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Abstract

The purpose of this article is to show a uniqueness theorem for meromorphic
mappings of C” into CP" with truncated multiplicities and a small set of identity.

1. Introduction

In 1983, L. Smiley [7] showed that

THEOREM S. Let [, g be linearly nondegenerate meromorphic mappings of C™
into CP". Let {H; } (q =3n+2) be hyperplanes in CP" in general position.
Asumme that

@) 1 1) =g 200, for all 12 <

(b) dim(f~ (H) SUH)) <m =2 for all 1 <i< j<gq, and

i
Then [ =gy.

In [2]-[5], [8], [10] the authors and others extended the result of L. Smiley to
the case where the number of hyperplanes is replaced by a smaller one and
multiplicities are truncated by a positive integer bigger than 1. There are now
many different results for the uniqueness problem with few hyperplanes. How-
ever, so far, in all results on the uniqueness problem of meromorphic mappings
into CP" with truncated multiplicities, the condition (c) on the identity set in the
above theorem occurs. The main purpose of this paper is to give a uniqueness
theorem for meromorphic mappings of C” into CP” with truncated multiplicities
and a smaller set of identity, in particular, the number of hyperplanes which
appear in the above condition (c) will become to be only (n+ 1). Our methods
are quite different from those used in the proofs of previous unicity theorems.
This comes from the fact that with only (n + 1) hyperplanes (in the condition (c)),
generally, we cannot use any more the Second Main Theorem for meromorphic
mappings and these hyperplanes.
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2. Preliminaries
We set ||z]| = (|z1]* + -+ + |zm|)/* for z=(z1,...,2,,) € C" and define
B(r):={zeC":|z| <r}, S@r):={zeC":|z|=r} for all 0 <r< 0.

Define

v—1 -
d:==,—(0-0), vi=(dd|z|>)"" and o :=d°log|z||* A (dd® log]||z||*)"".

Let F be a nonzero holomorphic function on C”. For each aeC",
expanding F as F =) Pz —a) with homogeneous polynomials P; of degree
i around a, we define

vi(a) := min{i : P, # 0}.

Let ¢ be a nonzero meromorphic function on C”. We define the divisor v, as
follows: For each z e C", we choose nonzero holomorphic functions F and G

F
on a neighborhood U of z such that ¢ =— on U and dim(F~'(0)NG~1(0)) <
m —2 and then we put v,(z) := vp(2).
Let v be a divisor in C™ and let k, M be positive integers or +oo. Set
[v| :={z:v(z) # 0} and
sMyKl(z) =0 if v(z) > M and =MyKl(z) = min{v(2),k} if v(z) < M,
MYy =0 if vz) <M and “MW(z) = min{v(z),k} if v(z) > M.

The counting function is defined by

) = [l
and
MNE () = Lr >:Z;f? di (1 <r<+w)
where

=My (1) ::J =Myl y for m>2, =Mp(r) := ZSMV[k](Z) for m=1
\v|ﬂB(r) lz| <t

“Mu(t) ::J MKy for m>2, “Mn(r) = Z My (z) for m = 1.
“’mB(”) |;\g[
For a nonzero meromorphic function ¢ on C™, we set =M N(Lk](r) = =<MNK(rv,)
and *MNY(r) .= >MNK(r,v,). For brevity we will omit the character ®
(respectively =) in the counting function and in the divisor if k = 4o
(respectively M = +o0).
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Let /' : C" — CP" be a meromorphic mapping. For arbitrary fixed homo-

geneous coordinates (wg:...:w,) of CP" we take a reduced representation
f=(o:...:fy,) which means that each f; is a holomorphic function on C”"
and f(z) = (fo(z) :...: fu(z)) outside the analytic set {fp =---=f, =0} of

codimension > 2. Set || /]| = (Ifol*> +--- + [ful )"
The characteristic function of f is defined by

Tf<r>:j log]| 1o - j log|flle, 1<r< 4.
S(r) S(1)

For a meromorphic function ¢ on C™, the characteristic function T, (r) of ¢ is
defined by considering ¢ as a meromorphic mapping of C” into CP'.
The proximity function m(r,p) is defined by

m(r,p) = L(A) log"[p|o,

where log" x = max{log x,0} for x > 0. Then
T,(r) = Nijy(r) +m(r, ) + O(1).

We say that ¢ is “small” with respect to f if T,(r) = o(T;(r)) as r — oo (outside
a set of finite Lebesgue measure). Denote by %, the field of all “small” (with
respect to f) functions on C™.

Let f, a be two meromorphic mappings of C” into CP" with reduced
representations f = (fo:...: fu), a=(ao:...:ay). Set (f,a):=aofo+
anfy. We say that a is “small” with respect to f if T,(r) = o(Ty(r)) as r — o0
(outside a set of finite Lebesgue measure). We say that f is linearly non-

degenerate over % if fy,...,f, are linearly independant over %;.
Let ai,...,a; (¢ =n+1) be meromorphic mappings of C” into CP" with
reduced representations a; = (¢ : ... : ajn) j=1,...,9. We say that {aj}q | are

in general position if for any 1 < jo <--- < j, < ¢, det(q;;,0 <k,i <n) §é 0.
We state the First and Second Main Theorems of Value Distribution Theory:

FIRsT MAIN THEOREM. Let a be a meromorphic mapping of C™ into CP"
such that (f,a) # 0 then

Nifa)(r) < Tp(r) + Tu(r)  for all r>1.

As usual, by the notation ““|| P’ we mean the assertion P holds for all r > 1
outside a set of finite Lebesgue measure. For a hyperplane H : aywo + ---+
ayw, =0 in CP" with im f & H, we denote (f,H) =aofo+ -+ anfn

SECOND MAIN THEOREM. Let f be a linearly nondegenerate meromorphic
mapping of C" into CP" and Hi,...,H,; (¢ >n+1) hyperplanes of CP" in
general position, then

q
| (g=n=1DTp(r) < YN ) () + o(Ty(r).
j=1
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3. Uniqueness theorem

MaIN THEOREM. Let f, g be nonconstant meromorphic mappings of C™ into
CP". Let {Hj}/q:1 (q = 3n+2) be hyperplanes in CP" in general position such

that
dim(f~'(H)N N H) <m =2 forall i,j (1<i<j<gq).
Assume that [ and g are linearly nondegenerate over #; and
(a) mln{fo n} mln{ng n}, for all n+2 < j<gq, and

(b) /=g on U\ (/"' (H) Ug™"(H))).
Then [ =g.

In order to prove the above Theorem, we need the following Lemmas.

LemMa 3.1. Let f: C" — CP" be a nonconstant meromorphic mapping and
{aj}j‘.lzl (g=n+2) be “small” (with respect to f) meromorphic mappings of
C™ into CP" in general position. Assume that f is linearly nondegenerate over
Rr. Then

q
9
N (T,
I g T S YNy 0)+ ol 0)
Proof. We refer to ([9], Theorem 3.1) ([6], Theorem 2.3). O

LemMa 3.2. Let f,g9:C"™ — CP" be two nonconstant meromorphic
mappings. Assume that f and g are linearly nondegenerate over ;. Let
{a;} |, (g =2n+3) be “small” (with respect to [) meromorphic mappings of
C" into CP" in general position. Assume that the followings are satisfied

@) I N, ) =o(Tr(r) and | N, () = o(Ty(r), for all ie{l,.

n+ 1}
(i) min{v s 4, n} = min{v ,,n} for all ie{n+2,...,q}.
(iii) dlm{zeC’"' V(f.a)(2) >0 and vs o) (2) > 0} <m =2, for all n+2<
iI<j<gq.
Then [ =gy.

Proof. By the assumption i) we have
| N () =o(Ty(r)) and || N[ (1) =o(Ty(r), forall ie{l,....n+1}.
Thus, by Lemma 3.1 and by the First Main Theorem, we have
2n+3

oy T = DN o)

2n+3

> NG+ o(Tr (1)

i=n+2
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2n+3

= > N () +o(Ty(r)

i=n+2
< (n+2)Ty(r) + o(Ty(r)).
This implies that

2
0210+ o)

On the other hand || T,(r) = o(Ty(r)). Hence, || T, (r) = o(Ty(r)). So, simi-
larly we have

(3-2) | Ty(r) <

By (3.1) and (3.2), we have
| Ty(r) = O(Ty(r)) and || Ty(r) = O(Ty(r)).
By Lemma 3.1, for each ie {n+2,...,2n+ 3}, we have

(3.1) I Ty(r) <

(n+2)?
2n+3

Ty (r) + o(Ty(r))-

n+1

(3.3) | Tr(r) < S ONE )+ N () + (T (1)
Jj=1

= N} 0y (1) + (L) < Niga(r) + 0( Ty (1),
On the other hand, by the First Main Theorem, we have
I Nisoa)(r) < Ty (r) + o(Ty (r)).
Hence, .
n
I Nigoap(r) < Nip o (1) + 0Ty (r)).
This implies that
n 1 n
GA) Ny 0) =7 N () < N (1) < N () + ol T ().

By (3.3), (3.4) and by the First Main Theorem, for each ie {n+2,...,2n+ 3},
we have

(3.5) | " Nis.a)(r) = o(Ty(r)) and
| Tr(r) = ="N{} o (1) 4 0(Tr (1) = Ny () + o(T5 (7).
Similarly, for each ie {n+2,...,2n+ 3}, we have
(3.6) | >"N<g#ai)(r) =0(Ty(r)) and
| Ty(r) = ="N{ () + 0(Ty(r) = Nig.ay(r) + o(Ty(r)).
(f.a) (9:9)

(gvai) (f> aj)

Set f; = n+2<i<j<q).
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We now show that f; € Z;. We have

I m (Va g Z,D = Tr.a/tr.a) (1) = Nigiap/r.an (r) + O(1)

< Ty(r) = Niy.ap(r) + O(1) = o(Ty(r))

and

(9, ai) _ -
I {2408) < 70) = Ny 1)+ O1) = o(T, (),

for all n+2 <i<j<gq. This implies that

T

On the other hand by (3.5), (3.6) and by the assumption ii) we have

| Nisg,(r) < 7"Niga(r) + 7"Nis,a)(r) = o(Ty(r)), forall n+2<i<j<gq.
Hence,
| T, (r) = m(r, B;;) + Nijp,(r) + O(1) = o(Ty(r)), foralln+2<i<j<gq.

This means that f; € .

Set M =h. We have
(g7 anJrZ)
h .
(3.7) (f,4)) =——(9,4)) (n+2<j<2n+3).
Binsay
Set
An2)0 0 A2n42)0
p=| ¢
Ani2n * A2nt2)n

and matrices P; (i € {n+2,...,2n+ 2}) which are defined from P after changing

a(2n+3)0
the (i—n—1)" column by ; . Put u; = det(P;), u = det(P).
A(2n+3)n
It is easy to see that
W42 w2

(f,ami3) = Z %(faai) and (g, a2n43) = Z %(g,ai)-

i=n+2 i=n+2
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Combining with (3.7), we get

2n+2 2n+-2

U; h h U;
Z —(f ) = (f,ams3) = (g ams3) = 5——— — (g, ai)
Sy u Bni2)2n43) Burnoniz) S0t

S S LR

Lot Busayenss)

Thus,
2 Bnro)i ui - (f,ai)
Z 1 B 2043 =0,
i=n+2 (n+2)(2n+3) j=n+2 4jt;
where a;, is the first element of aj,...,a; not identically equal to zero
(je{n+2,...,2n+3}). It is clear that ] ey (ie{0,...,n},
djt; ’
je{n+2,...,2n+3}). Thus, since f is linearly ﬁondegenerate over %y
and {a;}]_, are general position, we have B, 5,12 = = Buiz@nrs ON
the other hand f, 5,42 = 1. Hence, M =...= M. This implies
that f = g. (9, ans2) (9, am+3) 0
Proof of Main Theorem. Assume that f #g.
We may assume that, after a suitable change of indices in {n +2,...,q}, we
have
(f’Hn+2) = (fa Hk+2) =... = (f’ Hkl) (fv H/€1+1) = ... = (f> sz)
(9, Hp2) (9, His2) (9. He,) * (9, Hi41) (9, H,)
group 1 group 2
o Hen) _ - UHe) o, UHe ) _ 0 (o He)
(gkaz-H) (g7Hk3) (g7HkS,1+1) (g7 Hkx) ’
group 3 group s

where k; = ¢. Since f # g, the number of elements of each group is at most 7.
For each ie{n+2,...,q}, we set

(i) i+n ifi+n<gq,
a(i) =
i+2n+1—q ifi+n>q.
It is easy to see that o:{n+2,...,q} = {n+2,...,¢9} is bijective and
L H; H,;
|o(i) — i| = n. This implies that (/. Hi) and ' Hoy)
Hence, we have (9, Hi) (9, Ho(1))

() (o.H)
(f7 Ha(i)) (gaHU(i)>

belong to distinct groups.

I)i:

#£0 (n+2<i<yq).
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Fix an arbitrary index i/ with n+2 <i < g¢. By the assumptions (a) and (b),
we have

n+1

vp>v +Zv

outside a finite union of analytic sets of dimension <m — 2. It implies that
n+1

1
(3.8) Np(r) = NJJ ) (1) + Z NG iy 0)

n+l

22 )+ N (1)

Set v; := max{v(s u,,): V(g H,,)}- By the definition of P, it is clear that vi/p < v:.
This implies that

(39) Nl/P,(r) SN(V,V,').
By the First Main Theorem, we have

m(Vm = Tty tt) (1) = Nip ).y (1) + O(1)

< Ty(r) — N(f’Ha(,-))(V) +o(1).
Similarly,
(gaHi) >
m\r,——F~ < T,(r) — N, () + o(1).
< (g7Ha'(i)) g( ) (g,Hg(,))( ) ( )
Then

e <0 (1) () o0

= 7}(}’) + T.ﬂl(r) - N(f-,Ha(i))(r) - N(éhHam)(r) + 0(1)'
Hence, by (3.8), (3.9) and by the First Main Theorem we have

3
=

n 1 1
(3.10) N )5S N )+ N )

< Np,.(}’) < Tp,,(r) = Nl/pl.(r) +m(r,Pi) + 0(1)
< Ty (r) + Ty(r) + N(r,vi) = Nigom,)(r) = Nig, ) (r) + O(1).

Since mm{v (f.m)> 1} =min{v my,n} (j =n+2), we have vi(z) — vy m,,) —
Vig, Hy) T v(f Hyy) < 0 on C" (note that a(i) > n+2). It follows that

N 1) = Negt (1) — N 1)+ N} g, (1) <0,
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Hence, by (3.10) we have

n+l
[1] [n] [n]
< Tf(V) + g(r) + O(I)a

forall n+2<i<gq.
This implies that

g—n—1g |
(3.12) TX;(NU.,HU)(’) o)1) +2 Zan,
o= i=n+

< (g —n—=1D(Ty(r) + Ty(r)) + O(1),

(note that a: {n+2,...,q} — {n+2,...,q9} is bijective).
By the Second Main Theorem we have

| (g =n=1(Tr() + Ty() < 3V (1) + NGy (7)) + o( T3 (1)

[
2
=,

_|_
=2

i=n+2
Combining with (3.12) we have
[ mfwm (r) + N <r>><n"ZH<N“] () + N (1) + o(Ty(r))
2 (f H,) (9.H)\) =T (fH) (9, Hy) AN

On the other hand, ¢ > 3n+2. Hence, we get

n+1

I 2 NG g () Ny 1) = (T 0).

This implies that || N >( r) =o0(Ty(r)) and || NqH (r) =o(Ty(r)), for all ie
{1,...,n+1}. Then, by Lemma 3.2 we have f =g. O
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