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DUAL SPACES OF RESTRICTIONS IN THE REPRODUCING

KERNEL HILBERT SPACES IN DISCRETE SETS
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Abstract

We characterize the dual spaces of restrictions of a dual pair of reproducing kernel

Hilbert spaces in a discrete set. Consequently, we give a canonical dense subset to the

restriction spaces. As applications, we reprove a variational principle in a dual pair of

reproducing kernel Hilbert spaces. Also we give a geometric representation for the

existence and ergodicity condition of equilibrium Glauber and Kawasaki dynamics for

some determinantal point processes.

1. Introduction

In this paper we discuss the linear function spaces on discrete sets. Given
a countable set E, we define a dual pair of reproducing kernel Hilbert spaces
with a priori given kernel functions. We are interested in the restrictions of
the functions to any subsets of E. The restriction theory for the reproducing
kernel Hilbert spaces (in short RKHS’s) is well explained by Aronszajn in [1].
Nevertheless, we will further investigate, in particular, the dual spaces of the
restrictions. Though RKHS’s are Hilbert spaces themselves, in many aspects
their behavior is not so apparent as much as that of the usual Hilbert space
l2ðEÞ. For instance, any restriction of a vector in l 2ðEÞ to a subset of E may
be regarded as an element of l2ðEÞ, but it is not all the case for RKHS’s (see
an example in Section 5). Therefore, some problems, although obvious in the
l2ðEÞ-theory, are not easy to see the result. In Section 3 we discuss one such a
problem.

One more motivation for this study came from a construction of the
equilibrium dynamics which leave invariant a priori given a probability measure.
To say little more concretely, the kernel operator used in the RKHS’s in this
paper will define a certain determinantal point process, which is a probability
measure on the configuration space with state space E. We want to construct
the so called Glauber and Kawasaki dynamics with the determinantal point
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process being a symmetrizing measure [2]. For the construction of Fellerian
Markov process, and further, to discuss the ergodicity of the dynamics, the theory
of RKHS’s and the restriction theories play important roles. In Section 3, we
discuss some part of them.

We organize this paper as follows. In Section 2, we introduce a basic
construction method for the dual pair of RKHS’s and then state the main results.
In Section 3, we discuss above mentioned applications. Section 4 is devoted to
the proofs. In the final Section 5, we discuss an open problem.

2. Preliminaries and results

In this Section we briefly introduce the reproducing kernel Hilbert spaces and
give the main results. We first recall the definition of RKHS’s from ref. [1].

A (complex) Hilbert space H consisting of functions on a set E and equipped
with an inner product ð� ; �Þ (assumed linear for the second argument) is called
a reproducing kernel Hilbert space with reproducing kernel (shortly RK), say
Kðx; yÞ, x; y A E, if

(i) For every x A E, the function Kð�; xÞ belongs to H;
(ii) The reproducing property: for every x A E and f A Hþ, f ðxÞ ¼

ðKð�; xÞ; f Þ.
In this paper we deal only with discrete spaces. Thus from now on we let E
be any fixed countable set and let H0 :¼ l2ðEÞ be the Hilbert space of square
summable functions (sequences) on E equipped with the usual inner product:

ð f ; gÞ0 :¼
X
x AE

f ðxÞgðxÞ; f ; g A H0:ð2:1Þ

Let A be any positive definite, bounded linear operator on H0. Notice that A is
a Hermitian operator. We assume that Ker A ¼ f0g, thus Ran A is dense in H0.
Let B :¼ fex : x A Eg be the usual basis of H0, i.e., ex A H0 is the unit vector
whose component is 1 at x and 0 at all other sites.

We define two additional norms on H0 and on the range of A, respectively.
First on H0, we define a new inner product ð� ; �Þ� as follows:

ð f ; gÞ� :¼ ð f ;AgÞ0; f ; g A H0:ð2:2Þ
On Ran A, we define another inner product ð� ; �Þþ by

ð f ; gÞþ :¼ ð f ;A�1gÞ0; f ; g A Ran A:ð2:3Þ
Let us denote by k � k� and k � kþ the corresponding induced norms. Finally, let
H� be the completion of H0 w.r.t. k � k� and Hþ the completion of Ran A w.r.t.
k � kþ. Then we obtain the following rigging of Hilbert spaces.

H� IH0 IHþ:ð2:4Þ
Let Aðx; yÞ, x; y A E, be the matrix elements of A w.r.t. the basis fexgx AE :

Aðx; yÞ :¼ ðex;AeyÞ0; x; y A E:ð2:5Þ
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It is easily seen that Hþ is a reproducing kernel Hilbert space with reproducing
kernel Aðx; yÞ. On the other hand, it should be noted that some of the elements
of H� may not be represented as functions on E in general. This is so called a
functional completion problem [1] and we will assume the following:

Hypothesis (H): We suppose that H� is functionally completed, i.e., any vector
of H� can be represented as a function on E.

In [4], we gave some su‰cient conditions on the operator A so that the above
hypothesis is satisfied. Now the space H� being functionally completed, H�
itself is a reproducing kernel Hilbert space. For this fact we refer to [1, p 343 and
p 347]. Denote the RK of H� by Bðx; yÞ, x; y A E. Formally B ¼ A�1, which
is not a bounded operator in general.

The main merit of the rigging in (2.4) is that the spaces H� and Hþ are the
dual spaces to each other [4, Proposition 2.2]. The purpose of this paper is to
characterize the dual spaces of the restrictions of the RKHS’s H� and Hþ. For
this purpose, we briefly recall the restriction theory for RKHS’s from the reference
[1, Section 5, Part I].

Let H be any RKHS (on E) with RK Kðx; yÞ. Let RHE be any (finite or
infinite) subset of E, and let KRðx; yÞ, x; y A R, denote the restriction of K to the
set R� R. As Kðx; yÞ is a positive definite function, and the same is true for the
restriction KRðx; yÞ, the kernel KRðx; yÞ itself is a unique RK for a RKHS on
the set R, which we denote by HR;KR

[1]. It turns out that HR;KR
is in fact the

restriction space of H to the set R. That is, HR;KR
consists of all functions

f : R ! C such that there is a vector ~ff A H with

pR ~ff ¼ f ;ð2:6Þ
where pR is the restriction operator on the function space on E to the function
space on R defined by

pR f ðxÞ ¼ f ðxÞ; x A R;

for any function f on E. The norm of HR;KR
is defined by

k f kR;KR
:¼ inffk ~ff kK : pR ~ff ¼ f g;ð2:7Þ

where k � kK is the norm for H. We notice that for any f A HR;KR
, there is a

(unique) f 0 A H s.t. pR f
0 ¼ f and

k f kR;KR
¼ k f 0kK :ð2:8Þ

We refer to [1, Part I, Section 5] for the details. By (2.7) and (2.8), we see that
the operator pR : ðH; k � kKÞ ! ðHR;KR

; k � kR;KR
Þ is bounded and the operator

norm is 1.
Recall that Hþ and H� are RKHS’s with RK’s A and B, respectively.

Given any subset RHE, we denote the restriction spaces of Hþ and H� to the
set R by HR;AR

and HR;BR
, respectively. We would like to characterize the dual

spaces of them. As usual l 2ðRÞ denotes the space of square summable functions
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on R. Since we have H0 1 l2ðEÞIHþ, the restriction space HR;AR
is a subspace

of l2ðRÞ:
l 2ðRÞIHR;AR

:ð2:9Þ
As an inverse operation to pR, we let iR be the embedding operation mapping
a function f on R to the function on E as follows:

iR f ðxÞ ¼
f ðxÞ; x A R;

0; x A EnR:

�
ð2:10Þ

Since iRl
2ðRÞHH0 HH�, we see that

HR;BR
I l2ðRÞ:ð2:11Þ

We want to first characterize the dual space H 0
R;BR

of HR;BR
. It is shown in [4,

p 337] that there is a positive definite bounded linear operator B�1
R on l2ðRÞ s.t.

ð f ; f ÞR;BR
¼ ð f ;B�1

R f Þ0; f A l 2ðRÞ;ð2:12Þ
where ð� ; �ÞR;BR

is the inner product for HR;BR
and, by abuse of notation, ð� ; �Þ0 is

the usual inner product in l 2ðRÞ. For each f A l 2ðRÞ, since iR f A H0 HH� and
pRðiR f Þ ¼ f we see that

ð f ;B�1
R f Þ0 ¼ ð f ; f ÞR;BR

a ðiR f ; iR f Þ�
¼ ðiR f ;AiR f Þ0
¼ ð f ;AR f Þ0:

Therefore we get

B�1
R aAR:ð2:13Þ

By (2.12) and the polarization identity we see that the matrix components of
B�1
R ðx; yÞ is given by

B�1
R ðx; yÞ ¼ ðex;B�1

R eyÞ0 ¼ ðex; eyÞR;BR
; x; y A R:ð2:14Þ

Let us denote by HR;B�1
R

the RKHS on R with RK B�1
R ðx; yÞ. The first charac-

terization result is the following, which extends [4, Lemma 3.6]:

Theorem 2.1. Let the hypothesis (H) be satisfied. Then for any RHE, we
have

H 0
R;BR

¼ HR;B�1
R

¼ pRðiRðl 2ðRÞÞVHþÞ:

We notice that the space iRðl2ðRÞÞVHþ consists of elements Hþ that is supported
on R.

In order to characterize H 0
R;AR

, we introduce a notation. For any subset
SHE, we define
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F0ðSÞ :¼ f f A H� : f ðxÞ ¼ 0 for all x A Sg:ð2:15Þ
As in the case for HR;BR

, let A�1
R ðx; yÞ be the kernel function on R defined by

A�1
R ðx; yÞ :¼ ðex; eyÞR;AR

; x; y A R;ð2:16Þ
where ð� ; �ÞR;AR

denotes the inner product in HR;AR
. The inner product in

(2.16) is well defined because ex A Hþ for all x A E (see [4, Proposition 2.2]) and
kexkR;AR

a kexkþ for each x A E.

Obviously A�1
R ðx; yÞ, x; y A R, is a positive definite function and we let

HR;A�1
R

be the RKHS with RK A�1
R ðx; yÞ. The second characterization is as

follows:

Theorem 2.2. Under the hypothesis (H), for any RHE we have

H 0
R;AR

¼ HR;A�1
R

¼ pRðF0ðRcÞÞ:
Moreover, the above spaces are equal to (the restriction of ) span fex : x A Rg with
respect to k � k�-norm.

The final result is for the hierachies of the function spaces.

Theorem 2.3. Suppose that the hypothesis (H) is satisfied. Then for any
RHE, as for the functions on the set R we have the inclusions:

HR;BR
IH 0

R;AR
I l 2ðRÞIHR;AR

IH 0
R;BR

:

The embedding HR;BR
I l2ðRÞ is dense.

The proofs of the theorems are given in the section 4.

Remark 2.4. When the operator A has a bounded inverse B :¼ A�1, all the
results in Theorems 2.1–2.3 can be proven without di‰culty. The theory of
RKHS’s helps us extend the results when A is not boundedly invertible.

3. Applications

3.1. A variational principle in the pair of H� and Hþ
In [4], we have shown a variational principle in the dual pair of H� and Hþ.

Its proof was rather long. By using the characterization theorem, Theorem 2.1,
we can reprove it. Let us briefly introduce it. For each finite subset LHE
(denoted by LHHE hereafter) let

Floc;L :¼ the linear space spanned by fex : x A Lg:ð3:1Þ
Let x0 A E be a fixed point and let E ¼ fx0gUR1 UR2 be any partition of E (one
of R1 and R2 may be the empty set). For each LHHE, define

aL :¼ inf
f A Floc;LVR1

kex0 � f k2� and bL :¼ inf
g A Floc;LVR2

kex0 � gk2þ:ð3:2Þ
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Obviously, faLgLHHE and fbLgLHHE are decreasing nets of nonnegative numbers.
Consequently we define

a :¼ lim
L"E

aL and b :¼ lim
L"E

bLð3:3Þ

The variational principle in [4] reads as follows: no matter how we take a
partition E ¼ fx0gUR1 UR2, the product of a and b is equal to 1 (see [4,
Theorem 2.4] and also [3]):

ab ¼ 1:ð3:4Þ

In order to prove (3.4) we recall the bilinear functional on H� �Hþ introduced
in [4]. First, for f A H0 and g A Ran A, define

�h f ; giþ :¼ ð f ; gÞ0 ¼
X
x AE

f ðxÞgðxÞð3:5Þ

It is not hard to see that

j�h f ; giþja k f k�kgkþ;ð3:6Þ

thus it continuously extends to H� �Hþ. By abuse of notation, we denote the
extension by the same notation �h� ; �iþ. For convenience we denote the complex
conjugate of it by þh� ; �i�, i.e.,

þhg; f i� :¼ �h f ; giþ; f A H�; g A Hþ:ð3:7Þ

Now we are in a position to prove (3.4). In [4], we have noticed that there are
vectors a2 A Hþ and b1 A H� such that supp a2 HR2 (meaning that a2ðxÞ ¼ 0 for
x A Rc

2) and supp b1 A R1, and moreover the following equality holds (see [4,
eq. (3.41)]):

1 ¼ ab þ þha2; b1i�:ð3:8Þ

By using (3.8), the relation (3.4) follows from the following proposition.

Proposition 3.1. Suppose that R1 and R2 are disjoint subsets of E. If
a2 A Hþ is supported on R2 and a1 A H� is supported on R1, then þha2; a1i� ¼ 0.

Proof. Like the bilinear form �h� ; �iþ on H� �Hþ, we denote the dual
pairing on HR2;BR2

�H 0
R2;BR2

by R2;BR2
h� ; �i 0

R2;BR2
. Notice that for f A l 2ðR2Þ and

g A H 0
R2;BR2

H l 2ðR2Þ, we have

R2;BR2
h f ; gi 0

R2;BR2
¼
X
x AR2

f ðxÞgðxÞ:ð3:9Þ

Let f fngHH0 ¼ l2ðEÞ be any sequence that converges to a1 in H�, i.e., converg-
ing in k � k�-norm. Since a2 A Hþ is supported on R2, i.e., a2 A iR2

ðl2ðR2ÞÞVHþ,
by Theorem 2.1 we see that pR2

a2 A H 0
R2;BR2

. By (3.9), and by using the con-
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tinuity of the restriction operator pR : ðH�; k � k�Þ ! ðHR;BR
; k � kR;BR

Þ for any
RHE (see (2.7)), we get

�ha1; a2iþ ¼ lim
n!y

�h fn; a2iþ

¼ lim
n!y

X
x AR2

fnðxÞa2ðxÞ

¼ lim
n!y

R2;BR2
hpR2

fn; pR2
a2i

0
R2;BR2

¼ R2;BR2
hpR2

a1; pR2
a2i

0
R2;BR2

¼ 0;

since pR2
a1 ¼ 0. r

3.2. Interdependencies of flip rates of Glauber and Kawasaki dynamics for
determinantal point processes: a Hilbertian, geometric representation

In [2], we have constructed Glauber and Kawasaki dynamics for determi-
nantal point processes in discrete sets. To construct the equilibrium dynamics
that leaves certain point process invariant, the Papangelou intensities of the point
process, which are conditional probability densities, play a central role (see [2] for
the details). In order to get a Fellerian Markov process, and also to get an
ergodicity of the process, it is needed to control the inter-dependencies of the flip
rates. We focus only on the application of the result of this paper, so we
introduce just the key expressions, referring the details to [2]. The Papangelou
intensities are turned out to be the numbers a in (3.3). More concretly, let x A E
be any element and let xHEnfxg be any subset (configuration). Replacing x0
and R1 in (3.2) by x and x, respectively, let us denote the resulting number a
in (3.3) by aðx; xÞ. The flip rates for Glauber and Kawasaki dynamics which
leave the law of the determinantal point process invariant are determined by the
numbers aðx; xÞ. From the definition, this number aðx; xÞ has already a geo-
metric interpretation. Namely, aðx; xÞ is the square of the distance (in H�) from
the vector ex to the subspace spanned by fey : y A xg. What we have called the
inter-dependency has the following expression for Glauber dynamics (and sim-
ilarly for Kawasaki dynamics):

sup
x AE

X
u0x

sup
x d x;u

jaðx; xÞ � aðx; uxÞj;ð3:10Þ

where we used a short-handed expression, ux :¼ fugU x. Therefore we need to
understand the quantity jaðx; xÞ � aðx; uxÞj more concretely as much as possible.

For each xHE, we let Px the orthogonal projection in H� onto the sub-
space spanfey : y A xg. The following proposition gives several ways of inter-
pretation to the di¤erence aðx; xÞ � aðx; uxÞ.
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Proposition 3.2. For any x0 u A E and x; u B xHE, we have the following
representations:

aðx; xÞ � aðx; uxÞ ¼ kPuxex � Pxexk2�
¼ jðex; ðI � PxÞeuÞ�j

2 � kðI � PxÞeuk�2
�

¼ jðex; euÞx c;Bx c
j2 � keuk�2

x c;Bx c
:

In particular, in a formal level, we also have the representation:

aðx; xÞ � aðx; uxÞ ¼ jAðx; uÞ � Aðx; xÞAðx; xÞ�1
Aðx; uÞj2 � aðu; xÞ�1:ð3:11Þ

Proof. Recall that aðx; xÞ is the square of the distance between the vector ex
and the space PxH�. That is,

aðx; xÞ ¼ kðI � PxÞexk2�:ð3:12Þ
By using this fact and the theorem of three perpendiculars we get the first
identity. To proceed, we next show the equality of the second and the last
expressions. By Theorem 2.2, PxH� is equal to the space F0ðxcÞ, the subspace
of H� consisting of the functions that vanish on xc. On the other hand, the
orthogonal complement to F0ðxcÞ is isometrically equivalent to the space Hx c;Bx c

(see [1, Section 5, Part I]). The correspondence is via the relation (2.8), i.e.,
for any vector f A Hx c;Bx c

, there is a unique f 0 A F0ðxcÞ? s.t. px c f 0 ¼ f and
k f 0k� ¼ k f kx c;Bx c

. Since ex and eu are supported on xc we may simply write

px c ex ¼ ex and px c eu ¼ eu, and then we have

aðx; xÞ ¼ kðI � PxÞexk2� ¼ kexk2x c;Bx c
:ð3:13Þ

Now we recall from [4] that

aðx; xÞ ¼ lim
D"E

det AðxxD; xxDÞ
det AðxD; xDÞ

;ð3:14Þ

where xD ¼ xVD and AðxD; xDÞ is the matrix ðAðx; yÞÞx;y A xD . Similarly we have

aðx; uxÞ ¼ lim
D"E

det AðxuxD; xuxDÞ
det AðuxD; uxDÞ

ð3:15Þ

¼ lim
D"E

det AðxuxD; xuxDÞ=det AðxD; xDÞ
det AðuxD; uxDÞ=det AðxD; xDÞ

:

The denominator in (3.15) converges to aðu; xÞ ¼ keuk2x c;Bx c
. In a very similar

way we see that the numerator converges to

det
kexk2x c;Bx c

ðex; euÞx c;Bx c

ðeu; exÞx c;Bx c
keuk2x c;Bx c

 !
:ð3:16Þ

From (3.15) and (3.16) we see that

aðx; uxÞ ¼ kexk2x c;Bx c
� jðex; euÞx c;Bx c

j2 � keuk�2
x c;Bx c

:ð3:17Þ
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From (3.13) and (3.17) we get

aðx; xÞ � aðx; uxÞ ¼ jðex; euÞx c;Bx c
j2 � keuk�2

x c;Bx c
;ð3:18Þ

which is the last expression in the proposition. For the second equality we
notice that

jðex; ðI � PxÞeuÞ�j
2 ¼ jððI � PxÞex; ðI � PxÞeuÞ�j

2ð3:19Þ

¼ jðex; euÞx c;Bx c
j2;

where we have used the relation (3.13) and the polarization identity. From
(3.13) and (3.18)–(3.19), we see that the second and the last expressions are the
same. Finally we check the relation (3.11) in a formal level. Since (informally)
B ¼ A�1,

ðex; euÞx c;Bx c
¼ ðex; ðBx cÞ�1

euÞ0ð3:20Þ

¼ ðex; ½ðA�1Þx c ��1
euÞ0

¼ ðex; ½Aðxc; xcÞ � Aðxc; xÞAðx; xÞ�1
Aðx; xcÞ�euÞ0

¼ Aðx; uÞ � Aðx; xÞAðx; xÞ�1
Aðx; uÞ:

From (3.19) and (3.20) we get (3.11). This completes the proof. r

4. Proofs

In this section we provide with the proofs for the theorems in Section 2.
We start by showing the last assertion in Theorem 2.3, which says that l 2ðRÞ
is densely embedded in HR;BR

. Since it is worthy to notice we state it as a
proposition.

Proposition 4.1. Under the hypothesis (H), l2ðRÞ is densely embedded in
HR;BR

for any RHE.

Proof. Let f A HR;BR
be any element and let ~ff A H� be an element so that

f ¼ pR ~ff . Let f fngHH0 ¼ l 2ðEÞ be any sequence that converges to ~ff in H�.
As noticed before, since pR : ðH�; k � k�Þ ! ðHR;BR

; k � kR;BR
Þ is continuous, we

see that pR fn ! pR ~ff ¼ f in HR;BR
. Notice that pR fn A l2ðRÞ since fn A l2ðEÞ.

This proves that l2ðRÞ is dense in HR;BR
. r

Proof of Theorem 2.1. We first show the equality H 0
R;BR

¼
pRðiRðl 2ðRÞÞVHþÞ. The half inclusion H 0

R;BR
H pRðiRðl 2ðRÞÞVHþÞ was shown

in [4, Lemma 3.6], and there it was also shown that for g A H 0
R;BR

the equality

kgk0
R;BR

¼ kiRðgÞkþð4:1Þ

95dual spaces of restrictions



holds. So, let g A iRðl 2ðRÞÞVHþ. For any element f A l2ðRÞ, since iRð f Þ A
l2ðEÞHH�, we let f 0 A H� be the orthogonal projection of iRð f Þ onto F0ðRÞ?.
Recall that pR f

0 ¼ pRðiRð f ÞÞ ¼ f and k f 0k� ¼ k f kR;BR
(see (2.8)). We define a

(conjugate) linear functional on l2ðRÞ by

l2ðRÞ C f 7! �h f
0; giþ:ð4:2Þ

By Schwarz inequality we see that this functional is bounded by

j�h f 0; giþja k f 0k� � kgkþ ¼ k f kR;BR
� kgkþ:ð4:3Þ

This shows that the functional in (4.2) is a bounded linear functional on l 2ðRÞ
equipped with the k � kR;BR

-norm. Since l2ðRÞ is dense in HR;BR
by Propsition

4:1, we conclude that g belongs to H 0
R;BR

. By the identity of the norms in (4.1)
we have proven the equality H 0

R;BR
¼ pRðiRðl2ðRÞÞVHþÞ. In order to see the

equality HR;B�1
R

¼ pRðiRðl2ðRÞÞVHþÞ, it is enough to see that

ðex; eyÞR;B�1
R

¼ ðex; eyÞþ; x; y A R:ð4:4Þ

But both are equal to the value Bðx; yÞ. This completes the proof of Theorem
2:1. r

Proof of Theorem 2.2. It is not hard to see that the operator AR, the
restriction of A onto l 2ðRÞ satisfies the hypothesis (H) when the set E is replaced
by R. In fact this follows by noticing that if a sequence f fngH l2ðRÞ is a
Cauchy sequence in the sense that ð fn � fm;ARð fn � fmÞÞ ! 0 as m; n ! y, then
fiRð fnÞg is a Cauchy sequence in H�, which is functionally completed. There-
fore as in the dual relation between H� and Hþ, we see that HR;A�1

R
and HR;AR

are dual spaces to each other, or HR;A�1
R

¼ H 0
R;AR

. It remains to show that

HR;A�1
R

¼ pRðF0ðRcÞÞ.
For this, let f A l 2ðRÞ be any element. Then

k f k2R;A�1
R

¼ ð f ;AR f Þ ¼ kiRð f Þk2�:ð4:5Þ

This shows that iRð f Þ A F0ðRcÞ and f ¼ pRðiRð f ÞÞ. Since l2ðRÞ is dense in
HR;A�1

R
we see that HR;A�1

R
H pRðF0ðRcÞÞ. Now suppose that f A F0ðRcÞ. We

want to show

pR f A HR;A�1
R

¼ H 0
R;AR

:ð4:6Þ

We follow the same method used in the proof of Theorem 2.1. For each
g A HR;AR

, let g 0 A Hþ be the unique element such that pRg
0 ¼ g and kg 0kþ ¼

kgkR;AR
. Since f is supported on R, regarding it as pR f , we define a linear

functional on HR;AR
by

g 7! �h f ; g
0iþ:ð4:7Þ

Then j�h f ; g 0iþja k f k�kg 0kþ ¼ k f k�kgkR;AR
. This shows that pR f A H 0

R;AR
¼

HR;A�1
R

and
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kpR f k0R;AR
a k f k�:ð4:8Þ

By (4.5), we already know that for pR f A H 0
R;AR

, kpR f k0R;AR
¼ k f k�. Thus we

conclude that H 0
R;AR

¼ pRðF0ðRcÞÞ. The last assertion follows by noticing that
l2ðRÞ is dense in HR;A�1

R
and kpRexkR;A�1

R
¼ kexk� for each x A R. r

Proof of Theorem 2.3. First we notice that l2ðRÞ is dense in HR;BR
and in

HR;A�1
R

respectively in the corresponding norms. By (2.13), we see that for all

f A l 2ðRÞ,
ð f ;B�1

R f Þ0 a ð f ;AR f Þ0;ð4:9Þ
or

k f kR;BR
a k f kR;A�1

R
ð4:10Þ

This shows that

HR;BR
IHR;A�1

R
¼ H 0

R;AR
ð4:11Þ

By the duality characterization theorems, Thoerem 2:1 and 2:2, we get the in-
clusions stated in the theorem. The last statement has been already shown in
Proposition 4.1. r

5. Open problem: the Shauder basis

Since fexgx AE is a basis for H0 ¼ l2ðEÞ and H0 is dense in H�, by Gram-
Schmidt orthogonalization procedure, we can construct an orthonormal basis for
H� from the set fexgx AE . Now let fLngyn¼1 be any increasing sequence of finite

subsets of E such that 6y
n¼1

Ln ¼ E. Let f 1 ð f ðxÞÞx AE A H� be any element

and for each N A N let fN :¼
P

x ALN
f ðxÞex A H�. The following is an open

problem:

Open Problem: In the above, is the following true or not?

lim
N!y

fN ¼ f ðin H�Þ:ð5:1Þ

Similarly, for g1 ðgðxÞÞx AE A Hþ, we define gN :¼
P

x ALN
gðxÞex A Hþ and also

ask whether the limit

lim
N!y

gN ¼ g ðin HþÞð5:2Þ

holds or not.
For these problems we make some remarks. First, if it is true, then it says

that fexgx AE is a Shauder basis for H� (and also for Hþ). Second, it is well
known that (see [1, Theorem I, p 362])

lim
N!y

k fNkLN ;BLN
¼ k f k�:ð5:3Þ
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Though the norms k fNkLN ;BLN
increases as N increases, we don’t know any

monotonicity or convergence for the sequence fk fNk�g. Finally, as mentioned
in the introduction, a restriction of a vector in a RKHS may not belong to the
original space. For instance, let A be the operator in [4, Example 2.5] defined
by A :¼ B�B on l 2ðEÞ with E :¼ N, and B is defined by

Ben ¼
e1; n ¼ 1;
1

n
ðe1 þ enÞ; nb 2;

8<
:

and by a linear extension. Let Hþ be the RKHS with kernel Aðx; yÞ. We
can show that e1 B Hþ. Thus for any nb 1 and LHHE with 1 A L we have
iLððAenÞLÞ B Hþ, though Aen A Hþ. In other words, the questions (5.1) or (5.2)
might be meaningless for some cases. But under our hypothesis (H), two ques-
tions are well posed and surely they are interesting.
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