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KNOT QUANDLES AND INFINITE CYCLIC COVERING SPACES

Ayumu Inoue

Abstract

Let K be an n-dimensional knot ðnb 1Þ, QðKÞ the knot quandle of K , Zq½tG1�=J
an Alexander quandle, and CyðKÞ the infinite cyclic covering space of Snþ2nK.

We show that the set consisting of homomorphisms QðKÞ ! Zq½tG1�=J is iso-

morphic to Zq½tG1�=JlHomZ½tG1�ðH1ðCyðKÞÞ;Zq½tG1�=JÞ as Z½tG1�-modules. Here,

HomZ½tG1 �ðH1ðCyðKÞÞ;Zq½tG1�=JÞ denotes the set consisting of Z½tG1�-homomorphisms

H1ðCyðKÞÞ ! Zq½tG1�=J.

1. Introduction

A quandle is an algebraic system having a self-distributive binary operation
whose definition is motivated by knot theory. Associated with an n-dimensional
knot K ðnb 1Þ, we have the knot quandle QðKÞ [5, 7, 9], which is a gener-
alization of the knot group p1ðSnþ2nKÞ. Here, an n-dimensional knot denotes
the image of a locally flat PL embedding of an oriented n-dimensional sphere
Sn into Snþ2. We are interested in the set HomðQðKÞ;XÞ consisting of homo-
morphisms from QðKÞ to a quandle X to compute a quandle cocycle invariant of
K [1, 2, 3, 4].

Let Zq½tG1�=J be a Z½tG1�-module for some qb 2 and an ideal J of
Zq½tG1�. Here, we denote by R½tG1� the Laurent polynomial ring in the variable
t over a ring R. We can provide Zq½tG1�=J with a quandle structure called
an Alexander quandle. The set HomðQðKÞ;Zq½tG1�Þ has a Z½tG1�-module
structure. Let CyðKÞ be the infinite cyclic covering space of Snþ2nK. We de-
note by HomZ½tG1�ðH1ðCyðKÞÞ;Zq½tG1�=JÞ the Z½tG1�-module consisting of Z½tG1�-
homomorphisms H1ðCyðKÞÞ ! Zq½tG1�=J, where we consider H1ðCyðKÞÞ as a

Z½tG1�-module. We denote by D
ðiÞ
K ðtÞ the i-th Alexander polynomial of K . The

purpose of this paper is to prove the following theorem.

Theorem 1.1. Let K be an n-dimensional knot ðnb 1Þ, and QðKÞ the knot
quandle of K. Let Zq½tG1�=J be an Alexander quandle. Then
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HomðQðKÞ;Zq½tG1�=JÞGZq½tG1�=JlHomZ½tG1�ðH1ðCyðKÞÞ;Zq½tG1�=JÞ
as Z½tG1�-modules. Further, if q is prime,

HomðQðKÞ;Zq½tG1�=JÞGZq½tG1�=Jl 0
y

i¼0

Zq½tG1�=ððDðiÞ
K ðtÞ=Dðiþ1Þ

K ðtÞÞ; JÞ:

The second isomorphism in Theorem 1.1 is known for n ¼ 1 in [6] and n ¼ 2
with D

ð0Þ
K ðtÞ ¼ 1 in [11]. Theorem 1.1 is a generalization of these results for any

dimension.
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2. Preliminaries

A quandle is a non-empty set X with a binary operation � satisfying the
following properties:

(Q1) For any x A X , x � x ¼ x.
(Q2) For any y A X , the map �y : X ! X (x 7! x � y) is bijective.
(Q3) For any x; y; z A X , ðx � yÞ � z ¼ ðx � zÞ � ðy � zÞ.

The notions of homomorphism and isomorphism are appropriately defined. For
any quandles X and Y , we denote by HomðX ;YÞ the set consisting of homo-
morphisms X ! Y .

Let X be a subset of a group closed under conjugations. Then X is a
quandle with a binary operation � defined by x � y ¼ y�1xy for any x; y A X .
We call it a conjugation quandle.

Let Zq½tG1�=J be a Z½tG1�-module for some qb 2 and an ideal J of
Zq½tG1�. Then Zq½tG1�=J is a quandle with a binary operation � defined by
x � y ¼ txþ ð1� tÞy for any x; y A Zq½tG1�=J. We call it an Alexander quandle.
Suppose X is another quandle. For any j;c A HomðX ;Zq½tG1�=JÞ, a map
jþ c : X ! Zq½tG1�=J defined by ðjþ cÞðxÞ ¼ jðxÞ þ cðxÞ for any x A X is a
homomorphism. Further, for any j A HomðX ;Zq½tG1�=JÞ and a A Z½tG1�, a map
aj : X ! Zq½tG1�=J defined by ðajÞðxÞ ¼ aðjðxÞÞ for any x A X is a homomor-
phism. Thus, HomðX ;Zq½tG1�=JÞ has a Z½tG1�-module structure.

For a quandle X , let FðXÞ be the free group generated by the elements of
X , and NðXÞ the subgroup of FðXÞ normally generated by y�1xyðx � yÞ�1 for
any x; y A X . We call the quotient group AsðX Þ ¼ FðXÞ=NðX Þ the associated
group of X . Consider a natural map r : X ! AsðX Þ which is the composition of
the inclusion map X ! FðXÞ and the projection map FðX Þ ! AsðXÞ. We let
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RedðXÞ ¼ Im r. By definition, RedðX Þ is closed under conjugations. We con-
sider RedðXÞ as a conjugation quandle. We call RedðX Þ the reduced quandle of
X .

Let K be an n-dimensional knot ðnb 1Þ. Let D ¼ fz A C j jzja 1g be the
oriented closed unit disk, and R ¼ DU fz A C j argðzÞ ¼ 0; 1a za 5g. A racket
of K is a continuous map m : ðR; f0gÞ ! ðSnþ2;KÞ satisfying the following
conditions:

(1) mð5Þ ¼ ð0; 0; . . . ; 0; 1Þ, where we identify Snþ2 with Rnþ2 U fyg.
(2) mðRÞVK ¼ mð0Þ.
(3) The restriction mjD : D ! Snþ2 is an embedding.
(4) The image mðqDÞ is a positive meridian of K , where a positive meridian

of K denotes an oriented meridian compatible with the orientation of K .
We define a product � of rackets m and n by

ðm � nÞðzÞ ¼

mðzÞ if jzja 1;

mð4z� 3Þ if 1a za 2;

nð13� 4zÞ if 2a za 3;

nðe2ðz�3ÞpiÞ if 3a za 4;

nð4z� 15Þ if 4a za 5:

8>>>>><
>>>>>:

Let QðKÞ be the set consisting of homotopy classes of rackets of K. Then
QðKÞ is a quandle with a binary operation � defined by ½m� � ½n� ¼ ½m � n� for any
½m�; ½n� A QðKÞ, where ½m� denotes the homotopy class of a racket m. We call
QðKÞ the knot quandle of K .

Let RQðKÞ be the subset of the knot group p1ðSnþ2nKÞ consisting of positive
meridians. The set RQðKÞ is closed under conjugations. We consider RQðKÞ
as a conjugation quandle. We call RQðKÞ the reduced knot quandle of K .

Figure 1. A racket of K
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Lemma 2.1. The reduced quandle RedðQðKÞÞ is isomorphic to RQðKÞ.

Proof. Kamada showed in [8] that p1ðSnþ2nKÞ has a finite presentation.
The argument in [8] also shows that the associated group AsðQðKÞÞ has
a same finite presentation with p1ðSnþ2nKÞ. Thus, AsðQðKÞÞ is isomorphic
to p1ðSnþ2nKÞ. A map illustrated in Figure 3 denotes an isomorphism
AsðQðKÞÞ ! p1ðSnþ2nKÞ. Since the isomorphism maps the rackets surjectively
onto the positive meridians, RedðQðKÞÞ is isomorphic to RQðKÞ. r

3. Proofs

We first show the following theorem for the reduced knot quandle RQðKÞ
instead of the knot quandle QðKÞ.

Figure 2. Product of rackets

Figure 3. An isomorphism AsðQðKÞÞ ! p1ðSnþ2nKÞ.
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Theorem 3.1. Let K be an n-dimensional knot ðnb 1Þ, and RQðKÞ the
reduced knot quandle of K. Let Zq½tG1�=J be an Alexander quandle. Then

HomðRQðKÞ;Zq½tG1�=JÞGZq½tG1�=JlHomZ½tG1�ðH1ðCyðKÞÞ;Zq½tG1�=JÞ

as Z½tG1�-modules. Further, if q is prime,

HomðRQðKÞ;Zq½tG1�=JÞGZq½tG1�=Jl 0
y

i¼0

Zq½tG1�=ððDðiÞ
K ðtÞ=Dðiþ1Þ

K ðtÞÞ; JÞ:

Proof. Let G 0 ¼ ½p1ðSnþ2nKÞ; p1ðSnþ2nKÞ� be the commutator subgroup
of the knot group p1ðSnþ2nKÞ. Choose and fix a positive meridian m A
p1ðSnþ2nKÞ. We define a map f : RQðKÞ ! G 0 by f ðxÞ ¼ xm�1 for any
x A RQðKÞ. We recall that H1ðCyðKÞÞ ¼ G 0=½G 0;G 0�. We thus have a map
f� : RQðKÞ ! H1ðCyðKÞÞ induced by f . Since p1ðSnþ2nKÞ has a finite presen-
tation whose generators are positive meridians [8], H1ðCyðKÞÞ has a finite
Z½tG1�-module presentation hx 0

1; . . . ; x
0
u j r 01; . . . ; r 0vi (See Section 7.D of [10]).

We may assume that each x 0
i is an element of Im f�, and each r 0i has a

form tf�ðxÞ þ ð1� tÞ f�ðyÞ � f�ðx � yÞ with some x; y A RQðKÞ. For each
j A HomðRQðKÞ;Zq½tG1�=JÞ satisfying jðmÞ ¼ 0, there is thus a unique Z½tG1�-
homomorphism F : H1ðCyðKÞÞ ! Zq½tG1�=J such that F � f� ¼ j. Conversely,
since f�ðx � yÞ ¼ tf�ðxÞ þ ð1� tÞ f�ðyÞ for any x; y A RQðKÞ, for each Z½tG1�-
homomorphism C : H1ðCyðKÞÞ ! Zq½tG1�=J, the composition C � f� : RQðKÞ !
Zq½tG1�=J is a homomorphism satisfying C � f�ðmÞ ¼ 0. We thus have a bijection

fj A HomðRQðKÞ;Zq½tG1�=JÞ j jðmÞ ¼ 0g ! HomZ½tG1�ðH1ðCyðKÞÞ;Zq½tG1�=JÞ:

It is easy to see that the map is also a Z½tG1�-isomorphism. For any a A
Z½tG1�=J, we define a homomorphism ta : RQðKÞ ! Zq½tG1�=J by taðxÞ ¼ a for
any x A RQðKÞ. For any j A HomðRQðKÞ;Zq½tG1�=JÞ, the sum jþ t�jðmÞ :
RQðKÞ ! Zq½tG1�=J satisfies ðjþ t�jðmÞÞðmÞ ¼ 0. We thus have the first iso-
morphism.

If q is prime, since Zq½tG1� is a principal ideal domain,

H1ðCyðKÞÞnZq G 0
y

i¼0

Zq½tG1�=ðDðiÞ
K ðtÞ=Dðiþ1Þ

K ðtÞÞ:

We thus have the second isomorphism. r

We next show that HomðRQðKÞ;Zq½tG1�=JÞGHomðQðKÞ;Zq½tG1�=JÞ. Let
Zq½tG1�=J be a Z½tG1�-module for some qb 2 and an ideal J of Zq½tG1�.
Consider a semidirect product Zq½tG1�=JzZ with respect to an action of Z

on Zq½tG1�=J defined by ka ¼ t�ka for any a A Zq½tG1�=J and k A Z. Let

p : Zq½tG1�=JzZ ! Z be the projection map of the second component. We
remark that the preimage p�1ð1Þ is closed under conjugations.

120 ayumu inoue



Lemma 3.2. The conjugation quandle p�1ð1Þ is isomorphic to the Alexander
quandle Zq½tG1�=J.

Proof. Straightforward. r

For a quandle X , let r : X ! RedðXÞ be a natural map that is the com-
position of the inclusion map X ! FðXÞ and the projection map FðX Þ !
RedðXÞHAsðXÞ. It is easy to see that r is a surjective homomorphism. We
say X is irreducible if r is an isomorphism.

Lemma 3.3. Any conjugation quandle is irreducible.

Proof. Suppose X is a subset of a group G closed under conjugations, and
GX the minimal subgroup of G containing X . We consider X as a conjugation
quandle. Let i : X ! FðX Þ be the inclusion map. We define a homomorphism
F : FðXÞ ! GX by FðiðxÞÞ ¼ x for any x A X . Since Fðiðx � yÞÞ ¼ y�1xy for
any x; y A X , F sends NðX Þ to f1g. Further, for any elements x; y A X
satisfying xy�1 0 1, FðiðxÞiðyÞ�1Þ0 1. Thus, the natural map r : X ! RedðX Þ
is also injective. r

Combining Lemmas 3.2 and 3.3, we have the following corollary.

Corollary 3.4. Any Alexander quandle is irreducible.

Let X and Y be quandles, and rX : X ! RedðX Þ the natural map. We
have an injective map F : HomðRedðXÞ;YÞ ! HomðX ;Y Þ defined by F ðjÞ ¼
j � rX for any j A HomðRedðXÞ;Y Þ. The following key lemma is proved by
Seiichi Kamada.

Lemma 3.5 (Kamada). The map F : HomðRedðXÞ;YÞ ! HomðX ;Y Þ is
bijective, if Y is irreducible.

Proof. Suppose iX : X ! FðX Þ and iY : Y ! FðYÞ are inclusion maps.
For each c A HomðX ;YÞ, we define a homomorphism C : FðX Þ ! FðY Þ by
CðiX ðxÞÞ ¼ iY ðcðxÞÞ for any x A X . Since CðiX ðx � yÞÞ ¼ iY ðcðxÞ � cðyÞÞ for
any x; y A X , C sends NðX Þ to NðYÞ. Thus, C induces a homomorphism
C� : AsðXÞ ! AsðY Þ. We define a homomorphism c� : RedðX Þ ! RedðYÞ by
c�ðxÞ ¼ C�ðxÞ for any x A RedðX Þ. By assumption, we have a homomorphism
r�1
Y � c� : RedðX Þ ! Y , where rY : Y ! RedðY Þ denotes the natural map. By

construction, F ðr�1
Y � c�Þ ¼ c. Therefore, F is also surjective. r

We recall that the reduced knot quandle RQðKÞ is isomorphic to the reduced
quandle RedðQðKÞÞ (Lemma 2.1). Combining Corollary 3.4 and Lemma 3.5,
we have a bijection F : HomðRQðKÞ;Zq½tG1�=JÞ ! HomðQðKÞ;Zq½tG1�=JÞ. It is
easy to check that F is also a Z½tG1�-isomorphism. We thus prove Theorem 1.1
by Theorem 3.1.
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