that there exists Nb 0 such that f �N
c ðUÞ

does not contain the origin and f �Nþ1
c ðUÞ contains the origin. Then fc is

univalent on f �N
c ðUÞ and thus Að f �Nþ1

c ðUÞÞ ¼ dNþ1 � AðUÞ.
If a A f �N

c ðUÞ, then put Ru U fwgURv ¼ f �N
c ðRs U fzgURtÞ.

Otherwise, if a B f �N
c ðUÞ, then we may consider the following two cases:

(1) f �N
c ðUÞ contains some sj0ðaÞ;

(2) f �N
c ðUÞ does not contain any sjðaÞ.

In the case (1), put Ru U fwgURv ¼ sd� j0ð f �N
c ðRs U fzgURtÞÞ.

In the case (2), if f �Nþ1
c ðUÞ contains a, then f �N

c ðUÞ contains one point
of inverse image of a. Since f �1

c ðaÞ ¼ fsjðaÞ j 0a ja d � 1g, it follows that
f �N
c ðUÞ contains some sj0ðaÞ. However, this contradicts that f �N

c ðUÞ does not
contain any sjðaÞ. Therefore, f �Nþ1

c ðUÞ does not contain a, and thus we put
Ru U fwgURv ¼ f �Nþ1

c ðRs U fzgURtÞ. r

152 mitsuhiko imada



Proof of Theorem 1.1. We use proof by contradiction. If a is a Siegel
point, assume that 0 B f f �n

c ðz0Þgnb0. If a is a Cremer point, assume that a B
f f �n

c ðz0Þgnb0 and 0 B f f �n
c ðz0Þgnb0. In both cases, it follows that z0 is biacces-

sible from Ay such that a B f f �n
c ðz0Þgnb0 and 0 B f f �n

c ðz0Þgnb0.
Lemma 4.3 implies that there exist two distinct external rays Ru and Rv with

a common landing point w such that Ru U fwgURv separates a from the origin.
Let U be the component of C� ðRu U fwgURvÞ which contains a. Then fc is
injective on U . We cut o¤ U along an equipotential curve Er, and thus have the
Jordan domain V which contains a.

Since V contains no critical points of fc, it follows from Lemma 3.1 that
there exists a Jordan domain W such that V HW and fc is univalent on a
neighborhood of W (see Figure 12).

Now we take a Siegel compactum S for ð fc;WÞ by Proposition 2.1. Then S
meets the boundary qW but not qV � fwg, so S must contain w. Furthermore,
qðĈC� SÞ � fwg is disconnected, and thus the point w is biaccessible from ĈC� S.
However, the biaccessibility of w contradicts Proposition 2.2. r

5. Proof of Theorem 1.2

In this section, we consider a polynomial gyðzÞ ¼ e2piyzþ zd of degree db 2.
Actually, we may consider the cases of db 3 and thus assume that db 3 in
the following arguments. For each 0a ja d � 2, let tjðzÞ ¼ e2pi

j

d�1z be a
j=ðd � 1Þ-rotation. Then gy � tj ¼ tj � gy implies tjðJgyÞ ¼ Jgy . So gy has
d � 1 symmetric critical points cj ¼ tjðcÞ, where c is one of the solutions of
e2piy þ dzd�1 ¼ 0.

Assume that the origin is an irrationally indi¤erent fixed point of gy. Then
some critical point cj0 is recurrent (see [Ma]), so gy � tj ¼ tj � gy implies that every

Figure 12
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critical point cj is recurrent. Therefore, the superattracting fixed point y is the
only critical point in the immediate basin Ay. Then there exists a conformal
isomorphism F : ĈC�D ! Ay such that FðyÞ ¼ y and F�1 � gy �FðwÞ ¼ wd .

We consider the dynamics of external rays and the equipotential curves in the

immediate basin Ay. It is easy to see that gyðRtÞ ¼ Rdt, g
�1
y ðRtÞ ¼

[d�1

j¼0
Rtþ j

d

,

gyðErÞ ¼ Erd and g�1
y ðErÞ ¼ E ffiffi

rd
p . Moreover, tjðAyÞ ¼ Ay implies tj �F ¼

F � tj , so that tjðRtÞ ¼ R
tþ j

d�1

and tjðErÞ ¼ Er.

Lemma 5.1. Let Rs and Rt be two distinct external rays land at z0 0. Let
U be the component of C� ðRs U fzgURtÞ such that AðUÞ ¼ AðRs;RtÞ. Then

AðUÞ < 1=ðd � 1Þ and tjðUÞV tkðUÞ ¼ j for j0 k. Therefore, U does not
contain both two tj -symmetric points and C�U contains the origin.

The method of the proof is similar to that of Lemma 4.1.

Lemma 5.2. Let Rs and Rt be two distinct external rays land at z0 0. Let
U be a component of C� ðRs U fzgURtÞ. Then the following three conditions are
equivalent to each other:

(a) AðUÞ < 1=d;
(b) gy is univalent on U ;
(c) U does not contain any cj .

Proof. The method of the proof of (a) ) (b) is similar to that of Lemma
4.2. The proof of (b) ) (c) is obvious. We give the proof of (c) ) (a) here.

Assume that U does not contain any cj. If AðC�UÞ ¼ AðRs;RtÞ, then
Lemma 5.1 implies that C�U does not contain both two tj-symmetric points.
Therefore, U contains at least one point of cj. This contradicts the assumption,
and thus we have AðC�UÞ0AðRs;RtÞ. Therefore, AðUÞ ¼ AðRs;RtÞ and we

see from Lemma 5.1 that tjðUÞV tkðUÞ ¼ j for j0 k.
If AðUÞb 1=d, then AðtjðUÞÞb 1=d and thus gyðtjðUÞÞ ¼ C. Then each

tjðUÞ contains at least one point of inverse image of some critical value vj0 , where

vj0 ¼ gyðcj0Þ. Therefore,
[d�2

j¼0
tjðUÞ contains at least d � 1 points of inverse

image of vj0 . However, this contradicts that C�
[d�2

j¼0
tjðUÞ contains the critical

point cj0 . Therefore, we conclude AðUÞ < 1=d. r

Lemma 5.3. Assume that z is biaccessible from the immediate basin Ay such
that 0 B fg�n

y ðzÞgnb0 and cj B fg�n
y ðzÞgnb0 for all j. Then for each j, there exist

two distinct external rays Ruj and Rvj with a common landing point wj such that
Ruj U fwjgURvj separates cj from the origin.

Proof. By tj-symmetry, it is enough to show Lemma 5.3 for some j0. Now
let Rs and Rt be two distinct external rays landing at z. Let U be the component
of C� ðRs U fzgURtÞ which does not contain the origin. If U contains some cj0 ,
put Ruj0

U fwj0gURvj0
¼ Rs U fzgURt.
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On the other hand, assume that U does not contain any cj . Then Lemma
5.2 implies gy is univalent on U and thus AðgyðUÞÞ ¼ d � AðUÞ.

If gyðUÞ does not contain any cj, then we have that gy is univalent on gyðUÞ
and thus Aðg�2

y ðUÞÞ ¼ d 2 � AðUÞ as the above argument. Otherwise, gyðUÞ con-
tains some cj0 .

By repeating the above step, we see that there exists Nb 0 such that g�N
y ðUÞ

does not contain any cj and g�Nþ1
y ðUÞ contains some cj0 . Then gy is univalent

on g�N
y ðUÞ and thus Aðg�Nþ1

y ðUÞÞ ¼ dNþ1 � AðUÞ.
So we may consider the following three cases:
(1) g�Nþ1

y ðUÞ contains only some one of cj;

(2) C� g�Nþ1
y ðUÞ contains only some one of cj;

(3) g�Nþ1
y ðUÞ contains all cj.

In the case (1) and case (2), put Ruj0
U fwj0gURvj0

¼ g�Nþ1
y ðRs U fzgURtÞ.

Now, we consider the case (3). To simplify the notation, we set as the
following:

L ¼ g�N
y ðRs U fzgURtÞ; V ¼ g�N

y ðUÞ;

W ¼ C�
[d�2

j¼0
tjðVÞ; W 0 ¼

\d�2

j¼0
gyðtjðVÞÞ ¼

\d�2

j¼0
tjðgyðVÞÞ:

Then both W and W 0 are tj-symmetrical domains, which contain the origin as
well as all cj (see Figure 13).

If W 0 contains some critical value vj0 ¼ gyðcj0Þ, then each tjðVÞ contains one

point of inverse image of vj0 , and thus
[d�2

j¼0
tjðVÞ contains d � 1 points of

Figure 13
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inverse image of vj0 . However, this contradicts that W ¼ C�
[d�2

j¼0
tjðVÞ con-

tains the critical point cj0 . Therefore, W 0 does not contain any vj ¼ gyðcjÞ.
Now we may suppose that C� gyðVÞ contains some vj0 ¼ gyðcj0Þ. For each

0a ja d � 2, we consider the following bijection:

gyjtjðVÞ : tjðVÞ ! gyðtjðVÞÞ:

Then the image gyðtjðVÞÞ contains gyðLÞ. Therefore, deg gy ¼ d implies
W V g�1

y ðgyðLÞÞ0j. Now we set L 0 ¼ W V g�1
y ðgyðLÞÞ.

If L 0 does not separate cj0 from the origin, then there exists a continuous
curve g in W � L 0 between cj0 and the origin. Then gyðgÞ is a continuous curve
between vj0 and the origin. So gyðgÞV gyðLÞ0j and thus gV g�1

y ðgyðLÞÞ0j.
However, this contradicts gHW � L 0.

Therefore, it is concluded that L 0 separates cj0 from the origin, and thus we
put Ruj0

U fwj0gURvj0
¼ L 0. r

Proof of Theorem 1.2. We use proof by contradiction. If the origin is a
Siegel point, assume that cj B fg�n

y ðz0Þgnb0 for all j. If the origin is a Cremer
point, assume that 0 B fg�n

y ðz0Þgnb0 and cj B fg�n
y ðz0Þgnb0 for all j.

In both cases, it follows that z0 is biaccessible from Ay so that 0 B
fg�n

y ðz0Þgnb0 and cj B fg�n
y ðz0Þgnb0 for all j. Lemma 5.3 implies that for

each j, there exist two distinct external rays Ruj and Rvj with a common landing
point wj such that Ruj U fwjgURvj separates cj from the origin. Then we may
suppose that all Ruj U fwjgURvj are tj-symmetrical.

Let U be the component of C�
[d�2

j¼0
ðRuj U fwjgURvj Þ which contains the

origin. We cut o¤ U along an equipotential curve Er and thus have the tj-
symmetric Jordan domain V which contains the origin. Then gy is injective on
qV and preserves the orientation, so Lemma 3.2 implies that gy is injective on V .

Since V contains no critical points of gy, it follows from Lemma 3.1 that
there exists a Jordan domain W such that V HW and gy is univalent on a
neighborhood of W (see Figure 14).

Now we take a Siegel compactum S for ðgy;WÞ by Proposition 2.1. Then S

meets the boundary qW but not qV �
[d�2

j¼0
fwjg, so S must contain some wj0 .

Furthermore, qðĈC� SÞ � fwj0g is disconnected, and thus the point wj0 is biacces-
sible from ĈC� S. However, the biaccessibility of wj0 contradicts Proposition 2.2.

r

6. Proof of Theorem 1.3

In this section, we consider a rational function hðzÞ ¼ e2piyz2
z� a

1� az
. Let

uðzÞ ¼ 1=z be an inversion. Then h � u ¼ u � h implies uðJhÞ ¼ Jh. The zeros are
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the origin and a, and the poles are infinity and uðaÞ. We suppose jaj > 3 such
that hjS1 is an analytic circle di¤eomorphism. Then both of infinity and the
origin are superattracting fixed points with local degree 2, and thus h � u ¼ u � h
implies uðAyÞ ¼ A0. Let c be the critical point of h such that jcj > 1, and thus
uðcÞ is also a critical point of h.

Assume that the rotation number RotðhjS1Þ is irrational. If h is linearizable
on S1, then there exists a Herman ring H and thus S1 HHHFh. On the other
hand, if h is not linearizable on S1, then S1 H Jh. In either case, some critical
point is recurrent (see [Ma]), so that both c and uðcÞ are recurrent by h � u ¼ u � h.
Therefore, each of superattracting fixed points infinity and the origin is the only
critical point in each immediate basin. We may consider only the immediate
basin Ay. So there exists a conformal isomorphism F : ĈC�D ! Ay such that
FðyÞ ¼ y and F�1 � h �FðwÞ ¼ w2.

We consider the dynamics of external rays and the equipotential curves
in the immediate basin Ay. It is easy to see that hðRtÞ ¼ R2t, h

�1ðRtÞVAy ¼
R t

2
URtþ1

2
, hðErÞ ¼ Er2 and h�1ðErÞVAy ¼ E ffiffi

r
p .

Lemma 6.1. There are no points in S1 which are biaccessible from Ay.

Proof. This proof is referred from the last part of the proof of [Za, Theorem
5]. We use proof by contradiction. Assume that there exists a point z0 A S1

which is biaccessible from Ay. Let Rs and Rt be two distinct external rays
landing at z0, let U0 be the component of C� ðRs U fz0gURtÞ which does not
contain S1. Let zn ¼ h�nðz0Þ and Un be the component of C� h�nðRs U fz0gURtÞ
which does not contain S1 (see Figure 15).

Figure 14
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There are no critical points in S1, and so we notice that AðUnÞ0 1=2 for all
nb 0. First, we show that AðUnÞ > 1=2 for some Un. Assume that
AðU0Þ < 1=2. By the similar method of the proof of (a) ) (b) in Lemma 4.2,
we see h is injective on U0. Since z0 is not a critical point, S1 Q hðU0Þ,
therefore, hðU0Þ ¼ U1 and AðU1Þ ¼ 2 � AðU0Þ. If AðU1Þ < 1=2, then we sim-
ilarly have that hðU1Þ ¼ U2 and AðU2Þ ¼ 2 � AðU1Þ. By repeating the above
step, we conclude there exists UN such that AðUNÞ > 1=2.

We shall see contradiction. Let V ¼ C�UN . Then AðVÞ < 1=2 by
AðUNÞ > 1=2. Since the rotation number RotðhjS1Þ is irrational, the orbit
fzngnb0 is infinite. So Un HV for all nbN þ 1 (see Figure 16).

Figure 15

Figure 16
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By the above argument, we obtain that hðUnÞ ¼ Unþ1 and AðUnþ1Þ ¼
2 � AðUnÞ for all nbN þ 1. This monotonous increasing contradicts AðUnÞ <
AðVÞ < 1=2 for all nbN þ 1. r

In the rest of this section, we shall use the above lemma without any
explanation.

Lemma 6.2. Let Rs and Rt be two distinct external rays land at z0 c. Let
U be a component of C� ðRs U fzgURtÞ. Then the following two conditions are
equivalent to each other:

(a) AðUÞ < 1=2;
(b) U does not contain c.

Proof. (a) ) (b): Assume that AðUÞ < 1=2. Then we cut o¤ U along an
equipotential curve Er, and thus have the Jordan domain V which is contained in
U . Then h is injective on qV and preserves the orientation. We may consider
the following two cases:

(1) S1 VV ¼ j;
(2) S1 HV .
In the case (1), Lemma 3.2 implies that h is injective on V . We could take a

more bigger r > 1, so that h is univalent on U . Therefore, U does not contain c.
In the case (2), we set W ¼ V �D (see Figure 17).

Then h is injective on qW and preserves the orientation. So Lemma 3.2
implies that h is injective on W , and thus c B W . Since c B D, the domain V

Figure 17
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does not contain c. We could take a more bigger r > 1, so that U does not
contain c.

(b) ) (a): Assume that U does not contain c. Then C�U contains c. It
follows from the contraposition of (a) ) (b) that AðC�UÞ > 1=2, and thus
AðUÞ < 1=2. r

Lemma 6.3. Assume that z is biaccessible from the immediate basin Ay such
that c B fh�nðzÞgnb0. Then there exist two distinct external rays Ru and Rv with a
common landing point w such that Ru U fwgURv separates S1 from c.

Proof. Let Rs and Rt be two distinct external rays landing at z. Let U be
the component of C� ðRs U fzgURtÞ which does not contain c. Then U satisfies
AðUÞ < 1=2 by Lemma 6.2. If S1 HU , we put Ru U fwgURv ¼ Rs U fzgURt.
On the other hand, if S1 VU ¼ j, then we see h is univalent on U and thus
AðhðUÞÞ ¼ 2 � AðUÞ by the similar method of the proof of (a) ) (b) in Lemma 4.2.

We consider hðUÞ instead of U . If hðUÞ contains neither c nor S1, then
we similarly have that h is univalent on hðUÞ and thus Aðh�2ðUÞÞ ¼ 22 � AðUÞ.
Otherwise, hðUÞ contains c or S1.

By repeating the above step, we see that there exists Nb 0 such that h�NðUÞ
does not contain c nor S1 and h�Nþ1ðUÞ contains c or S1. Then h is univalent
on h�NðUÞ and thus Aðh�Nþ1ðUÞÞ ¼ 2Nþ1 � AðUÞ. So we may consider the fol-
lowing three cases:

(1) h�Nþ1ðUÞ contains S1 but not c;
(2) h�Nþ1ðUÞ contains c but not S1;
(3) h�Nþ1ðUÞ contains both c and S1.
In the case (1) and case (2), put Ru U fwgURv ¼ h�Nþ1ðRs U fzgURtÞ.
Now, we consider the case (3). Since hj

h �N ðUÞ : h
�NðUÞ ! h�Nþ1ðUÞ is

bijective, h�NðUÞ contains the Jordan closed curve g such that hðgÞ ¼ S1. So
h � u ¼ u � h implies that h�1ðS1Þ ¼ S1 U gU uðgÞ (see Figure 18).

To simplify the notation, we set h�NðRsÞ ¼ Rs 0 and h�NðRtÞ ¼ Rt 0 . Let Ru ¼
Rs 0þ 1

2
, Rv ¼ Rt 0þ 1

2
, and w be their landing point. Then hðRu U fwgURvÞ ¼

h�Nþ1ðRs U fzgURtÞ. We shall see that Ru U fwgURv separates S1 from c as
following.

Assume that Ru U fwgURv does not separate S1 from c. Let V be the
component of C� ðRu U fwgURvÞ which does not contain c, and thus it does
not contain S1. Then AðVÞ ¼ Aðh�NðUÞÞ by AðVÞ < 1=2. So h is univalent on
V and thus AðhðVÞÞ ¼ 2 � AðVÞ. Then AðhðVÞÞ ¼ 2 � AðVÞ ¼ 2 � Aðh�NðUÞÞ ¼
Aðh�Nþ1ðUÞÞ implies that hðVÞ ¼ h�Nþ1ðUÞIS1. So V contains a preimage of
S1. This is impossible, for h�1ðS1Þ ¼ S1 U gU uðgÞ. r

Proof of Theorem 1.3. We use proof by contradiction, and thus assume that
c B fh�nðz0Þgnb0. Then there exist two distinct external rays Ru and Rv with a
common landing point w such that Ru U fwgURv separates S1 from c by Lemma
6.3. Let U be the component of C� ðRu U fwgURvÞ which contains S1. We
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cut o¤ U along an equipotential curve Er, and thus have the Jordan closed curve
gHC�D. Then h is injective on g and preserves the orientation. Let V 0 be
the Jordan annular domain which is surrounded by g and S1. Since V 0 does not
contain the pole uðaÞ, it follows from Lemma 3.2 that h is injective on V 0. Then
hðV 0ÞHC�D implies that V 0 does not contain the zero a.

We put V ¼ V 0 US1 U uðV 0Þ. So V does not contain any of the pole uðaÞ,
the zero a, two critical points c and uðcÞ (see Figure 19).

Figure 19

Figure 18
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Moreover, h is injective on V by h � u ¼ u � h. It follows from Lemma 3.1
that there exists a Jordan annular domain W such that V HW and h is univalent
on a neighborhood of W . We may suppose that both W and hðWÞ do not
contain the origin.

Now we take a Herman compactum H for ðh;WÞ by Proposition 2.3. Then
H meets the outer component of the boundary qW but not g� fwg, so H must
contain w. Let W be the unbounded component of ĈC�H. Then qW� fwg
is disconnected, and thus the point w is biaccessible from W. However, the
biaccessibility of w contradicts Proposition 2.4. r
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