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Abstract

Real hypersurfaces in non-flat complex space forms with integrable holomorphic

distribution and symmetric f-Ricci tensor which are f-Einstein are ruled real hypersurfaces.

1. Introduction

Real hypersurfaces in complex space forms provide a rich class of CR-
manifolds.

As is well known, there are no Einstein real hypersurfaces in non-flat
complex space forms. Even worse, the non-existence of real hypersurfaces in
non-flat complex space forms with parallel Ricci tensor is known (see [13]).

These results indicate that for di¤erential geometric study on real hyper-
surfaces, one need to introduce curvature tensors of another type which are
compatible to the induced almost contact structure and its associated CR-
structure.

In [8], the first named author introduced a covariant tensor field S � which
involves geometric informations on interactions between almost contact structure
and Ricci tensor. We call the tensor field S �, the f-Ricci tensor.

Some standard examples of real hypersurfaces are well characterized in terms
of f-Ricci tensor S �. In fact, some model hypersurfaces (homogeneous and of
constant principal curvatures) are characterized as f-Einstein hypersurfaces. A
real hypersurface is said to be a f-Einstein real hypersurface if its f-Ricci tensor
is a constant multiple of the metric over the holomorphic distribution. In our
previous papers [8], [9], we have classified f-Einstein real hypersurfaces in
complex projective and hyperbolic spaces on which the structure vector field
is principal. As a corollary, we proved that all the f-Einstein real hypersurfaces
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with principal structure vector field in non-flat complex space forms are homo-
geneous and of constant principal curvatures.

In complex projective space, all the homogeneous real hypersurfaces have
principal structure vector field and constant principal curvatures. On the other
hand, in complex hyperbolic space, homogeneity does not imply the property
‘‘principal structure vector field’’.

In fact, there exist homogeneous ruled real hypersurfaces in complex hy-
perbolic space with non-principal structure vector field (see cf. [4]. For the
classification of homogeneous real hypersurfaces in complex hyperbolic space, we
refer to [5, Theorem 4.4]). This fact actually shows that ruled real hypersurfaces
play a important role in di¤erential geometry of real hypersurfaces in complex
space forms. Remarkably, as we have exhibited in [8], every ruled real hyper-
surface in non-flat complex space forms is f-Einstein.

In this paper we continue our study on f-Einstein real hypersurfaces. The
purpose of this paper is to investigate f-Einstein real hypersurfaces whose
structure vector field is non-principal.

More precisely we prove the following classification result of f-Einstein real
hypersurfaces.

Main Theorem. Let M be a real hypersurface with symmetric f-Ricci tensor
in a complex space form ~MMnðcÞ of constant holomorphic sectional curvature 4c0 0
on which the holomorphic distribution T �M is integrable, then M is f-Einstein if
and only if M is locally congruent to a ruled real hypersurface of ~MMnðcÞ.

To close Introduction, we emphasize that f-Einstein property is very di¤erent
from the so-called pseudo-Einstein property (For the precise definition, see
Remark 4.2). Although pseudo-Einstein property is a generalization of Einstein
condition, it is still a strong restriction for real hypersurfaces. In fact, the only
pseudo-Einstein real hypersurfaces in complex hyperbolic space are horospheres,
geodesic spheres and tubes over complex hyperbolic hyperplanes.

On the other hand, all the pseudo-Einstein real hypersurfaces, tubes over
totally real and totally geodesic real hyperbolic space HnðRÞ as well as all ruled
real hypersurfaces are f-Einstein.

The results of this article were partially reported at the Mathematical Society
of Japan ‘‘Geometry Symposium’’ (held at Fukuoka University, August, 2005) by
the first named author.

Throughout this paper we denote by GðEÞ the space of all smooth sections of
a vector bundle E over a manifold M.

2. Preliminaries

2.1. A complex space form is a complete and connected Kähler manifold
of constant holomorphic sectional curvature. A simply connected n-dimensional
complex space form ~MMnðcÞ of constant holomorphic sectional curvature 4c is
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holomorphically isometric to complex projective space PnðCÞ, complex Euclidean
space Cn or complex hyperbolic space HnðCÞ, according as c > 0, c ¼ 0 or c < 0.
We denote the Kähler structure of ~MMnðcÞ by ðJ; ~ggÞ. Here J is the almost complex
structure and ~gg the Kähler metric, respectively.

Now let M be a real hypersurface of a non-flat (c0 0) complex space form
~MMnðcÞ with induced Riemannian metric g.

Take a local unit normal vector filed N of M in ~MMnðcÞ. Then the Levi-
Civita connections ~‘‘ of ð ~MMnðcÞ; ~ggÞ and ‘ of ðM; gÞ are related by the following
Gauss formula and Weingarten formula:

~‘‘XY ¼ ‘XY þ gðAX ;YÞN; X ;Y A GðTMÞ;
~‘‘XN ¼ �AX ; X A GðTMÞ:

The linear endomorphism field A is called the shape operator of M derived
from N.

An eigenvector X of the shape operator A is called a principal curvature
vector. The corresponding eigenvalue l of A is called a principal curvature. As
is well known, the Kähler structure ðJ; ~ggÞ of the ambient space induces an almost
contact metric structure ðf; x; h; gÞ on M. In fact, the structure vector field x and
its dual 1-form h are defined by

hðXÞ ¼ gðx;X Þ ¼ ~ggðJX ;NÞ; X A TM:

The ð1; 1Þ-tensor field f is defined by

gðfX ;YÞ ¼ ~ggðJX ;YÞ; X ;Y A TM:

One can easily check that this structure ðf; x; h; gÞ is an almost contact metric
structure on M, that is, it satisfies

f2X ¼ �X þ hðX Þx; hðxÞ ¼ 1; fx ¼ 0:ð1Þ

It follows that

‘Xx ¼ fAX :

Let ~RR and R be the Riemannian curvature tensors of ~MMnðcÞ and M, respectively.
From the expression of the curvature tensor ~RR of ~MMnðcÞ, we have the following
equations of Gauss and Codazzi:

RðX ;YÞZ ¼ cðgðY ;ZÞX � gðX ;ZÞY
þ gðfY ;ZÞfX � gðfX ;ZÞfY � 2gðfX ;YÞfZÞ
þ gðAY ;ZÞAX � gðAX ;ZÞAY ;

ð‘XAÞY � ð‘YAÞX ¼ cðhðX ÞfY � hðYÞfX � 2gðfX ;YÞxÞ:

The Ricci tensor S of ðM; gÞ is defined by

SðX ;YÞ ¼ traceðZ 7! RðZ;XÞYÞ; X ;Y A TM:
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By the Gauss equation, S is given by

SðX ;Y Þ ¼ cðð2nþ 1ÞgðX ;YÞ � 3hðXÞhðYÞÞ þ hgðAX ;YÞ � gðA2X ;YÞ;

for all X ;Y A TM. Here h denotes the trace of A.

2.2. To close this section, we recall the following two fundamental results
(See eg., [13]).

Lemma 2.1. If x is a principal curvature vector, then the corresponding
principal curvature a is locally constant.

Lemma 2.2. Assume that x is a principal curvature vector and the corre-
sponding principal curvature is a. If AX ¼ lX for X ? x, then we have
ð2l� aÞAfX ¼ ðalþ 2cÞfX .

We refer to the reader [13] about general theory of di¤erential geometry of
real hypersurfaces in complex space forms.

3. f-Einstein real hypersurfaces

3.1. Let M be a real hypersurface in ~MMnðcÞ. Then the f-Ricci tensor S � of
M is defined by ([8]):

S �ðX ;Y Þ ¼ 1

2
traceðZ 7! RðX ; fY ÞfZÞ:

Then the Gauss equation implies that

S �ðX ;YÞ ¼ 2cnðgðX ;YÞ � hðXÞhðYÞÞ � gðfAfAX ;YÞ;ð2Þ

for all X ;Y A TM.
The f-Ricci operator Q� is the linear endomorphism field associated to S �;

S �ðX ;YÞ ¼ gðQ�X ;Y Þ; X ;Y A TM:

The trace r� of Q� is called the f-scalar curvature of M.
One can easily to check that

S �ðX ; xÞ ¼ 0ð3Þ
S �ðx;YÞ ¼ �hðAfAfYÞ;ð4Þ

for any X ;Y A TM, and

S �ðfX ; fYÞ ¼ S �ðY ;XÞ þ hðAfAfX ÞhðYÞ;

for any X ;Y A TM.
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3.2. It should be remarked that S � is not symmetric, in general. Now we
take symmetric part Sym S � and the alternate part Alt S � of f-Ricci tensor S � of
M;

Sym S �ðX ;YÞ ¼ 1

2
ðS �ðX ;Y Þ þ S �ðY ;XÞÞ;

Alt S �ðX ;YÞ ¼ 1

2
ðS �ðX ;Y Þ � S �ðY ;XÞÞ;

for any X ;Y A TM.
Direct computation using (2) shows that

Sym S �ðX ;Y Þ ¼ 2cnðgðX ;YÞ � hðXÞhðY ÞÞð5Þ

� 1

2
gððfAfAþ AfAfÞX ;Y Þ;

Alt S �ðX ;Y Þ ¼ 1

2
gððAfAf� fAfAÞX ;YÞ:ð6Þ

Lemma 3.1. The f-Ricci tensor S � of a real hypersurface in ~MMnðcÞ is
symmetric if and only if ðAfÞ2 ¼ ðfAÞ2.

3.3. Let T �M be a distribution defined by a subspace

T �
xM ¼ fX A TxM : X ? xxg

in the tangent space TxM. The formulas (1) imply that the distribution T �M is
invariant under f. The distribution T �M is called the holomorphic distribution of
M. If the f-Ricci tensor is a constant multiple of the Riemannian metric over
the holomorphic distribution, i.e.,

S �ðX ;Y Þ ¼ r�

2ðn� 1Þ gðX ;YÞ

for X ;Y A T �M on M, then M is said to be a f-Einstein real hypersurface.

Remark 3.1. The f-Ricci tensor S � is also called Ricci �-tensor. In our
previous works [8]–[9], we used the terminology Ricci �-tensor.

Lemma 3.2 ([8]). A real hypersurface M is f-Einstein if and only if its f-
Ricci tensor S � satisfies the following equation:

S �ðX ;Y Þ ¼ r�

2ðn� 1Þ ðgðX ;YÞ � hðXÞhðY ÞÞ � hðXÞhðAfAfYÞ;ð7Þ

for any X ;Y A TM.
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Lemma 3.3 ([9]). If x is a principal curvature vector field, then S � is
symmetric.

The converse of this lemma does not hold. As we will see later, ruled real
hypersurfaces provide counterexamples. In fact, ruled real hypersurfaces are f-
Einstein real hypersurfaces with symmetric S � but on which x is non-principal.

In our previous paper [8], f-Einstein real hypersurfaces in ~MMnðcÞ, ðc0 0Þ
with principal structure vector filed x are classified. In the next section we shall
study f-Einstein real hypersurfaces on which x is non-principal.

4. Proof of Main Theorem

4.1. We start this section with recalling fundamental properties of ruled real
hypersurfaces.

Take a regular curve g in ~MMnðcÞ with tangent vector field g 0. At each point
of g, there is a unique complex projective or hyperbolic hyperplane cutting g so as
to be orthogonal not only g 0 but also to Jg 0. The union of these hyperplanes is
called a ruled real hypersurface.

Proposition 4.1 ([13], [8]). Ruled real hypersurfaces have the following
properties.

(i) The holomorphic distribution T �M is integrable,
(ii) The structure vector x is not principal,
(iii) M is f-Einstein with f-scalar curvature r� ¼ 4cnðn� 1Þ,
(iv) The shape operator A satisfies the following formulas;

Ax ¼ mxþ nU ; AX ¼ 0;ð8Þ

jU j ¼ 1; U ? x; n0 0; X ? x; X ? U :ð9Þ

In particular A satisfies AfA ¼ 0.

For more details on ruled real hypersurfaces, we refer to [4], [11], [12] and
references therein.

4.2. Next, we prepare two characterizations of integrability of T �M for
our use.

Lemma 4.2. Let M be a real hypersurface in ~MMnðcÞ with c0 0. Then the
following three statements are mutually equivalent:

(i) The holomorphic distribution T �M is integrable,
(ii) gððfAþ AfÞX ;Y Þ ¼ 0 for all X ;Y A T �M,
(iii) fAX ¼ �AfX þ hðX ÞfAxþ hðAfXÞx for all X A TM.
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Proof. The equivalence of the first and second items have been proved by
M. Kimura and S. Maeda [12]. Thus we only need to check the equivalence of
the second and third items. The case (iii ) ii) is clear.

(ii ) iii) Take any tangent vectors X ;Y A TM and inserting W1 ¼ X � hðX Þx
and W2 ¼ Y � hðY Þx into the equation gððfAþ AfÞW1;W2Þ ¼ 0, we obtain

gðfAX þ AfX � hðXÞfAx� hðAfXÞx;YÞ ¼ 0: r

Theorem 4.3. If the holomorphic distribution is integrable, then x can not be
a principal vector field.

Proof. Assume that x is principal and let a be its corresponding principal
curvature. Then by Lemma 2.2,

ð2l� aÞAfX ¼ ðlaþ 2cÞfXð10Þ

for any principal vector field X ? x. Here l is the principal curvature corre-
sponding to X . If a ¼ 2l, (10) implies that l2 þ c ¼ 0. Hereafter we assume
that a0 2l. Applying h to both hand sides of (10), we have

hðAfX Þ ¼ 0:ð11Þ
Next, by the integrability condition (Lemma 4.2-(iii)) of T �M together with (11),
we have

lfX ¼ fAX ¼ �AfX :

Inserting this into (10), we get l2 þ c ¼ 0. Clearly, in case c > 0, there are no
such l. This is a contradiction. Hence x is principal.

Next, in the case c < 0, l ¼G
ffiffiffiffiffiffi

�c
p

. In this case, the real hypersurface in
complex hyperbolic space has constant principal curvatures, say a and l ¼G

ffiffiffiffiffiffi

�c
p

.
Such real hypersurfaces are completely classified by Berndt [1]. More precisely,
real hypersurfaces in complex hyperbolic space HnðCÞ with principal x and
constant principal curvature are locally holomorphically congruent to one of the
following model spaces:

(N) Horospheres,
(A1) Geodesic spheres and tubes over totally geodesic complex hyperbolic

hyperplanes
(A2) Tubes over totally geodesic HkðCÞ, where 1 < k < n� 2.
(B) Tubes over totally real and totally geodesic real hyperbolic space

HnðRÞ.
Among these real hypersurfaces, horospheres and type A1 hypersurfaces have
non-integrable holomorphic distributions. In fact the holomorphic distributions
of these hypersurfaces are contact structure. See [2]–[3, §4.3–4.4]. Now we check
principal curvatures of real hypersurfaces of type A2 and B (see [1], [13, Section 3]).

(i) The type A2 hypersurfaces in HnðCÞ have three distinct principal curva-

tures: l1 ¼
1

r
tanh u of multiplicity 2p, l2 ¼

1

r
coth u of multiplicity 2q,
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and a ¼ 2

r
coth 2u of multiplicity 1, where r ¼ 1=

ffiffiffiffiffiffi

�c
p

, p > 0, q > 0, and

pþ q ¼ n� 1.
(ii) The type B real hypersurfaces in HnðCÞ have three principal curvatures,

namely, l1 ¼
1

r
coth u of multiplicity n� 1, l2 ¼

1

r
tanh u of multiplicity

n� 1, and a ¼ 2

r
tanh 2u of multiplicity 1. Here r ¼ 1=

ffiffiffiffiffiffi

�c
p

. These

principal curvatures are distinct unless coth u ¼
ffiffiffi

3
p

, in which case l1 and
a coincide to make a principal curvature of multiplicity n.

From these informations, one can see that on type A2 or B real hypersurfaces,
the principal curvatures l1 and l2 can not take the values G

ffiffiffiffiffiffi

�c
p

¼G1=r.
Hence we arrive at the conclusion, x can not be principal. r

Remark 4.1. Let M be a real hypersurface in ~MMnðcÞ, c0 0. Then the rank
of the shape operator A is greater than or equal to 2 at some points (see [13,
Proposition 2.14]).

4.3. Hereafter we restrict our attention to real hypersurfaces on which x is
non-principal.

Proposition 4.4. Let M be a real hypersurface with symmetric f-Ricci
tensor in ~MMnðcÞ, c0 0. Assume that x is non-principal and express Ax as

Ax ¼ mxþ nU ; jU j ¼ 1; U ? x; n0 0:ð12Þ

Then AfU ¼ 0.

Proof. Since S � is symmetric, we have AfAf ¼ fAfA by Lemma 3.1.
From (12), we obtain

fAfAx ¼ fAfðmxþ nUÞ ¼ nfAfU :

On the other hand, we notice that AfAfx ¼ 0. Hence fAfU ¼ 0, because n0 0.
Next, applying f to the formula fAfU ¼ 0,

f2AfU ¼ �AfU þ hðAfUÞx:

Here we notice that hðAfUÞ ¼ 0, in fact,

hðAfUÞ ¼ gðx;AfUÞ ¼ gðAx; fUÞ ¼ gðmxþ nU ; fUÞ ¼ 0:

Thus we obtain AfU ¼ 0. r

Lemma 4.5. Let M be a real hypersurface with symmetric f-Ricci tensor in
~MMnðcÞ, c0 0. If T �M is integrable, then AU ¼ nx.
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Proof. Since T �M is integrable, Lemma 4.2 yields that

fAY ¼ �AfY þ hðY ÞfAxþ hðAfY Þx; Y A TM:ð13Þ
Choose Y ¼ U in (13), we obtain

fAU ¼ �AfU þ hðAfUÞx ¼ 0:

Here we used a fact AfU ¼ 0, since S � is symmetric. Thus we get fAU ¼ 0.
By computing 0 ¼ f2AU , we can deduce that AU ¼ nx. r

Lemma 4.6. Let M be a f-Einstein real hypersurface with symmetric f-Ricci
tensor in ~MMnðcÞ, c0 0. If the structure vector field is non-principal, then AfA ¼ 0
and the f-scalar curvature is r� ¼ 4cnðn� 1Þ.

Proof. Comparing (2) and (7), we obtain (cf. [8]):

ð4cnðn� 1Þ � r�ÞfX þ 2ðn� 1Þ
� fAfAX � hðAfAX Þx� hðXÞAfAxþ hðXÞhðAfAxÞxg ¼ 0:

Using the expression Ax ¼ mxþ nU and the fact AfU ¼ 0,

AfAx ¼ Afðmxþ nUÞ ¼ 0:

Moreover we have hðAfAX Þ ¼ 0. In fact,

hðAfAX Þ ¼ gðx;AfAX Þ ¼ �gðAfAx;XÞ ¼ �gðnAfU ;XÞ ¼ 0:

Hence we get

AfAX ¼ r� � 4cnðn� 1Þ
2ðn� 1Þ fX ; X A TM:

In particular, if we choose X ¼ fU in this equation, we have

0 ¼ AfðAfUÞ ¼ r� � 4cnðn� 1Þ
2ðn� 1Þ f2U ¼ � r� � 4cnðn� 1Þ

2ðn� 1Þ U :

This implies that r� ¼ 4cnðn� 1Þ and hence AfA ¼ 0. r

Lemma 4.7. Let M be a real hypersurface with symmetric f-Ricci tensor in
~MMnðcÞ with c0 0. If T �M is integrable and M is f-Einstein, then A2X ¼ 0 for
all X A TM such that X ? x and X ? U .

Proof. Take X A T �M such that X ? U and choose Y ¼ AX in (13), then

fA2X ¼ �AfAX þ hðAX ÞfAxþ hðAfAXÞx:
Then the preceding Lemma 4.6 implies that fA2X ¼ hðAX ÞfAx. Applying f to
both hand sides of this equation, we have

f2A2X ¼ hðAX Þf2Ax:
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Direct computation of both hand sides yields

A2X ¼ hðA2XÞxþ hðAX ÞðAx� hðAxÞxÞ:
By using the expression Ax ¼ mxþ nU , we obtain

hðAX Þ ¼ gðmxþ nU ;X Þ ¼ 0;

hðA2X Þ ¼ gððm2 þ n2Þxþ mnU ;X Þ ¼ 0:

Hence A2X ¼ 0. r

4.4. Now we prove our main theorem.

Theorem 4.8. Let M be a real hypersurface with symmetric f-Ricci tensor
in ~MMnðcÞ, ðc0 0Þ on which the holomorphic distribution T �M is integrable, then M
is f-Einstein if and only if M is locally congruent to a ruled real hypersurface of
~MMnðcÞ.

Proof. ()) As we have seen in Proposition 4.1, every ruled real hyper-
surface M in non-flat complex space form ~MMnðcÞ is f-Einstein with integrable
holomorphic distribution.

(() Let M be a f-Einstein real hypersurface with integrable holomorphic
distribution T �M and local unit normal vector field N. We only need to show
that integral manifolds of T �M are totally geodesic in ~MMnðcÞ.

By Theorem 4.3, the structure vector field x of M is non-principal. Thus by
virtue of Proposition 4.4, there exists a local unit vector field U and functions m
and n0 0 such that

Ax ¼ mxþ nU ; U ? x:

Moreover U satisfies AfU ¼ 0. Next, by Lemma 4.5, we have AU ¼ nx.
Lemma 4.6 implies that AfA ¼ 0.

Now let L be the leaf (maximal integral manifold) of T �M. Then the
normal bundle of L in ~MMnðcÞ is spanned by x ¼ �JN and N. The Gauss-
Weingarten formulas of L in ~MMnðcÞ are given by

~‘‘VW ¼ ‘L
VW þ hðV ;WÞxþ kðV ;WÞN;

~‘‘VN ¼ �AL
NV þ tðVÞx; ~‘‘Vx ¼ �AL

x V þ ~ttðVÞN
for all sections V ;W A GðTLÞ. Here ‘L is the induced connection of L. Com-
paring these equations with Gauss-Weingarten formulas of M in ~MMnðcÞ, we
obtain

AV ¼ AL
NV � tðVÞx; AL

NV ¼ AV � hðAVÞx; V A GðTLÞ;
AL

x V ¼ �fAV ; ~ttðVÞ ¼ �tðVÞ ¼ hðAVÞ;
kðV ;WÞ ¼ gðAL

NV ;WÞ; hðV ;WÞ ¼ gðAL
x V ;WÞ; V ;W A GðTLÞ:

From these equations, we have
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AL
x ¼ �fAL

N :

For any X A GðTLÞ which is orthogonal to U , we have

hðAX Þ ¼ gðx;AX Þ ¼ gðAx;XÞ ¼ mhðXÞ þ ngðU ;X Þ ¼ 0:

Hence

AL
NX ¼ AX ; X A GðTLÞ; X ? U :

Next, since AU ¼ nx, we get AL
NU ¼ 0.

For any V A GðTLÞ,
ðAL

NÞ
2
V ¼ AL

NðAV � hðAVÞxÞ ¼ A2V � hðAVÞAx� hðA2VÞxþ hðAVÞhðAxÞx:
If we choose V ¼ X A GðTLÞ which is orthogonal to U , then by Lemma 4.7, we
get ðAL

NÞ
2
X ¼ 0. Here we used a fact hðAX Þ ¼ gðX ;AxÞ ¼ 0 again.

Hence ðAL
NÞ

2 ¼ 0 and hence AL
N ¼ 0 on TL ¼ T �M because ALU ¼ 0.

Since AL
x ¼ �fAL

N , we conclude that AL
N ¼ AL

x ¼ 0. Thus we get h ¼ k ¼ 0.

Namely the leaf L is totally geodesic in ~MMnðcÞ. This completes the proof.
r

Remark 4.2. A real hypersurface M in ~MMnðcÞ is said to be pseudo-Einstein
(or h-Einstein) if there exist real constants a and b such that S ¼ agþ bhn h.
Ruled real hypersurfaces in ~MMnðcÞ, c0 0 are not pseudo-Einstein. More gen-
erally, it is known that every pseudo-Einstein real hypersurface in ~MMnðcÞ with
c0 0 and nb 2 has principal x (see eg., [13, p. 271] for n > 2 and [6], [7] for
n ¼ 2). Moreover, in HnðCÞ, real hypersurfaces of type B in HnðCÞ are f-
Einstein but not pseudo-Einstein.
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