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EXISTENCE OF SINGULAR HARMONIC FUNCTIONS!
MITSURU NAKAI AND SHIGEO SEGAWA

Abstract

An afforested surface W := (P, (T,),cn;(0n),eny» N being the set of positive
integers, is an open Riemann surface consisting of three ingredients: a hyperbolic
Riemann surface P called a plantation, a sequence (7}),.n Of hyperbolic Riemann
surfaces 7, each of which is called a tree, and a sequence (o,),.n Of slits g, called
the roots of 7, contained commonly in P and 7, which are mutually disjoint and
not accumulating in P. Then the surface W is formed by foresting trees 7, on the
plantation P at the roots for all » € N, or more precisely, by pasting surfaces 7, to P
crosswise along slits g, for all neN. Let ¢ be the family of hyperbolic Riemann
surfaces on which there are no nonzero singular harmonic functions. One might feel
that any afforested surface W := (P, (T}),cN, (0n),cn> Delongs to the family ¢ as far as
its plantation P and all its trees 7, belong to (). The aim of this paper is, contrary to
this feeling, to maintain that this is not the case.

1. Introduction

We denote by HP(R) the vector subspace of the vector space H(R) of
harmonic functions on a Riemann surface R consisting of essentially positive
harmonic functions on R, where u is essentially positive if u is expressed as
u=u; —uy with u;e H(R)" := {ve H(R) : v= 0} (j=1,2), or equivalently, u is
essentially positive if |u| admits a harmonic majorant on R. We denote by uvv
(u A v, resp.) the least (greatest, resp.) harmonic majorant (minorant, resp.) of u
and v on R for u and v in HP(R) so that uvv and u Av also belong to HP(R)
and uAnv=—((—u) v (—v)). With respect to these lattice operations of the join
v and the meet A, the vector space HP(R) forms a vector lattice. Then the
Jordan decomposition

(1.1) u=u"—u (u=uv0, u :=—(un0))

of ue HP(R) gives the canonical way of expressing u as a function in

12000 Mathematics Subject Classification. Primary 30F20; Secondary 30F15, 30F25, 30C20.

Key words and phrases. afforested surface, essentially positive, hyperbolic, Joukowski mapping,
parabolic, Parreau decomposition, Riemann surface, quasibounded, singular, Wiener compactification,
Wiener (harmonic) boundary.

Received April 28, 2009.

99
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(1.2) HP(R) = HP(R)" — HP(R)".

In view of the fact that the vector space HB(R) of bounded harmonic functions
on R is an important vector sublattice of HP(R), we say that a ue HP(R) is
quasibounded if

(L.3) u= lim  (uAs)v(—1)

s,teR* s, 11400

locally uniformly on R, where R is the real number field and R := {reR:
t = 0}, so that every u e HB(R) is trivially quasibounded on R. On the other
hand, a u e HP(R) is said to be singular if

(1.4) (uas)v(=t)=0

identically on R for every s and 7 in R*. We denote by HP,(R) (HP,(R), resp.)
the vector subspace of HP(R) consisting of quasibounded (singular, resp.) har-
monic functions on R and we have the Parreau decomposition of HP(R):

(1.5)  HP(R) = HP,(R) ® HPs(R) (the direct sum decomposition).

It can happen that HP,(R) = HP(R), or equivalently, HP,(R)={0}. We
denote by ) the class of hyperbolic Riemann surfaces R with HP,(R) = {0}.
The examples of R in the null class ¢ is furnished by the following inclusion
relation:

(1.6) Oup\Og < (5 (the strict inclusion),

where Ogyp is the family of open Riemann surfaces R with HP(R) =R and (g
is the family of parabolic Riemann surfaces R so that R ¢ (/y means that R is
hyperbolic in the sense that R carries the Green function ¢(-,{; R) on R with its
pole at any point { in R characterized as the minimal positive harmonic function
on R\{(} with

(1.7) —Ag(-,{; R) = 2nd; (the Dirac measure supported at ().

We denote by dim R the harmonic dimension of R that is given by the
cardinal number of the Martin minimal boundary of R if R ¢ (¢ and the cardinal
number of the Martin minimal boundary of R less arbitrary fixed parametric disc
lying over the ideal boundary of R if Re (). At this point we must recall the
strict inclusion relation Og < Oyp (cf. e.g. [8]). In connection with the result [4]
of Masaoka and the second named author of the present paper that

(1.8) sup dim R < Ny :=card N (the cardinal number of N),
ReG

there arose the question whether the relation < is in fact the genuine inequality <
or the equality = in the above (1.8). We have settled the question in [5] that the
equality holds in (1.8) and in fact we have shown that

(1.9) {dim R: Re 0} = [1,Ro] := NU{Ro}.
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In the course of the proof of (1.9) we introduced a notion of, what we call,
afforested surfaces, by the aid of which we succeeded in showing the existence of
an R e O, with dim R = .

By a slit y in a Riemann surface X we mean a simple arc y in X such that
there exists a parametric disc U := {|z| < 1} on X in which y is represented as
y=[-rr:={zeU:Imz=0,|Rez|=<r} (0<r<1). We now state what we
mean by an afforested surface. Let X and Y be two Riemann surfaces. We say
that y is a common slit in X and Y if there exists a simply connected Jordan
region Vy (Vy, resp.) contained in X and C (Y and C, resp.) such that
y=[-rr={teR:—r<t=<r} <« VyNVy. We denote by

(X\n) ¥, (Y\p)

the Riemann surface obtained by pasting X\y to Y\y crosswise along y. As
above N stands for the class of positive integers. For each ne N we set N, :=
{ieN:i<n+1} and Ny, :=Nsothat No ={ieN:i< &+ 1} for e NU{Ny}.
An afforested surface W := (P, (T});cn,, (0i);cn,> consists of three ingredients: an
open Riemann surface P ¢ () called a plantatzon a finite or infinite sequence
(according to e N or £ =) (7}),.y, of mutually disjoint open Riemann sur-
faces T; ¢ Og for i e N¢ called trees, and a finite or infinite sequence (o;); eN. of
common slits g; in P and 7T; for i e N¢ called roots of trees 7;. Here o; are
assumed to be mutually disjoint, isolated, and not accumulating in P. To de-
termine W we define a sequence (W;),_n. inductively as follows. First let

wiom (P Y o) v

and if Wy,...,W;_1 (ieNg, i=2) have been defined, then let
Wi = Wi_1 Y, (Ti\o;)

for every ie Ng, and we define an afforested surface W := W;: for £e N and
W = lim;, W; for £=X,. In fact,

(1.10) W:_--'(<<P\igyal> o (Tl\Ul)) az(T2\02)>

and the Riemann surface W := (P, (Ti);.N.,(0i);cN.> 18 called the afforested
surface formed by foresting each tree 7; to P at its root g; for every i e N.. We
can see that W ¢ (g along with P and T;.

For an afforested surface W := (P, (T});cn, (0i);eny We consider the follow-
ing condition

Suppy; g(-. (i P)
(1.11) > (4M; + 1)—( e <1,

ieN
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where {; € P corresponds to the center 0 of 6; = [—s;,s;] (s; > 0) with respect to a
parametric disc ¥; at {; such that V; = {|z| <1} = P and V;NV; =0 (i # j) for
every i and j in N, ¢g(-,{; P) is the Green function on P, and M; is the Harnack
constant of {0} UdV; with a reference point o € P\| J,_«(1/2)V; with respect to
the family H(P\|J,.x(1/2)V:)". We have obtained the following result from
which the conclusion (1.9) was derived ([5]):

THEOREM A. Suppose that P and T; belong to O for every i€ N If the
sequence (a,-)l.eNf is finite or else shrinks so rapidly as to satisfy (1.11), then the
afforested surface W := (P, (Ti);en,:(0i);en, > also belongs to O and

(1.12) dim W =¢+1
when in particular P and all the trees T; (i € Ng) belong to Oyp\0g.

Concerning the above result we observe the following two points. First, if £ € N,
then W e (), without any additional condition such as (1.11) no matter how & e N
is large. Second, the condition (1.11) seems to be too technical. Even in the
case of £eN the corresponding condition to (1.11) may not be valid, i.e.
> ien,(4M; + 1) suppy; g(-, (5 P)/infy, g(+, ;3 P) 2 1 can happen for (e N. In
view of these observations one might be tempted to say that W is always a
member of ¢ for all £ <V, without any further restriction such as (1.11). As
a matter of fact we got several inquiries including one from the (of course
unknown) referee of our former paper [5] in his/her referee report whether W e ()
is always true without any additional condition even if & =8y. We took it for
granted that some additional requirement on the size of (o;);.n. for &=y is
in order to conclude that W e (; without giving any deeper consideration when
we completed the paper [5]. After starting the trial to give such an example of
an afforested surface W ¢ ();, we recognized that the work is even harder than
the original work [5] but fortunately we have been successful in constructing the
required one, to exhibit which is the purpose of the present paper. Namely, we
will prove the following result.

THE MAIN THEOREM. There exists an afforested surface W :=<{P,(T:);cn>
(Gi);eny Such that P and T; (ieN) are all in the class O; and yet W does not
belong to the class (.

The proof of this main theorem will be divided into four parts and given as
consecutive 4 sections in the sequel. The basic material of our construction is the
special surface in Oyp\Ug, called the Sario-Toki disc, and therefore it is essential
to understand the structure of these kind of surfaces. This will be described in
the next §2 to an extent we really need in our construction. The plantation and
holes in it to forest trees are prepared in §3 together with the prototype of the
singular function on it to be constructed. Trees and the extension of the above
preparatory function to trees are given in §4. In the final §5, the fact that the
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afforested surface and the singular function on it constructed based upon the
preparations in §§2—4 really satisfy the required properties in the main theorem
will be proven.

2. Sario-Toki discs

We will make an essential use of special type of Riemann surfaces in the
class Opp\Og, which we call Sario-Toki discs. We state the structure of such
surfaces to an extent we need in our construction of an afforested surface carrying
singular harmonic functions.

Let y; and y, be two radial slits of the unit disc D : |z| < 1 formed by the
points re’” and re""’ respectively with 0 <a <r <b < 1. Eachslit y; (j=1,2)
has a left edge y corresponding to 0 =0, +0 and a right edge y;” correspondmg
to 0 =0;,—0. We then identify ;" with y; and y; with y, i.e. we paste a small
slitted neighborhood of y, to that of y, crosswise along identified y, = y,, which
defines a Riemann surface as usual.

More generally we can consider a cyclic identification of any finite number of
radial slits y,, ...,y all extending between |z| = a and |z| = b. In this case y; is
identified with p;, y; with 5, etc. and finally y with y;. The identified end
points will have neighborhoods consisting of k full discs. Such identifications
may be performed simultaneously for several pairs or cycles, even for infinitely
many, under the assumption that they do not intersect or accumulate inside D.
To be complete in formality, we even identify a slit with itself, i.e. a cyclic
identification with k = 1. Needles to say, this trivial identification produces no
change at all.

We denote by I' the union of all radial slits in D which are isolated in D.
The identified slits from slits in I' form a set I" which is a union of isolated simple
arcs with only end points in common. Let D be the resulting Riemann surface
obtained from the above identifying process. It is seen that D\I' = D\I" not
only as sets but also as Riemann surfaces. The coordinate function z for D is
thus a well defined holomorphic function on D\I" but not continuous on I' or not
even defined on I'.  However log|z| is well defined on all of D by understandlng
loglz| = —o0 for z=0 and harmonic on D\{0}. In other words there is a
harmonic function § on D\{0} such that log|z| = —g(z) for ze D\I' = D\I" and
g = g(-,0; D), which is the Green function on D w1th its pole at z=0. Thus
regardless of the choice of I' and hence of I', D is of hyperbolic, i.e.

(2.1) D ¢ Og.

We now give a specific rule for constructing the required D. It will be
determined by two sequences (r,),.n Of strictly increasing sequence in the open
interval (0, 1) converging to 1 and (n,),_n from N. By a suitable choice of these
sequences it is seen that HP(D) consists of only constants so that with (2.1) we
have

(22) ]j € @Hp\@g.
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As for the concrete indication of (r,),.n and (n,), .y for (2.2) and the detailed
proof for it we refer the reader to any one of e.g. the following monographs [1],
[8], and [9].

Observe that every natural number v has a unique representation v =
v(h,k) = (2h 4+ 1)2% with h and k in ZT = {meZ :m =0} with Z the set of
integers. With each v = v(/, k) we associate 2K+ radial slits with end points on
|z| =2 and |z| = ra51.  These slits are equally spaced one of which is on the
positive real axis. Each of the above slits is said to be rank v and type k. To
complete the description of the constructing rule of D, we write 0; = 27/2%. The
sectors jOr < 0 < (j+ 1)0; (0 < j <2%) are denoted by Y. The slits of type k
which lie on the rays 6 = jf, are identified cyclically. The remaining slits of the
same type will be identified pairwise within each sector X; symmetrically about
its bisecting ray. .

A Riemann surface D constructed as described above is referred to as a
Sario-Téki disc since it is originally constructed by Sario [7] and also by Toki [10]
independently. Since (2.2) is a property of ideal boundary (cf. [8]) in the sense
that if a Riemann surface Ry € Oyp\(O; and if another Riemann surface R, gives
the complement in R, of a compact subset of R, coincident with the complement
in R, of a compact subset of R;, then R; € Oyp\Os, we can always replace
(rv),en by any its end part subsequence (ry),-, for any vo e N. Hence we can
say that there exists a Sario-Toki disc D such that

(2.3) D > D(a)
for any given a € (0,1), where D(a) := {|z| <a}. From the construction of D

it follows the existence of an exhaustion (D,),., of D such that Dy = D(a) =
D(a) = D and JD, is a concentric circle in D with

(24) Dy ={lzl =1} < {ra1 < |zl <ra} € D\L (1 € (r2m1,720), v EN).
Once more we restate (2.1) as
(2.5) 9(z,0;D) = —log|z| (zeD\I'=D\I),

where g(-,O;f)) is the Green function on D with its pole at z=0eDND.

3. A plantation P with root holes o, and a basic function /

Choose an arbitrary but then fixed Sario-Toki disc D given by (r,),.x and
(my),en (cf. §2) which we afresh denote by P. The Riemann surface P will
play the role of the plantation for the afforested surface W with required prop-
erties in the main theorem that will be constructed in the sequel. Let (P,),~,
be an exhaustion of P such that Py = D(a) = D(a) = P and 0P, = {|z| =1,} =
{rn-1 < |z <run} (veN). We choose a decreasing sequence (&), Of positive
numbers &, € (0,7/4), which will be a bit more specified below. We denote by

(3.1) o = 0P, = {t,e” :0<0 <21} (neN)
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and we take a subarc f, of «, given by
(3.2) = {1, 10 <.} (neN).
For a compact subset K of P such that P\K is connected, the function

w(z, K; P) = inf s(z),

where s runs over continuous positive superharmonic functions on P with
s|K = 1, is referred to as the harmonic measure of K on P. If K is a non-
degenerate continuum with connected P\K, then w(-,K;P)e C(P)NH(P\K)",
0<w(,K;P)<1 on P\K, and w(-,K;P)|K=1. For any fixed neN,
w(-,B,;P) 10 as g | 0 and therefore we can choose the sequence (g,),.n SO
rapidly decreasingly convergent as to satisfy

ne

(3.3) > w(0,8,; P) < +o0.

neN
Since each w(-,f,; P) is a potential, (3.3) assures that
W= Z w(-, B, P)
neN

is locally uniformly convergent on P and hence w is a potential on P (cf. e.g. [3]).
Finally we set

(3.4) on =\, (neN),

each of which is a simple arc in P. Of course, g,Nag, =0 (n#m), and
{0, : n e N} does not accumulate in P. Pick a suitable parametric disc U, :=
{|z] < 1} such that ¢, = U, and

(3.5) Op = [=Sn,5n) ={z€ U, :|Rez| £s,,Imz=0} (s5,€(0,1))

in terms of local parameter z in U, for every n € N. Here we moreover choose
{U, :neN} in such a fashion that U, N U, =0 (n# m). Each g, in P plays
the role of the hole into which the root s, of the tree 7, will be put to forest 7,
to P in the afforested surface W to be constructed. We set

Y= U Oy

We denote by 0 = 0P the Wiener harmonic boundary of P (cf. e.g. [2], [8]).
In view of P e Oyp\Ug, 5 =JP is a one point set. The closure of a subset X of
the Wiener compactification P* of P will also be denoted by X. We maintain
the following result.

CLAIM 3.6. The set ¥ accumulates to o:

(3.7) Sc 3.
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Proof. Since & is a one point set, (3.7) is equivalent to that dNZ # 0.
Hence, by assuming dNX = (), we only have to derive a contradiction. Take
a g e C(P*) with ¢|0 =0 and ¢|Z = 1, the existence of which is assured by the
fact SNT =0. By applying the Wiener decomposition (cf. e.g. [8]) to ¢, we
obtain, as the harmonic part of ¢, the function ¢ e HB(P\ZX) such that ¢ = 1
and c|0 = 0. By the maximum principle (cf. e.g. [8]), ¢ = 0 on P*. Based upon
the fact (cf. e.g. [8]) that a nonnegative superharmonic function vanishes on J if
and only if it is a potential, we see that ¢ is a potential on P. Recall that w is
also a potential on P. Hence the function

s =c+w
is a potential on P and
sloy 21 (neN).

Let (o, an41) be the subregion of P bounded by o, and o, and also (o) the
subregion of P bounded by ;. By the usual minimum principle for super-
harmonic functions

s| (g, 0p41) =1 and  s|(oy) = 1.
In view of
P= (o) U( U (ocn,oc,,+1)>,
neN

we conclude that s > 1 on P. Hence, by the fact that s is a potential on one
hand and s =1 on P on the other hand, we deduce

0= lim s(z) = liminf s(z) = 1,
zeP,z—0 zeP,z—0

which is clearly a contradiction and we have shown 6NZ #  so that (3.7).

O

Recall that SOpp is the family of bordered Riemann surfaces (R,I'), R is a
Riemann surface and I' a specific part of the border dR of R including the case
I' = 0R but not I' = (), such that the class

HB(R,T) :={ue HB(R)N C(RUT) : ul" = 0}

reduces to {0} (cf. e.g. [8]). If R is a subsurface of a Riemann surface S, every
point of whose nonempty relative boundary JR relative to S is regular with
respect to the Dirichlet problem, then (R,JR) € SOy if and only if (R\0R)N
0S =0 (cf. e.g. [8]). Thus (3.7) implies (and in fact is equivalent to) that

(3.8) (P\Z,%) € SOy3.

Based upon these properties we can obtain the following result on the existence of
a basic function /# which plays an essential role in the proof of our main theorem.
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CLam 3.9. There exists a continuous function h on P such that he
H(P\Z)"\{0} and
(3.10) BIZ =0,  liminl h(z) =0
so that he HP,(P\Y).

Proof.  We denote by {, the center of the arc f,, i.e. the point correspond-
ing to ¢, in (3.2). Using the Green function g(-,{,; P\X) on P\X with its pole at
{, for every ne N, we consider the function

" 90,45 P\Y)

on P by understanding g,({,) = +oo and ¢,/X = 0 for every n € N. By ¢,(0) =1
and g, > 0 on P\X, the Harnack inequality assures that the family {g, : n € N}
forms a normal family on P\X and thus we can find a subsequence (n(v)),.n of N
such that (gy.)),cn i convergent to an e H(P\X)" locally uniformly on P\X.
Hence, on setting 4, := g, € H((P\Z)\{Cn(v)})+, we have

(3.11) h(0)=1 (veN),
hy, € C(P\{{y»y}) (veN) and

(3.12) h|Z=0 (veN),
and we see that

(3.13) h= lim h, e H(P\Z)"

locally uniformly on P\X. By the above (3.13) and (3.11) we trivially deduce

(3.14) h(0) = 1.
Again by (3.13) and (3.12) we can conclude that 4 e C(P) and
(3.15) hZ =0.

This can be seen as follows. For each i e N, by the maximum principle, since
|h, — hy| =0 on g;, we have

sup |h, — hy| = sup |hy —hy| = 0 (u,v — o)

f[’. @U,‘

because 0U; is compact in P\X and h, —h, - h—h=0 (u,v — o) uniformly
on 0U;. Thus supg|h, —h| — 0 (u— o) assures that e C(U;) along with
h, € C(U;) and (3.15) is deduced as a consequence of (3.12). By (3.7) and (3.15)
it is clear that the second equality in (3.10) holds.

For any 7€ R, as functions on P\X, iAnte HB(P\X)N C(P) and therefore
hat, as a bounded subharmonic function on P, is continuous on P*. Hence

(3.10) assures that
(hat)|ZUSP = 0.
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By the maximum principle (cf. e.g. [8]), At =0. This shows that 4 is singular
on P\X, i.e. he HP{(P\Y). O

4. Superharmonic extension of the basic function

Starting from the plantation P and the basic function /4 on it given in §3, we
will forest with suitable trees 7, in the class Oyp\Ug at their roots g, to the root
holes g, in P and construct the harmonic function k, on T,\o, with vanishing
boundary values on ¢, and —1 on the harmonic boundary 67, of T, such that
the new function given by 4 on P\UneNan and k, on each T, (neN) is super-
harmonic on the afforested surface W := <P, (T,),cn; (0n),cny- For the purpose
we prepare the following extension result both for the domain of definition and
the function on it.

Let U :=D the unit disc in the complex plane C and o = [—s,s] the slit in
U on the real line so that 0 < s < 1. Let he C(U)NH(U\o)" vanishing on o.
Let T be an open Riemann surface with 7 ¢ (Oz. We say that the slit ¢ in U
is contained in 7 if there is a simply connected region D in T such that there is
a parametric disc (V,z) in T satisfying c =« D = V with 6 ={ze V' : |[Re z| < s,
Im z=0}. Then we can form a new Riemann surface (U\o)W¥, (T\o), which
we call the surface formed from U by foresting the tree 7" with root ¢ at the root
hole ¢ in U. Let ke C(T*)NH(T\c) be such that klo =0 and k|07 = —1 so
that —k is the harmonic measure of the Wiener harmonic boundary 67 on T\g,
where T* is, as before, the Wiener compactification of 7. For convenience the
function k will be referred to as the associated function with T. To consider
h and k on (U\o) W, (T\o) we understand that /| (T\o) = 0 and k| (U\o) =0 so
that h+k can be considered on (U\o)W,(T\o) with (h+k)|U=h and
(h+k)|T =k. We wish to have the situation where the hybridized function
h + k is superharmonic.

LemMa 4.1 (Hybridizing Lemma).  For any triple (U, o0, h) of the unit disc U,
a slit o of length 2s on the real line symmetric about the origin of U, and a positive
harmonic function h on U\c with vanishing (continuous, resp.) boundary values on
o (0U, resp.), there is a Riemann surface T belonging to the class Ogp\Og with the
slit o in T identified with the above o in U and the associated function k with T
such that h+ k is superharmonic on the afforested surface (U\o)¥, (T\a).

Proof. Since h = 0 is continuous on U with /|g = 0 and harmonic on U\g,
we can deduce that

M :=max h =max h e (0,40).
4 ouU

We choose arbitrary but then fixed numbers p and p, in (0,1) satisfying

§ l/M
4.2 _— <p< < 1.
(42) <1+ ﬁ_ﬁl_sz) p<p
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The number p plays the lead and p, Athe support. Let w = j (z) be the J oqkowskj
mapping of the extended z-plane C.:= C onto the extended w-plane C,, :=C

given by
. N z pP
w :](Z) ::E (;—’—;)

Then the circle C, : |z| = p in the z-plane C. is mapped onto the slit ¢ = [—s, s].
Let o (o7, resp) be the upper (lower, resp.) edge of . If we view 6" Ug™ a
Jordan curve in the Carathéodory compactification of C\a then w = j(z) maps
C, homeomorphically onto ¢*Us~. We denote by D, the disc bounded by
C We set jy := j|D, and j :—]|(C\D ) with j|C, _]OO|CP = j|C,. Then
w = jo(z) (W= ju(z), resp.) maps D, (C\D,, resp.) onto C\& conformally and D,
(C\D,, resp.) onto (C\o)U (¢ Uo—*) homeomorphically. Actually w = j(z) is a
conformal mapping of C. onto the Riemann surface (C,\o)¥, (C,\o) so that
w = jo(z) (W= jx(z), resp.) is the conformal mapping of D, (C\D,,, resp.) onto
(C\o)U (6" Uos™). Observe that the circle C, : |z] =r (0 < r < p) is mapped by
w = jo(z) onto the ellipse E, with the major axis [—s(p? + r?)/2pr, s(p* + r?)/2pr]
on the real axis and minor axis [—s(p? —r?)/2pr,s(p> —r?)/2pr]i on the imag-
inary axis. Since the circle family {C,:0 <r < p} covers D,\{0}, i.e.
(4.3) U C, = D,\{0},
0<r<p
we have the corresponding situation for C\o via w = jj(z) that the ellipse family
{E,: 0 <r<p} covers C\g, ie.
(4.4) J E =C\o.
O<r<p
We next consider the annulus j;!(U\c) bounded by two Jordan curves.

One is the circle C, corresponding to ¢ and the other ¢, corresponds to the unit
circle 0U. Observe that

¢ = Jo '(OU) = jo (Iwl = 1)
is an analytic Jordan curve in D,. By (4.3) and (4.4) there is a unique ellipse

E, (0 <t<1) touching dU at 1 (and also at —1) so that C, is enclosing c,
touching at 7p (and also at —tp). Then jo(zp) =1, from which we deduce

- R

We denote by U the annulus bounded by the outer boundary circle C, and the
inner boundary analytic Jordan curve c,:

U:=j;'(U\o) and oU=C, —c,.

The function 4 on U can be harmonically transplanted to U as a function 4 in
the class C(UUC,Uc,) NH(U)" with vanishing boundary values on C, and the
continuous boundary values on c,:
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il =ho j().
By the definition of 7 in (4.5) we see that

U =D,\(¢,) = {tp < |2| < p},
where (c,) is the region bounded by c¢,. In view of the above inclusion relation
we see, by the maximum principle, that

; M
h(re”y < ——— log(p/r

U= Toglp /) 8PN
for tp < r < p and therefore we deduce, keeping the fact that two functions on
the both sides of the above inequality vanishing on C, : |z| = p can be harmon-

ically continued across C, in mind,

5 - i0 M
2 i >
(4.6) {&h(;’e ):|r_/) Z logt

By (2.3) we can find a Sario-Toki disc D with

D(p) =D(p;) = D(p;) =D
and using this D we consider
v :=D\D(p).

Weld U to ¥V by identifying C, = {|z| = p} with 8V = {|z| = p}, which amounts
to the same that we are identifying D, with D(p). The resulting surface is just
UUC,UV =D\(c,).

Consider the function
- 1
=—9(-,0;
fog(1/p) !

on VU C,, where g(-,O;ﬁ) is the Green function on D with its pole at 0.
Clearly k|oD = —1, where oD is the Wiener harmonic boundary of D, and
k|C, =0. Since, by (2.5), we have

D) -1

k(re) = og » logr—1
for p<r =<p,, we see that
0+, 1
4.7 —k(re” } = .
@7) {W (re) r—p Plogp

By (4.2) and (4.5), we can deduce from (4.6) and (4.7) that

(4.8) [a,a_il(reia)} e {85—1— k(mm)},_p
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Here it is essentially important that we are computing the left (right, resp.)
derivative 0/0r— (0/0r+, resp.) with respect to the common local parameter re'
on UUC,U (D(p;)\D(p )) on which &, k, and & + k are defined as follows. The

function 4 is as it is on Uu C, but we set h 0 on V The function k is as it is
on C, UVbutweputk Oon U. Thenh+klshon UUC andkonC uv
and anyhow h+k is well defined on U U C,UV =D\(c)) and superharmomc
there by virtue of (4.8).

Observe that D(p;)\D(p) is mapped by w = j,(z) onto the annulus \g,
where V' is a Jordan region in the w-plane. Since j (0 (C\D(p,))) = @V and j.,
is a conformal mapping of a vicinity of d(D\D(p,)) onto a vicinity of 0V, we can
weld V' to D\D(p,) at 0V and d(D\D(p,)) identified by j.. (cf. [6]) and we
denote by T the resulting Riemann surface. Since being a member of (yp and
that of O for a Riemann surface are ideal boundary properties (cf. [8]), we see
that

(49) T e (QHP\(/('?G e 6?

along with D because T and D have the common identical ideal boundary
neighborhood D\D(p;). Since T'\¢ is conformally equivalent to D\D(p) and
o Ug~ correspond to dD(p) = C,, k can be conformally transplanted to a
function & on T\o such that k € C( “YNH(T\o)", T* being the Wiener com-
pactification of 7', with k|o =0 and k|6T = —1, 5T being the Wiener harmonic
boundary of 7. Similarly 4 is viewed as bemg conformally transplanted to U
from A on U such that e C(U)NH(U\o)" with hlo =0 (in reality, starting
from h, h was given by h=ho jy). Since the part UUC,U(D(p))\D(p)) =
UUC,UV =D\(c,) is mapped conformally onto (U\o) W, (V\o) = (U\o) ¥,
(T'\o) and (h+k)oj= h+k there under the definition 4|7 =0 and k|U = O
the superharmonicity of / + k on D\(c,) implies that of /i + k on (U\o) ¥, (T\o).
O

5. Construction of a nonzero singular function

We take the plantation P adopted in §3 so that, first of all, we have
P e Opp\Og < s

and hence the Wiener harmonic boundary 6P of P in the Wiener compactification
P* of P consists of a single point d, i.e. 0P = {d}; there is a sequence (U,),.N
of parametric discs U, = {|z| < 1} such that U,NU, =0 (n#m) and (U,),.n
does not accumulate in P, i.e. for any compact subset L of P, the class {ie N:
U;NL # 0} is either empty or at most finite subset of N; there is a sequence
(On),en Of slits o, = [—su,5,] = U, (0 <s, <1) such that

P S (2;: U a,,).

neN
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Moreover we have, what we call, a fundamental function /2 on P characterized by
he C(P)NH(P\Z)" with 4|2 =0 and by the most important property

(5.1) he HP,(P\Z)"\{0}.

As a consequence, if a v e HB(P\X), the class of bounded harmonic functions on
P\Z, satisfies 7 = v on P\X, then v <0 on P\X. We now choose an exhaustion
(0i);cn of P consisting of relatively compact subregions Q; of P where relative
boundaries dQ; are analytic Jordan curves (cf. §2) such that

Qn o U Ul' and P\Qn ) U U,‘.

1<ign n<i<oo

Next we use the result in §4. For each n € N, by the hybridizing lemma 4.1,
we can choose a tree T, € Oyp\Og < O containing the slit o, identified with that
in U,c P and a k,e C(T;) NHB(T,\o,) with k,|lo, =0 and k, |6T, = -1, T,
being the Wiener compactification of 7, and 67, the Wiener harmonic boundary
of T, consisting of a single point d, so that 67, = {d,}, such that h+k, is
superharmonic on (U,\o,) Y, (T,\o,) by extending & to T, by h|T, =0 and k,
to P by k,|P =0. Let W be the afforested surface (P, (7,),cn,(On),en>- Let k
be the function on W such that k|T, =k, (neN) so that k|P =0. Similarly 4
is extended to W by setting 2 =0 on UneN T,. Then h+ k is a superharmonic
function on W such that 7+k=—1 on W.

At this point we pause to recall the notion of harmonic measure functions.
A function w on W is referred to as a harmonic measure function if w e H(W)
and

(5.2) on(l—w)=0

on W. The condition (5.2) implies 0 < w <1 on W so that w e HB(W)" and
therefore w e C(W*), where W* is the Wiener compactification of W. Since
f— f|oW is a bijective linear mapping of HB(W) onto C(6W), where oW is
the Wiener harmonic boundary of W, the compact subset W of W* is known to
be a Stonean space characterized by the property that the closure of any open
subset of W is again open so that clopen (i.e. closed and open) subsets of 6 W
constitute a base of topology of §W. Then the condition (5.2) can be seen to be
equivalent to that w|dW is the characteristic function of some clopen subset of
ow.

We now return to our present work of constructing a function u in the class
HP,(W)"\{0}. Since 6T, = {d,} is an isolated one point set in §W and hence is
an open subset of dW for every n e N, the set | | 07}, is an open subset of 6 W
and thus the set

neN

K = U oT,
neN

is a clopen subset of W. Then there exists a unique we C(W*)NHB(W)*
such that
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w|0W = yx : the characteristic function of K on oW.

Hence w thus constructed is a harmonic measure function on W and thus the
property corresponding to (5.2) for w is valid, i.e. we have

(5.3) wa(l—w)=0
on W. For each ne N we form an auxiliary afforested surface W,:

Wy := (O, (Ti)lgiénv (Ui)1§i§n>a

which may be viewed as a subsurface of W with W, = 0Q,. Then (W,),.n
forms an “exhaustion” of W in a generalized sense. Let w, € C(W,) N HB(W,))"
with w, |0W, =0 and w, | ({J,.,.,0T;) =1, where W, is the closure of W, in
W. We set w,|(W\W,)=0. We maintain the following important relation:

(5.4) w= lim w,
n—oo

locally uniformly on . By the maximum principle, we see on comparing the
boundary values of w, and w,,; on 0W,U (UlgignéTi) that (wy),.n 18 an
increasing sequence on W with 0 <w, <1 on W, for every ne N, and hence
we see that (w,),.n converges to a pe HB(W)" with 0 < p <1 on W locally
uniformly. In view of w,<p=<1 on W, for every neN, we see that
Pl (U;cn0Ti) = 1. By the continuity we clearly have p|K =1, and trivially
p|(OW\K) = 0. Sincew=p=1onK and w=0 =< p on dW\K, the maximum
principle assures that w < p on W. On the other hand, again by the maximum
principle, we see that w, < w on W by comparing the boundary values of w, and
w on aWnU(U1g,—gn5Ti)> and a fortiori we deduce lim,_ ., w, <w on W, or
equivalently p <w. We have thus shown that w < p and p <w on W, from
which (5.4) follows.

We are now in the final stage of our proof of the main theorem stated in the
introduction. Observe that Kk +w =0 on W and thus

h+k+wz=h

on W. Since the term on the left hand side 4 + k 4+ w is superharmonic on W
along with i+k on W (cf. §4) and the term % on the right hand side of the
above is subharmonic on W, we can find a harmonic majorant u of / satisfying

h+k+w=2u=2h=0

on W. Hence ue HP(W)"\{0} and the proof will be over if we can show that
ue HP,(W)". For the purpose we choose any v e HB(W)" with u>v =0 on
W and we are to show that v =0 on W. Replacing v by (1/m)v with suitably
large m € N, if necessary, we can assume without loss of generality not essentially
but technically convenient condition that

(5.5) 0<v<l1
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on W in addition to the essential restraint
(5.6) h+k+wzvz=0

on v considered on W. Since (5.6) takes the form i+ w=v on P\X or
h=v—w on P\Z with v —we HB(P\X), the fact that 7 e HP,(P\X)" in (5.1)
established at the end of §3 assures that v —w <0 on P\X. Since kK <0 and
h=0on J,.xTi (5.6) shows that w=k+w = v on (J,_x7i. Hence, anyway,
we deduce

(5.7 w=v

on W. On 0T, k+w=—-1+1=0 and A|T; =0 yield with (5.6) that v =0,
ie. v|(J;<;<,0T0) =0=(1—w,)[(|J,<;<,0Ti). As an effect of the technical
requirement (5.5) we see that v<1=1—w, on 0W, =0Q,. Thus the maxi-

mum principle assures that v < 1 —w, on W,. Hence v < lim,_,.(1 —w,) on W
and by (5.4) we deduce

(5.8) l—wzv
on W. Thus, by (5.3), we conclude that (5.7) and (5.8) yield
0sv=wa(l-w)=0

on W so that v =0 on W, as required.
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