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ON TORIC HYPERKÄHLER MANIFOLDS WITH COMPACT

COMPLEX SUBMANIFOLDS
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Abstract

A toric hyperkähler manifold is defined as a hyperkähler quotient of the flat

quaternionic space HN by a subtorus of the real torus T N . The purposes of this paper

are to construct compact complex submanifolds of toric hyperkähler manifolds, and to

show that our hyperkähler manifold is a resolution of singularities of an a‰ne algebro-

geometric quotient. We also show that these submanifolds are biholomorphic to Delzant

spaces, which are Kähler quotients of CN by subtori of T N . Finally, we apply these

results to determining whether complex structures on our hyperkähler manifold are

equivalent.

1. Introduction

A Riemannian manifold is said to be hyperkählerian precisely when this
manifold is equipped with three complex structures I , J, and K that satisfy the
algebraic relations of the quaternions i, j, k and the Riemannian metric is
Kählerian with respect to I , J, and K . The flat quaternionic space HN is an
example of a hyperkähler manifold. We denote the Kähler form corresponding
to the complex structure I (respectively J , K ) by oI (respectively oJ , oK ). There
exists a way to construct a new hyperkähler manifold from an old one with a
group action: the hyperkähler quotient method of Hitchin, Karlhede, Lindström,
and Roček [6, §3.(D)]. Bielawski and Dancer defined a toric hyperkähler manifold
as a hyperkähler quotient of HN by a subtorus of TN :¼ Uð1ÞN [2, §3]. Let K
be a subtorus of TN . Let k be the Lie algebra of K , and let k� be the dual space
of k. Set k�C :¼ k�nC. We restrict the natural action of TN on HN to K. We
use m :¼ ðmI ; mCÞ : HN ! k� � k�C to denote the hyperkähler moment map for the
action of K on HN . If ða; bÞ A k� � k�C is a regular value of m and if K acts freely
on m�1ða; bÞ, then we obtain the toric hyperkähler manifold

Xða; bÞ :¼ m�1ða; bÞ=K :
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The quotient group T n ¼ TN=K acts in the natural way on Xða; bÞ. Let
f : X ða; bÞ ! ðRnÞ� � ðCnÞ� be the hyperkähler moment map for the action of
T n on X ða; bÞ.

Let KC be the complexification of K . Then the inclusion homomor-
phism C½m�1C ðbÞ�

KC ,! C½m�1C ðbÞ� induces an a‰ne quotient map p : m�1C ðbÞ !
Spm C½m�1C ðbÞ�

KC ¼: m�1C ðbÞ==KC, and the morphism p induces a holomorphic
mapping

C : ðX ða; bÞ; IÞ ! m�1C ðbÞ==KC:

Let fu1; . . . ; uNg be the dual basis corresponding to the standard basis for RN ,

and let i� : ðRNÞ� ! k� be the transpose of the inclusion mapping i : k! RN .
Let V be the set of all codimension one subspaces of k� generated by subsets of
fi�u1; . . . ; i�uNg. Set Vb :¼ fV A V j b A V nCg. Bielawski and Dancer showed
([2, Theorem 5.1]) that, if Vb ¼ j, then the mapping C is biholomorphic. On the
other hand, we showed ([1, Theorem 3.3 and Proposition 3.4]) that, if Vb 0j,
then P1 is embedded in ðX ða; bÞ; IÞ. A result similar to that of us was obtained
independently by Konno [8, Theorem 6.10]. Thus ðXða; bÞ; IÞ is biholomorphic
to an a‰ne variety if and only if Vb ¼ j.

This paper consists of three parts.
The first part (§3) is devoted to the construction of compact complex sub-

manifolds of ðX ða; bÞ; IÞ. Suppose that Vb 0j. Let J be a subset of f1; . . . ;Ng
such that

(a) fpðejÞ j j A Jg is a basis for pðRNÞ, and
(b) let bj A C ð j A J cÞ be such that b ¼

P
j A J c bji

�uj. Then

f j A J c j bj ¼ 0g0j:

Since Vb 0j, such a J exists. We associate with J a hyperplane arrangement
AJ of ðRnÞ�. The main result of this part is the following

Theorem 1.1. Let F be a bounded face of the arrangement AJ .
(i) f�1ðF � f0gÞ is a compact complex submanifold of ðXða; bÞ; IÞ, isotropic

with respect to the form oJ þ
ffiffiffiffiffiffiffi
�1
p

oK , and invariant under the T n-action.
(ii) The polytope F is Delzant, and f�1ðF � f0gÞ is biholomorphic to the

Delzant space associated with F .

This construction not only produces the projective line P1 but also higher dimen-
sional compact submanifolds (see Proposition 5.4). In the special case where
b ¼ 0, Bielawski and Dancer proved Theorem 1.1 [2, Theorem 6.5(ii), (iii)] (see
also [4, Theorem 3.5(2), (3)]).

Now recall that a point x A m�1C ðbÞ is said to be stable for the action of KC

precisely when the orbit x � KC is a Zariski closed subset of m�1C ðbÞ and the
isotropy group of x is finite. Let m�1C ðbÞ

s denote the set of all stable points for
the KC-action, and set Ub :¼ pðm�1C ðbÞ

sÞ. The second part of this paper (§4) is
devoted to proving the following

Theorem 1.2. The mapping C is a resolution of singularities, that is,
(i) C is proper and surjective,
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(ii) C�1ðUbÞ is a dense open subset of Xða; bÞ, and
(iii) C maps C�1ðUbÞ biholomorphically onto Ub.

To prove Part (i), we use the Transposition Theorem of Stiemke. For another
proof of Part (i), see [9, Proposition 3.7]. Konno’s proof is similar to that of
[10, Proposition 3.10] or [13, Theorem 4.1(1)]. We state a criterion for stability
in terms of the elements of Vb. We use this criterion to show that m�1C ðbÞ

s is
nonempty.

The last part of this paper (§5) is devoted to discussing when complex
structures on X ða; bÞ are equivalent. We regard S2 as the unit sphere in R3. If
p :¼ tðp1; p2; p3Þ A S2, then Ip :¼ p1I þ p2J þ p3K is also a complex structure on
Xða; bÞ. Set

Cða;bÞ :¼ fp A S2 j ðX ða; bÞ; IpÞ is not biholomorphic to an a‰ne varietyg:

LetaCða;bÞ ¼ 2. Then Cða;bÞ ¼ fp;�pg for some p A S2. In the preceding paper,
we showed that Ip1 and Ip2 are equivalent for each p1; p2 A S2nCða;bÞ [1, Theorem
5.2(1)]. In this part, we show that I p and �Ip are equivalent. Without the
hypothesis that aCða;bÞ ¼ 2, however, Ip1 and Ip2 are not necessarily equivalent
for each p1; p2 A Cða;bÞ. We use the results of Sections 3 and 4 to give an example
that illustrates this point (Proposition 5.4). In this example,aCða;bÞ is equal to 8.

Acknowledgements. I would like to thank Professor Kazuo Masuda for
useful discussions. I would also like to thank Chikara Nakayama for his help in
providing an elementary proof of irreducibility of m�1C ðbÞ.

2. The definition of toric hyperkähler manifold

In this section, we sketch the di¤erential geometric construction of toric
hyperkähler manifolds [2, §3].

Recall that the standard metric on HN is hyperkählerian. Let f1; i; j; kg be
the standard basis for H. Left multiplication by i (respectively j, k) defines a
complex structure I (respectively J, K ) on HN . This metric is Kählerian with
respect to the complex structures I , J, and K .

We identify i A H with
ffiffiffiffiffiffiffi
�1
p

A C. We define a mapping

CN � CN ! HN

ðzþ; z�Þ 7! zþ þ z�j:

We use this mapping to identify HN with CN � CN . For ðzþ; z�Þ A CN � CN ,
we write ðzþ; z�Þ ¼ ðzþ1 ; . . . ; zþN ; z�1 ; . . . ; z�NÞ with zþj ; z

�
j A C for each j ¼ 1; . . . ;N.

Let TN be the real torus

TN :¼ ft :¼ ðt1; . . . ; tNÞ A CN j jtjj ¼ 1 for each j ¼ 1; . . . ;Ng;
and let TN act on the right on HN by ðzþ; z�Þ � t ¼ ðzþ � t; z� � t�1Þ. This action
preserves the hyperkähler structure. Let fe1; . . . ; eNg be the standard basis for
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RN , and let fu1; . . . ; uNg be the corresponding dual basis. Then the hyperkähler
moment map m0 :¼ ðm0

I ; m
0
J ; m

0
K Þ : HN ! ðRNÞ�nR3 for this action is given by

m0
I ðzþ; z�Þ ¼

1

2

XN
j¼1
ðjzþj j

2 � jz�j j
2Þujð2:1Þ

and

ðm0
J þ

ffiffiffiffiffiffiffi
�1
p

m0
K Þðzþ; z�Þ ¼ �

ffiffiffiffiffiffiffi
�1
p XN

j¼1
zþj z

�
j uj:ð2:2Þ

Note that the hyperkähler moment map is surjective.
Let K be a subtorus of TN whose Lie algebra kHRN is generated by

rational vectors. Set k :¼ dim K . Let i : k! RN be the inclusion mapping, and
let p : RN ! Rn :¼ RN=k be the canonical projection. Then we obtain an exact
sequence

0! k!i RN !p Rn ! 0;

and, by duality, an exact sequence

0 k�  i
�
ðRNÞ�  p

�
ðRnÞ�  0:

We now restrict the action of TN on HN to K . We set k�C :¼ k�nC, and
define mI : H

N ! k� (respectively mC : HN ! k�C) to be the mapping i� � m0
I (re-

spectively i� � m0
J þ

ffiffiffiffiffiffiffi
�1
p

i� � m0
K ). Then the hyperkähler moment map for the

action of K on HN is m :¼ ðmI ; mCÞ : HN ! k� � k�C.

Definition 2.1 (Bielawski-Dancer). Let ða; bÞ A k� � k�C be a regular value of
m, and let K act freely on m�1ða; bÞ. Then we refer to the hyperkähler quotient

X ða; bÞ :¼ m�1ða; bÞ=K
as a toric hyperkähler manifold.

Remarks. (i) A toric hyperkähler manifold is not a toric manifold in the
usual sense.

(ii) Suppose that pðej0Þ ¼ 0 for some j0 A N with 1a j0 aN. Then the
toric hyperkähler manifold Xða; bÞ is a hyperkähler quotient of HN�1

by K VTN�1, where HN�1 ¼ fðzþ; z�Þ A HN j zþj0 ¼ z�j0 ¼ 0g and TN�1 ¼
ft A TN j tj0 ¼ 1g.

Suppose that i�uj0 ¼ 0 for some j0 A N with 1a j0 aN. Then the
subtorus K is a subgroup of TN�1, and Xða; bÞ is the Cartesian product
of H with a hyperkähler quotient of HN�1 by K .

These cases are not essential for our purposes. Thus we exclude
these cases in this paper.

For ðzþ; z�Þ A m�1ða; bÞ, we denote its equivalence class in X ða; bÞ by ½zþ; z��.
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A toric hyperkähler manifold Xða; bÞ is a non-compact connected manifold
of real dimension 4n. The standard metric on HN and the complex structures
I , J, and K descend to Xða; bÞ, and the induced metric on X ða; bÞ is hyper-
kählerian.

The quotient group T n ¼ TN=K acts in the natural way on Xða; bÞ, pre-
serving the hyperkähler structure. Let a A ðRNÞ� and b A ðCNÞ� be such that
i�a ¼ a and i�b ¼ b. Then the hyperkähler moment map fa;b :¼ ðfa

I ; f
b
CÞ :

Xða; bÞ ! ðRnÞ� � ðCnÞ� for the natural action is given by

fa
I ð½zþ; z��Þ ¼ m0

I ðzþ; z�Þ � a

and

fb
Cð½zþ; z��Þ ¼ ðm0

J þ
ffiffiffiffiffiffiffi
�1
p

m0
K Þðzþ; z�Þ � b:

Remark. We use the monomorphism p� to identify ðRnÞ� with ker i�.
Then, for each ðzþ; z�Þ A m�1ða; bÞ, we have m0

I ðzþ; z�Þ � a A ðRnÞ� and
ðm0

J þ
ffiffiffiffiffiffiffi
�1
p

m0
K Þðzþ; z�Þ � b A ðCnÞ�.

In [2], Bielawski and Dancer gave necessary and su‰cient conditions for a
hyperkähler quotient m�1ða; bÞ=K to be smooth or an orbifold. The following
two propositions are due to them [2], partly based on results by Konno [7].

We first give necessary and su‰cient conditions for ða; bÞ A k� � k�C to be a
regular value of m. Let a A ðRNÞ� and let b A ðCNÞ�. For j ¼ 1; . . . ;N, set

Hð j; aÞ :¼ fx A ðRnÞ� j hx; pðejÞi ¼ �ha; ejig;
a hyperplane in ðRnÞ�, and

HCð j; bÞ :¼ fx A ðCnÞ� j hx; pðejÞi ¼ �hb; ejig;
a hyperplane in ðCnÞ�. For each j ¼ 1; . . . ;N, the two closed half-spaces in
ðRnÞ� bounded by Hð j; aÞ are

Hþð j; aÞ :¼ fx A ðRnÞ� j hx; pðejÞib�ha; ejig;
H�ð j; aÞ :¼ fx A ðRnÞ� j hx; pðejÞia�ha; ejig:

Let V be the set of all codimension one subspaces of k� generated by subsets of
fi�u1; . . . ; i�uNg. For each V A V, set VC :¼ V nC.

Proposition 2.2 (See [2, Theorems 3.2 and 3.3] and [7, Proposition 2.1]).
Let a A ðRNÞ� and b A ðCNÞ� be such that i�a ¼ a and i�b ¼ b. Then the following
statements are equivalent:

(i) ða; bÞ is a regular value of m;
(ii) 7

j A J Hð j; aÞ � HCð j; bÞ ¼ j for each subset J of f1; . . . ;Ng with aJ ¼
nþ 1;

(iii) for each V A V, we have either a B V or b B VC. r

We denote the set of all regular values of m by ðk� � k�CÞreg.
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We next give necessary and su‰cient conditions for K to act freely on
m�1ða; bÞ.

Proposition 2.3 (See [7, Lemma 2.2 and Proposition 2.2]). Suppose that
fpðe1Þ; . . . ; pðenÞg is a basis for Rn. Let A be the matrix of p relative to the
bases fe1; . . . ; eNg, fpðe1Þ; . . . ; pðenÞg. Let ða; bÞ A ðk� � k�CÞreg. Then the follow-
ing statements are equivalent:

(i) K acts freely on m�1ða; bÞ;
(ii) fpðejÞ j j A Jg is a Z-basis for pðZNÞ for each subset J of f1; . . . ;Ng such

that fpðejÞ j j A Jg is a basis for pðRNÞ;
(iii) A is a totally unimodular matrix, that is, each square submatrix of A has

determinant equal to 0, þ1, or �1. r

We consider only the case where a hyperkähler quotient m�1ða; bÞ=K is
smooth. So we suppose throughout this paper that Condition (ii) above holds.

A toric hyperkähler manifold Xða; bÞ, the Kähler quotient of m�1C ðbÞ by K ,
can be idetified as follows with the quotient of a suitable open subset of m�1C ðbÞ
by the complexified torus KC. We start with a basic definition.

Definition 2.4. Let ða; bÞ A ðk� � k�CÞreg and let ðzþ; z�Þ A m�1C ðbÞ. We say
that ðzþ; z�Þ is a-stable precisely when the orbit of KC through ðzþ; z�Þ meets
m�1I ðaÞ.

We denote the set of all a-stable points of m�1C ðbÞ by m�1C ðbÞ
a�st.

Remark. By [8, Theorem 5.2(2)], this definition is equivalent to Konno’s
definition [8, Definition 5.1].

The set m�1C ðbÞ
a�st is KC-invariant. By definition, we have m�1ða; bÞH m�1C ðbÞ

a�st.
Hence the inclusion m�1ða; bÞH m�1C ðbÞ

a�st induces a natural mapping

Xða; bÞ ¼ m�1ða; bÞ=K ! m�1C ðbÞ
a�st=KC:

By [8, Theorem 5.2], we can use the natural mapping to identify ðX ða; bÞ; IÞ with
m�1C ðbÞ

a�st=KC.
We end the section by giving a useful criterion for a-stability. This criterion

is due to Konno [8]. For each V A V, fix YV A k such that

V ¼ fv A k� j hv;YVi ¼ 0g:
Let ða; bÞ A ðk� � k�CÞreg. Set Vb :¼ fV A V j b A VCg, and, for each V A Vb, set

JþV :¼ f j A f1; . . . ;Ng j hi�uj ;YViha;YVi > 0g
and

J�V :¼ f j A f1; . . . ;Ng j hi�uj;YViha;YVi < 0g:

Proposition 2.5 (See [8, Theorem 5.10]). Let ðzþ; z�Þ A m�1C ðbÞ. Then the
following statements are equivalent:
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(i) ðzþ; z�Þ A m�1C ðbÞ
a�st;

(ii) for each V A Vb, there exists j A JþV U J�V such that either j A JþV with
zþj 0 0 or j A J�V with z�j 0 0. r

3. A construction of compact complex submanifolds

Suppose that ða; bÞ A ðk� � k�CÞreg. In this section, we consider only the case
where ðX ða; bÞ; IÞ is not biholomorphic to an a‰ne variety. So we suppose that
Vb 0j (see [2, Theorem 5.1] and [1, Corollary 3.6]). The purpose of this section
is to construct compact complex submanifolds of ðX ða; bÞ; IÞ that are invariant
under the T n-action. We denote the Kähler form corresponding to the complex
structure J (respectively K ) by oJ (respectively oK ). We show that these sub-
manifolds are isotropic with respect to the form oJ þ

ffiffiffiffiffiffiffi
�1
p

oK , and that these
submanifolds are biholomorphic to Delzant spaces.

We first give a brief review of Delzant’s construction of certain toric varieties
from polytopes. We follow the exposition of Guillemin [5, Chapter 1 and Ap-
pendix 1].

Recall that a d-dimensional polytope P in ðRdÞ� is said to be Delzant
precisely when

(i) P is simple, that is, each vertex p of P is contained in precisely d edges
of P, and

(ii) for each vertex p of P, there exists a Z-basis fw1; . . . ;wdg for ðZdÞ� such
that the d edges of P containing the vertex p lie on the rays pþ twi,
0a t < y.

Let P be the Delzant polytope in ðRdÞ� defined by a system of inequalities of
the form

hx; ajib gj; ð j ¼ 1; . . . ;mÞ;
where aj A Zd and gj A R for each j ¼ 1; . . . ;m and m is the number of facets
of P. Let q : Rm ! Rd be a linear mapping for which qðejÞ ¼ aj for each
j ¼ 1; . . . ;m. Set l :¼ ker q and let i : l! Rm denote the inclusion mapping.
Then we obtain an exact sequence

0! l!i Rm !q Rd ! 0;

and, by duality, an exact sequence

0 l�  i
�
ðRmÞ�  q

�

ðRdÞ�  0:

Since qðZmÞHZd , the mapping q induces a group homomorphism from Tm

to T d . Denoting by L the kernel of this homomorphism, we obtain an exact
sequence

1! L! Tm ! T d ! 1

of abelian groups.
The natural action of Tm on Cm is Hamiltonian, and its moment map is

n0 : Cm ! ðRmÞ�; ðz1; . . . ; zmÞ 7!
1

2

Xm
j¼1
jzj j2uj:
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We restrict the action of Tm on Cm to L. The moment map for the action of L
on Cm is n :¼ i� � n0 : Cm ! l�. Set g :¼ �

Pm
j¼1 gj i

�uj. Then L acts freely on
the level set n�1ðgÞ. Reducing Cm with respect to the action of L, we obtain the
Delzant space

XP :¼ n�1ðgÞ=L:
For z A n�1ðgÞ, we denote its equivalence class in XP by ½z�.

The quotient group T d ¼ Tm=L acts in the natural way on XP . Set c :¼
�
Pm

j¼1 gjuj. Then the moment map c : XP ! ðRdÞ� for the natural action is
given by

cð½z�Þ ¼ n0ðzÞ � c:

Remark. We use the monomorphism q� to identify ðRdÞ� with ker i�.
Then, for each z A n�1ðgÞ, we have n0ðzÞ � c A ðRdÞ�.

The Delzant space XP can be identified as follows with the quotient of a
suitable open subset of Cm by the complexified torus LC. For each subset J of
f1; . . . ;mg, set

Cm
J :¼ fðz1; . . . ; zmÞ A Cm j zj ¼ 0 if and only if j A Jg:

Each orbit in Cm of the complexified torus Tm
C is of the form Cm

J for some subset
J of f1; . . . ;mg. Now let F be a face of P. Then, since P is simple, there
exists a unique subset J of f1; . . . ;mg such that F is defined by a system of
equalities

hx; aji ¼ gj; ð j A JÞ:
Let Cm

F :¼ Cm
J . Then

Cm
P :¼ 6

F face of P
Cm
F

is an open subset of Cm. The set Cm
P contains n�1ðgÞ, and the inclusion

n�1ðgÞHCm
P induces a natural mapping

XP ¼ n�1ðgÞ=L! Cm
P =LC:

We can use the natural mapping to identify XP with the orbit space Cm
P =LC.

Now we are ready to consider our main problem. We need some notation.
Fix a subset J of f1; . . . ;Ng such that

(a) fpðejÞ j j A Jg is a basis for pðRNÞ, and
(b) let bj A C ð j A J cÞ be such that b ¼

P
j A J c bji

�uj. Then

J0 :¼ f j A J c j bj ¼ 0g0j:

Since Vb 0j, such a J exists. We can write a ¼
P

j A J c aji
�uj for suitable aj A R.

We set

a :¼
X
j A J c

ajuj and b :¼
X
j A J c

bjuj:
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We denote by Y the set of all mappings from J U J0 to fþ;�g. Let e A Y.
Then we define two mappings e� : J U J0 ! fþ;�g and d : J U J0 ! f1;�1g by

e�ð jÞ :¼
þ for each j A J U J0 with eð jÞ ¼ �;
� for each j A J U J0 with eð jÞ ¼ þ;

�

and

dð jÞ :¼ 1 for each j A J U J0 with eð jÞ ¼ þ;
�1 for each j A J U J0 with eð jÞ ¼ �:

�

For each e A Y, let Pe be the polyhedral set

Pe :¼ 7
j A JUJ0

H eð jÞð j; aÞ:

Now we can state the theorem.

Theorem 3.1. Let e A Y and let F be a bounded face of Pe.
(i) ðfa;bÞ

�1ðF � f0gÞ is a compact complex submanifold of ðXða; bÞ; IÞ,
isotropic with respect to the form oJ þ

ffiffiffiffiffiffiffi
�1
p

oK , and invariant under
the T n-action.

(ii) The polytope F is Delzant, and ðfa;bÞ
�1ðF � f0gÞ is biholomorphic to the

Delzant space XF .

Remark. By the proof of Theorem 3.3 of [1], we see that Pe possesses a
bounded edge for some e A Y.

For the proof, we need

Proposition 3.2. Let ½zþ; z�� A ðfb
CÞ
�1ð0Þ. Then, for each j A J U J0, the

following holds:
(i) ½zþ; z�� A ðfa

I Þ
�1ðH eð jÞð j; aÞÞ if and only if z

e�ð jÞ
j ¼ 0.

(ii) ½zþ; z�� A ðfa
I Þ
�1ðHð j; aÞÞ if and only if zþj ¼ z�j ¼ 0.

Proof. By assumption, we have

0 ¼ hp�ðfb
Cð½zþ; z��ÞÞ þ b; eji ¼ �

ffiffiffiffiffiffiffi
�1
p

zþj z
�
jð3:1Þ

for each j A J U J0. Since

hp�ðfa
I ð½zþ; z��ÞÞ þ a; eji ¼

1

2
ðjzþj j

2 � jz�j j
2Þ

for each j A J U J0, the assertions follow immediately from (3.1). r

Proof of Theorem 3.1. We may assume that d :¼ dim Fb 1.
Let x0 be a vertex of F , and set J 0 :¼ f j A J U J0 j x0 A Hð j; aÞg. Then, since

ða; bÞ A ðk� � k�CÞreg, it follows from Proposition 2.2 that fpðejÞ j j A J 0g is a basis
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for pðRNÞ. We can write

a ¼
X

j A f1;...;NgnJ 0
a 0j i
�uj and b ¼

X
j A f1;...;NgnJ 0

b 0j i
�uj

for suitable a 0j A R and for suitable b 0j A C. Setting

J 00 :¼ f j A f1; . . . ;NgnJ 0 j b
0
j ¼ 0g;

we have

ðJ 00Þ
c ¼ ðJ0Þc:ð3:2Þ

Hence J U J0 ¼ J 0 U J 00, so that J 00 0j. Thus the subset J 0 satisfies Conditions
(a) and (b). Since J U J0 ¼ J 0 U J 00, there exists a unique mapping e 0 : J 0 U J 00 !
fþ;�g such that e 0 ¼ e. Set

a 0 :¼
X

j A f1;...;NgnJ 0
a 0j uj and b 0 :¼

X
j A f1;...;NgnJ 0

b 0j uj:

Let Pe 0 be the polyhedral set

Pe 0 :¼ 7
j A J 0UJ 0

0

H e 0ð jÞð j; a 0Þ:

Now let T : ðRnÞ� ! ðRnÞ� be the translation for which TðxÞ ¼ x� x0 for each
x A ðRnÞ�. Since hx0; pðejÞi ¼ ha 0 � a; eji for each j A J 0 and a 0 � a A ker i�, we
have a 0 � a ¼ p�ðx0Þ. Hence we have TðPeÞ ¼ Pe 0 . Set F 0 :¼ TðFÞ. Then F 0
is a bounded face of Pe 0 . Note that the origin is a vertex of F 0. Now, since
a 0 � a ¼ p�ðx0Þ, we have T � fa

I ¼ fa 0

I . On the other hand, since b ¼ b 0 by (3.2),

we have fb
C ¼ fb 0

C . Hence we have ðfa;bÞ
�1ðF � f0gÞ ¼ ðfa 0;b 0 Þ

�1ðF 0 � f0gÞ.
We may therefore assume that the origin is a vertex of F .

For each j A J U J0, we set Hj :¼ Hð j; aÞ, Hþj :¼ Hþð j; aÞ, and H�j :¼
H�ð j; aÞ. We set fI :¼ fa

I and f :¼ fa;b. By rearranging the indices, we may
assume that

J ¼ f1; . . . ; d; d þ k þ 1; . . . ;Ng and J0 ¼ fd þ 1; . . . ; lg;
where d < la d þ k. Since ða; bÞ A ðk� � k�CÞreg, we have aj 0 0 for each j A N
with d < ja l. Hence 0 B Hj for each j A N with d < ja l, so that, since 0 A F ,
we have FQHj for each such j. Thus, by a suitable rearrangement of indices,
we can write

F ¼ 7
m

j¼1
H eð jÞ

j V 7
N

j¼dþkþ1
Hj;

where d < ma l and

F0 7
m

j¼1
j0i

H eð jÞ
j V 7

N

j¼dþkþ1
Hj for each i ¼ 1; . . . ;m:ð3:3Þ
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(i) Since the canonical projection Xða; bÞ ! Xða; bÞ=T n is proper, f is proper
by [2, Theorem 3.1(i)]. Therefore, by assumption, f�1ðF � f0gÞ is compact;
moreover, it is invariant under the T n-action.

We set

M :¼ fðzþ; z�Þ A HN j ze�ð jÞj ¼ 0 ð1a ja lÞ;

�
ffiffiffiffiffiffiffi
�1
p

zþj z
�
j ¼ bj ðl < ja d þ kÞ; zþj ¼ z�j ¼ 0 ðd þ k < jaNÞg:

Since bj 0 0 for each j A N with l < ja d þ k, it follows that M is a complex
submanifold of ðHN ; IÞ. Let r : m�1ða; bÞ ! X ða; bÞ be the canonical projection.
By Proposition 3.2, we have

ðf � rÞ�1ðF � f0gÞ ¼M V m�1I ðaÞ:ð3:4Þ

The restriction of mI to M is the moment map for the induced action of K on
M. Note that K acts freely on M V m�1I ðaÞ. We obtain the Kähler quotient

ðM V m�1I ðaÞÞ=K ¼ f�1ðF � f0gÞ:ð3:5Þ

Hence f�1ðF � f0gÞ is a compact complex submanifold of ðX ða; bÞ; IÞ that is
invariant under the T n-action.

Now M is isotropic with respect to the holomorphic symplectic form on HN ,
and so f�1ðF � f0gÞ is also isotropic with respect to oJ þ

ffiffiffiffiffiffiffi
�1
p

oK .
(ii) Let A ¼ ðaijÞ be the matrix of p relative to the bases fe1; . . . ; eNg;

fpðe1Þ; . . . ; pðedÞ; pðedþkþ1Þ; . . . ; pðeNÞg. Then we have

KC ¼
(
ðt1; . . . ; tNÞ A TN

C j

ti ¼
Ydþk

j¼dþ1
t
�aij
j ð1a ia dÞ; ti ¼

Ydþk
j¼dþ1

t
�ai�k; j
j ðd þ k < iaNÞ

)
:

For each j ¼ 1; . . . ; d, let aj :¼ 0 A R. For each j ¼ 1; . . . ;m, set ~aaj :¼
tða1j; . . . ; adjÞ, and let ~HHj be the hyperplane

~HHj :¼ fx A ðRdÞ� j hx; ~aaji ¼ �ajg

in ðRdÞ�. Then, for each j ¼ 1; . . . ;m, the two closed half-spaces in ðRdÞ�
bounded by ~HHj are

~HHþj :¼ fx A ðRdÞ� j hx; ~aaji � �ajg;
~HH�j :¼ fx A ðRdÞ� j hx; ~aaji � �ajg:

Let ~FF be the d-dimensional polyhedral set

~FF :¼ 7
m

j¼1
~HH eð jÞ
j :
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Since F is bounded, the polyhedral set ~FF is a polytope. By (3.3), we have

~FF0 7
m

j¼1
j0i

~HH eð jÞ
j for each i ¼ 1; . . . ;m:

The proof is divided into two parts. In Part A, we prove that the polytope
~FF is Delzant. In Part B, we prove that f�1ðF � f0gÞ is biholomorphic to the
Delzant space X ~FF .

Part A. Since

ða; bÞ A ðk� � k�CÞreg and FH 7
N

j¼dþkþ1
Hj;

Proposition 2.2 implies that each vertex of ~FF is contained in precisely d facets.
Thus ~FF is simple. Let p be a vertex of ~FF , and let ~FF1; . . . ; ~FFd be d facets of ~FF
containing p. Then, for each j ¼ 1; . . . ; d, there exists the integer lj, 1a lj am,

such that ~FFj ¼ ~FF V ~HHlj . Since ~aal1 ; . . . ; ~aald are linearly independent, the matrix
~AA :¼ ð~aal1 ; . . . ; ~aald Þ is unimodular by Proposition 2.3. For each i ¼ 1; . . . ; d, let vi
be the ith row vector of ~AA�1. Then the matrix

dðl1Þv1
..
.

dðldÞvd

0
BB@

1
CCA

is also unimodular. Since the polytope ~FF is simple, it follows that

~eei ¼ 7
d

j¼1
j0i

~FF j

is an edge of ~FF for each i ¼ 1; . . . ; d. For each i ¼ 1; . . . ; d, the edge ~eei lies on
the ray pþ tdðliÞvi, 0a t < y. Thus the polytope ~FF is Delzant. Note that

L ¼ ðt1; . . . ; tmÞ A Tm j ti ¼
Ym

j¼dþ1
t
�dðiÞdð jÞaij
j ð1a ia dÞ

( )
:

Part B. By [8, Theorem 5.2(2)] and (3.5), we can naturally identify f�1ðF � f0gÞ
with the orbit space ðM V m�1C ðbÞ

a�stÞ=KC.
(a) We construct a holomorphic mapping f : f�1ðF � f0gÞ ! X ~FF . Let

ðzþ; z�Þ A M V m�1I ðaÞ. Then we have ðzeð1Þ1 ; . . . ; z
eðmÞ
m Þ A n�1ðgÞ. Since n�1ðgÞH

Cm
~FF , we have

ðzeð1Þ1 ; . . . ; z eðmÞm Þ A Cm
~FF :ð3:6Þ
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Set eð jÞ :¼ þ and dð jÞ :¼ 1 for each j A N with l < ja d þ k. Then we have the
following

Claim 1. For each j A N with m < ja d þ k, we have z
eð jÞ
j 0 0.

Proof. Since �
ffiffiffiffiffiffiffi
�1
p

zþj z
�
j ¼ bj 0 0 for each j A N with l < ja d þ k, we

have z
eð jÞ
j 0 0 for each such j.

We show that

F VHj ¼ j for each j A N with m < ja l:ð3:7Þ

Suppose that F VHj0 0j for some j0 A N with m < j0 a l, and seek a contra-
diction. Then F VHj0 is a face of F, so that F VHj0 is a polytope. Let x be a
vertex of F VHj0 . Then x is a vertex of F . Hence there exists J1 H f1; . . . ;mg
such that aJ1 ¼ d and x A 7

j A J1
Hj, and so

x A 7
j A J1Uf j0g

Hj V 7
N

j¼dþkþ1
Hj ¼: Q:

But, by Proposition 2.2, we have Q ¼ j; we have therefore arrived at a
contradicion. Hence we obtain (3.7).

We now prove that z
eð jÞ
j 0 0 for each j A N with m < ja l. Since z

e�ð jÞ
j ¼ 0

for each j A N with m < ja l, it follows from Part (ii) of Proposition 3.2, (3.4),
and (3.7) that z

eð jÞ
j 0 0 for each j A N with m < ja l. r

It follows from (3.6) and Claim 1 that

z :¼
 
z
eð1Þ
1

Ydþk
j¼mþ1

ðzeð jÞj Þ
a1j dð jÞdð1Þ; . . . ; z

eðdÞ
d

Ydþk
j¼mþ1

ðzeð jÞj Þ
adj dð jÞdðdÞ;ð3:8Þ

z
eðdþ1Þ
dþ1 ; . . . ; zeðmÞm

!

is also in Cm
~FF . Hence we can define a mapping

M V m�1I ðaÞ ! Cm
~FF

ðzþ; z�Þ 7! z:

This mapping induces a holomorphic mapping

f : f�1ðF � f0gÞ ¼ ðM V m�1I ðaÞÞ=K ! Cm
~FF =LC ¼ X ~FF :

It is easy to check that the mapping f is well-defined.
(b) We next construct the inverse of f . Let z ¼ ðz1; . . . ; zmÞ A n�1ðgÞ. Set
(1) z

eð jÞ
j :¼ zj and z

e�ð jÞ
j :¼ 0 for each j ¼ 1; . . . ;m,

(2) z
eð jÞ
j :¼ 1 and z

e�ð jÞ
j :¼ 0 for each j ¼ mþ 1; . . . ; l,
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(3) zþj :¼ 1 and z�j :¼
ffiffiffiffiffiffiffi
�1
p

bj for each j ¼ l þ 1; . . . ; d þ k, and
(4) zþj :¼ z�j :¼ 0 for each j ¼ d þ k þ 1; . . . ;N.

Then

ðzþ; z�Þ A MH m�1C ðbÞ;ð3:9Þ

moreover, we have the following

Claim 2. The point ðzþ; z�Þ is a-stable.

Proof. We can write cð½z�Þ ¼
Pd

j¼1 cjuj for suitable c1; . . . ; cd A R. Let
fvj j j A Jg be the dual basis of fpðejÞ j j A Jg. Set v :¼

Pd
j¼1 cjvj. Then v A F .

By [2, Theorem 3.1(i)], there exists ½wþ;w�� A Xða; bÞ such that fð½wþ;w��Þ ¼
ðv; 0Þ. Setting w :¼ ðweð1Þ

1 ; . . . ;w
eðmÞ
m Þ, we have w A n�1ðgÞ. For each j ¼ 1; . . . ; d,

we have

hcð½w�Þ; eji ¼ hcð½w�Þ; dð jÞqðejÞi ¼
1

2
dð jÞjweð jÞ

j j
2:ð3:10Þ

On the other hand, we have, for each j ¼ 1; . . . ; d,

hcð½z�Þ; eji ¼ hv; pðejÞið3:11Þ
¼ hfI ð½wþ;w��Þ; pðejÞi

¼ 1

2
ðjwþj j

2 � jw�j j
2Þ:

It therefore follows from (3.4) that

hcð½z�Þ; eji ¼
1

2
dð jÞjw eð jÞ

j j
2 for each j ¼ 1; . . . ; d:

Hence, by (3.10), we have cð½z�Þ ¼ cð½w�Þ, and so there exists t A Tm such that
z ¼ t � w. Thus, since the point ðwþ;w�Þ is a-stable, it follows from (3.4), (1), (2),
(3), and Proposition 2.5 that the point ðzþ; z�Þ is also a-stable. r

By (3.9) and Claim 2, we can define a mapping

n�1ðgÞ !M V m�1C ðbÞ
a�st

z 7! ðzþ; z�Þ:

This mapping induces a holomorphic mapping

g : X ~FF ¼ n�1ðgÞ=L! ðM V m�1C ðbÞ
a�stÞ=KC ¼ f�1ðF � f0gÞ:

It is easy to check that the mapping g is well-defined and that f � g ¼ IdX ~FF
and

g � f ¼ Idf�1ðF�f0gÞ.

Thus f is biholomorphic, as required. This completes the proof of Theorem
3.1. r
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4. Resolution of singularities

We use [11] as a reference for basic facts about algebro-geometric quotients.
Suppose that ða; bÞ A ðk� � k�CÞreg. Then the inclusion homomorphism

C½m�1C ðbÞ�
KC ,! C½m�1C ðbÞ� induces an a‰ne quotient map

p : m�1C ðbÞ ! Spm C½m�1C ðbÞ�
KC ¼: m�1C ðbÞ==KC:

The morphism p is given by generators of C½m�1C ðbÞ�
KC . Let the a‰ne variety

m�1C ðbÞ==KC be equipped with the (usual) Euclidean topology. Then the com-
posite mapping

m�1ða; bÞ !H m�1C ðbÞ !
p
m�1C ðbÞ==KC

induces a holomorphic mapping

C : ðXða; bÞ; IÞ ¼ ðm�1ða; bÞ=K ; IÞ ! m�1C ðbÞ==KC:

The purpose of this section is to prove that the mapping C is a resolution of
singularities (Theorem 4.6).

In this section, we use the fact that m�1C ðbÞ is irreducible for each b A k�C.
Since pðejÞ0 0 for each j ¼ 1; . . . ;N, this fact follows immediately from the
following proposition. This proposition is due to C. Nakayama.

Proposition 4.1. Let R be an integral domain, and let a1; . . . ; at A Rnf0g.
Then

A :¼ R½zþ1 ; . . . ; zþt ; z�1 ; . . . ; z�t �=ðzþ1 z�1 � a1; . . . ; z
þ
t z
�
t � atÞ

is also an integral domain.

Proof. Since the natural ring homomorphism R! A is injective, we may
assume that t ¼ 1. Consider the ring homomorphism g : R1 :¼ R½zþ1 ; z�1 � !
R½zþ1 ; 1=zþ1 � for which gðhÞ ¼ h for each h A R½zþ1 � and gðz�1 Þ ¼ a1=z

þ
1 . We

show that ker g ¼ hzþ1 z
�
1 � a1iR1

. Let h A ker g. Then h A hz�1 � a1=z
þ
1 iR1½1=zþ1 �.

Hence there exist n A N and f A R1 such that ðzþ1 Þ
n
h ¼ ðzþ1 z�1 � a1Þ f . Thus,

since a1 0 0 and zþ1 is prime element of R1, we have f A hzþ1 iR1
. Hence

h A hzþ1 z
�
1 � a1iR1

, and so ker gH hzþ1 z
�
1 � a1iR1

. The reverse inclusion is im-
mediate from the definition of g. Thus A is an integral domain. r

First, we prove the following

Proposition 4.2. The mapping C is proper and surjective.

Proof. Suppose that C is not proper, and look for a contradiction. Then
pjm�1ða;bÞ is not proper. Therefore there exists a compact subset CH m�1C ðbÞ==KC

such that ðpjm�1ða;bÞÞ
�1ðCÞ is non-compact. Hence we can choose an unbounded

sequence fzngn AN in ðpjm�1ða;bÞÞ
�1ðCÞ. For each n A N, we write zn as zn ¼

ðzþn;1; . . . ; zþn;N ; z�n;1; . . . ; z�n;NÞ. We set

Jþy :¼ j A f1; . . . ;Ng j lim
n!y
jzþn; jj ¼ þy

n o
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and

J�y :¼ j A fN þ 1; . . . ; 2Ng j lim
n!y
jz�n; j�N j ¼ þy

n o
:

We may assume that
(a) Jþy U J�y 0j;
(b) the sequence fzþn; jgn AN is bounded for each j A ðJþyÞ

c; and
(c) the sequence fz�n; j�Ngn AN is bounded for each j A ðJ�yÞ

c.
By rearranging the indices, we may assume that fi�u1; . . . ; i�ukg is a basis

for k�. Let P ¼ ðpijÞ be the matrix of i� relative to the bases fu1; . . . ; uNg,
fi�u1; . . . ; i�ukg. By Proposition 2.3, the matrix P is integral. Let P̂P be obtained
from the matrix ðPj�PÞ by replacing the jth column of ðPj�PÞ by 0 for each
j A ðJþyÞ

c U ðJ�yÞ
c.

For real row vectors a ¼ ða1; . . . ; amÞ and b ¼ ðb1; . . . ; bmÞ, we write ab b
precisely when aj b bj for each j ¼ 1; . . . ;m. We show that there does not exist

y A Rk with tyP̂Pb 0 and tyP̂P0 0. Suppose that such a y exists, and seek a
contradiction. Let q :¼ ðq1; . . . ; q2NÞ :¼ tyP̂P. Then, by (2.1) and the definition
of mI , there exist c, ci, dj A R ði A ðJþyÞ

c; j A ðJ�yÞ
cÞ such that

X
i A ðJþyÞ c

cijzþn; ij
2 þ

X
j A ðJ�yÞ c

dj jz�n; j�N j
2 þ

XN
i¼1

qijzþn; ij
2 þ

X2N
j¼Nþ1

qjjz�n; j�N j
2 ¼ c

for each n A N. For each n A N, we set

xn :¼
X

i A ðJþyÞ c
cijzþn; ij

2 þ
X

j A ðJ�yÞ c
djjz�n; j�N j

2

and

yn :¼
XN
i¼1

qijzþn; ij
2 þ

X2N
j¼Nþ1

qjjz�n; j�N j
2:

It is clear from Conditions (b) and (c) of the hypotheses that the sequence
fxngn AN is bounded. It follows from the definition of P̂P that qj ¼ 0 for each
j A ðJþyÞ

c U ðJ�yÞ
c, so that, since qb 0 and q0 0, there exists j A Jþy U J�y such

that qj > 0. Hence we have limn!y yn ¼ þy. Thus we have limn!yðxn þ ynÞ
¼ þy. This is a contradiction. Hence there does not exist y A Rk with tyP̂P � 0
and tyP̂P0 0.

Thus, since P̂P is a rational matrix, it follows from the Transposition Theorem
of Stiemke [14, p. 95] that there exists a vector m ¼ tðm1; . . . ;m2NÞ A Z2N such
that mj > 0 for each j ¼ 1; . . . ; 2N and P̂Pm ¼ 0. Setting

f :¼
Y
i A Jþy

ðzþi Þ
mi
Y
j A J�y

ðz�j�NÞ
mj ;

we have limn!yj f ðznÞj ¼ þy. On the other hand, since P̂Pm ¼ 0, the monomial
f is KC-invariant. Thus, since pðznÞ A C for each n A N, the sequence f f ðznÞgn AN
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is bounded. But this contradicts the fact that limn!yj f ðznÞj ¼ þy. Hence C is
proper.

We next prove that C is surjective. It follows from Proposition 2.5 that
m�1C ðbÞ

a�st is a nonempty Zariski open subset of m�1C ðbÞ. Thus, since m�1C ðbÞ is
irreducible by Proposition 4.1, the set m�1C ðbÞ

a�st is Zariski dense in m�1C ðbÞ.
Thus, denoting the Zariski closure of a set X by cl�ðX Þ, we have

m�1C ðbÞ==KC ¼ pðcl�ðm�1C ðbÞ
a�stÞÞ

H cl�ðpðm�1C ðbÞ
a�stÞÞH m�1C ðbÞ==KC:

Hence

m�1C ðbÞ==KC ¼ cl�ðpðm�1C ðbÞ
a�stÞÞ:

For a subset X of m�1C ðbÞ==KC, we denote by clðX Þ the closure of X in the
Euclidean topology on m�1C ðbÞ==KC. Since pðm�1C ðbÞ

a�stÞ is constructible [12,
Corollary 2, p. 51], it follows from [12, Corollary 1, p. 60] that

cl�ðpðm�1C ðbÞ
a�stÞÞ ¼ clðpðm�1C ðbÞ

a�stÞÞ:

Now C is closed, since C is proper. Hence

m�1C ðbÞ==KC ¼ clðpðm�1C ðbÞ
a�stÞÞ ¼ clðIm CÞ ¼ Im C:

This completes the proof of Proposition 4.2. r

Suppose that b A k�C. Recall ([11, Definition 5.12]) that a point x A m�1C ðbÞ is
said to be stable for the action of KC precisely when

(i) the orbit x � KC is a Zariski closed subset of m�1C ðbÞ, and
(ii) the isotropy group of x is finite.

Let m�1C ðbÞ
s denote the set of all stable points for the KC-action, and set Ub :¼

pðm�1C ðbÞ
sÞ. The stable set m�1C ðbÞ

s H m�1C ðbÞ and its image Ub H m�1C ðbÞ==KC are
Zariski open sets [11, Proposition 5.15].

The following proposition is useful in the rest of this section.

Proposition 4.3. Let ða; bÞ A ðk� � k�CÞreg. Then

m�1C ðbÞ
s H m�1C ðbÞ

a�st:

Proof. Let x A m�1C ðbÞ
s. Then, by Proposition 4.2, there exists y A m�1C ðbÞ

a�st

with pðxÞ ¼ pðyÞ. It therefore follows from [11, Theorem 5.16] that x � KC ¼
y � KC. Since the set m�1C ðbÞ

a�st is KC-invariant, we have x A m�1C ðbÞ
a�st. Hence

m�1C ðbÞ
s H m�1C ðbÞ

a�st. r

Since, by Definition 2.4, the variety m�1C ðbÞ is smooth at each point of

m�1C ðbÞ
a�st, and since KC acts freely on m�1C ðbÞ

a�st [8, Theorem 5.2(1)], it follows
from Proposition 4.3 and [11, Corollary 9.52] that Ub is smooth. Hence, by
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Proposition 4.3 again and [11, Theorem 5.16], the mapping C maps C�1ðUbÞ
biholomorphically onto Ub. Hence

The exceptional set X ða; bÞnC�1ðUbÞ contains every compactð4:1Þ
complex submanifold of ðX ða; bÞ; IÞ:

We state a criterion for stability in terms of the elements of Vb.

Proposition 4.4. Let ða; bÞ A ðk� � k�CÞreg, and let ðzþ; z�Þ A m�1C ðbÞ
a�st

.
Then ðzþ; z�Þ A m�1C ðbÞ

s
if and only if

For each V A Vb; there exists j A JþV U J�V such that eitherð4:2Þ
j A JþV with z�j 0 0 or j A J�V with zþj 0 0:

Proof. Set

J1 :¼ f j j 1a jaN; zþj 0 0; and z�j 0 0g;

J2 :¼ f j j 1a jaN; zþj 0 0; and z�j ¼ 0g;

J3 :¼ f j j 1a jaN; zþj ¼ 0; and z�j 0 0g:

Let R>0 (respectively R<0) denote the set of positive (respectively negative) real
numbers. Let

s :¼
X
j A J1

Ri�uj þ
X
j A J2

R>0i
�uj þ

X
j A J3

R<0i
�uj:

We first show that dim s ¼ k. We suppose that dim s < k and look for a
contradiction. Then there exists V A V such thatX

j A J1UJ2UJ3

Ri�uj HV :

Since ðzþ; z�Þ A m�1C ðbÞ
a�st, it follows from (2.1), (2.2), and the definition of m that

a A
X

j A J1UJ2UJ3

Ri�uj and b A
X

j A J1UJ2UJ3

Ci�uj:

Hence we have a A V and b A VC. On the other hand, since ða; bÞ A ðk� � k�CÞreg,
it follows from Proposition 2.2 that either a B V or b B VC. This is a contra-
diction. Hence

dim s ¼ k:ð4:3Þ
Now let ðzþ; z�Þ satisfy Condition (4.2); since ð�a; bÞ A ðk� � k�CÞreg by Prop-

osition 2.2, we can deduce from Proposition 2.5 that ðzþ; z�Þ A m�1C ðbÞ
ð�aÞ�st

.
Hence, by [8, Definition 5.1], we have a A sV ð�sÞ. In particular, sV ð�sÞ0j,
and so sV ð�sÞ is a subspace of k�. Thus, since s is an open subset of k� by
(4.3), we have k� ¼ sV ð�sÞ. Hence k� ¼ s.
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For each v A k�, we define a function lv : k! R by

lvðX Þ ¼ hv;Xiþ 1

4

XN
j¼1
ðjzþj j

2
e�2hi

�uj ;Xi þ jz�j j
2
e2hi

�uj ;XiÞ:

Claim 1. Let v A k�, and let X A k be such that hv;Xi0 0. Then we have

lim
t!þy

lvðtXÞ ¼ þy:

Proof. The proof of the claim is the same as that of Claim 5.9 of [8] except
for obvious modifications.

We have

lvðtXÞ ¼ thv;Xiþ 1

4

XN
j¼1
ðjzþj j

2
e�2thi

�uj ;Xi þ jz�j j
2
e2thi

�uj ;XiÞ:ð4:4Þ

If hv;Xi > 0, then the claim holds by (4.4). Suppose that hv;Xi < 0. Since
s ¼ k�, we can write

v ¼
X
j A J1

c
ð1Þ
j i�uj þ

X
j A J2

c
ð2Þ
j i�uj þ

X
j A J3

c
ð3Þ
j i�uj;

where c
ð1Þ
j A R for each j A J1, c

ð2Þ
j A R>0 for each j A J2, and c

ð3Þ
j A R<0 for each

j A J3. Thus, since hv;Xi < 0, there exists j A J1 U J2 U J3 such that either

j A J1 U J2 with hi�uj ;Xi < 0 or j A J1 U J3 with hi�uj;Xi > 0:

Hence, by (4.4), we have

lim
t!þy

lvðtXÞ ¼ þy: r

Suppose that the orbit ðzþ; z�Þ � KC H m�1C ðbÞ is not Zariski closed, and
seek a contradiction. By [3, Lemma 3.4], there exists an element ðwþ;w�Þ A
ðCN � CNÞnfðzþ; z�Þg and a one-parameter subgroup l : Gm ! KC such that

ðzþ; z�Þ � lðxÞ ! ðwþ;w�Þ as x! 0:ð4:5Þ

We can write the one-parameter subgroup l in the form

x A C� 7! ðxm1 ; . . . ; xmN Þ A KC

with m1; . . . ;mN A Z. Setting X :¼ tðm1; . . . ;mNÞ, we have X A knf0g. Thus
there exists an element v A k� such that hv;Xi < 0. By Claim 1, we have
limt!þy lvðtXÞ ¼ þy. On the other hand, since

lim
t!þy

XN
j¼1
ðjzþj j

2
e�2thi

�uj ;Xi þ jz�j j
2
e2thi

�uj ;XiÞ ¼
XN
j¼1
ðjwþj j

2 þ jw�j j
2Þ
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by (4.5), using hv;Xi < 0, we have limt!þy lvðtXÞ ¼ �y. This is a contra-
diction. Hence the orbit ðzþ; z�Þ � KC is Zariski closed. Thus, since KC acts
freely on m�1C ðbÞ

a�st [8, Theorem 5.2(1)], we have ðzþ; z�Þ A m�1C ðbÞ
s.

Conversely, suppose that ðzþ; z�Þ A m�1C ðbÞ
s; since ð�a; bÞ A ðk� � k�CÞreg by

Proposition 2.2, we can deduce from Proposition 4.3 that ðzþ; z�Þ A m�1C ðbÞ
ð�aÞ�st.

Thus, by Proposition 2.5, we see that ðzþ; z�Þ satisfies Condition (4.2). r

We use this criterion to prove the following

Proposition 4.5. Let b A k�C. Then

m�1C ðbÞ
s 0j:

Proof. Let a A k� be such that ða; bÞ A ðk� � k�CÞreg. If Vb ¼ j, then
m�1C ðbÞ

a�st ¼ m�1C ðbÞ by Proposition 2.5. Thus, since KC acts freely on
m�1C ðbÞ

a�st [8, Theorem 5.2(1)], it follows from [11, Corollary 5.14] that
m�1C ðbÞ

s ¼ m�1C ðbÞ. Hence, since m�1C ðbÞ is nonempty, so is m�1C ðbÞ
s; we therefore

suppose that Vb 0j.
Then, for each V A Vb, there exists jV A JþV U J�V . Let b A ðCNÞ� be such

that i�b ¼ b. Fix x0 A ðCnÞ� such that x0 B HCð jV ; bÞ for each V A Vb. By [2,
Theorem 3.1(i)], there exists ½zþ; z�� A Xða; bÞ such that fb

Cð½zþ; z��Þ ¼ x0. For
each V A Vb, we have zþjV z

�
jV
0 0. Indeed, if zþjV z

�
jV
¼ 0 for some V A Vb, then we

obtain

hp�ðx0Þ þ b; ejVi ¼ hp�ðfb
Cð½zþ; z��ÞÞ þ b; ejVi

¼ �
ffiffiffiffiffiffiffi
�1
p

zþjV z
�
jV

¼ 0:

Thus x0 A HCð jV ; bÞ. This is a contradiction. Hence, since ðzþ; z�Þ A m�1C ðbÞ
a�st,

it follows from Proposition 4.4 that ðzþ; z�Þ A m�1C ðbÞ
s. In particular, m�1C ðbÞ

s 0
j. r

Since m�1C ðbÞ==KC is irreducible by Proposition 4.1, it follows from Prop-
osition 4.5 that the set Ub is Zariski dense in m�1C ðbÞ==KC.

We summarise our discussions in the following

Theorem 4.6. The mapping C is a resolution of singularities, that is,
(i) C is proper and surjective,
(ii) C�1ðUbÞ is a dense open subset of Xða; bÞ, and
(iii) C maps C�1ðUbÞ biholomorphically onto Ub. r

5. Equivalence of complex structures

Let ða; bÞ A ðk� � k�CÞreg. We can write b ¼ b1 þ
ffiffiffiffiffiffiffi
�1
p

b2 for suitable b1; b2 A
k�. We regard S2 as the unit sphere in R3. If p :¼ tðp1; p2; p3Þ A S2, then
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Ip :¼ p1I þ p2J þ p3K is also a complex structure on Xða; bÞ. Set

Cða;bÞ :¼ fp A S2 j ðX ða; bÞ; IpÞ is not biholomorphic to an a‰ne varietyg:
Let I1 and I2 be complex structures on Xða; bÞ. We say that I1 is equivalent to
I2 and write I 1 @ I2, precisely when ðX ða; bÞ; I1Þ is biholomorphic to ðXða; bÞ; I2Þ.

In this section, we discuss when two complex structures Ip and Iq with
p; q A Cða;bÞ are equivalent.

We first give a su‰cient condition for a complex structure Ip to be equivalent
to the conjugate complex structure �Ip.

Proposition 5.1. Suppose that either b1 ¼ 0 or b2 ¼ 0. Let p A Cða;bÞ. Then
Ip @�Ip.

Proof. We provide a proof for the case where b1 ¼ 0; the other case is
similar.

Since b1 ¼ 0, it follows from [1, Theorem 3.3] that p2 ¼ 0. Let q1; q3 A R be
such that the matrix

P :¼
p1 0 p3

0 1 0

q1 0 q3

0
B@

1
CA

is an element in SOð3Þ. Then we have

P

a

0

b2

0
B@

1
CA ¼ p1aþ p3b2

0

q1aþ q3b2

0
B@

1
CA:

Hence, if we set

a 0 :¼ p1aþ p3b2 and b 0 :¼
ffiffiffiffiffiffiffi
�1
p

ðq1aþ q3b2Þ;

then it follows from [1, Theorem 3.2(2)] that

ðXða; bÞ; IpÞG ðX ða 0; b 0Þ; IÞ:
Similarly, we have

ðX ða; bÞ;�IpÞG ðX ð�a 0; b 0Þ; IÞ:
We can define a biholomorphic map

ðX ða 0; b 0Þ; IÞ ! ðXð�a 0; b 0Þ; IÞ
½zþ; z�� 7! ½z�; zþ�:

Hence we have Ip @�Ip. r

Corollary 5.2. Let aCða;bÞ ¼ 2. Then Cða;bÞ ¼ fp;�pg for some p A S2,
and Ip @�I p.
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Proof. By [1, Theorem 3.3], we have Cða;bÞ ¼ fp;�pg for some p A S2. It
therefore follows from [1, Theorem 3.2(2)] that there exists a 0 A k� such that
ðX ða; bÞ; IpÞ (respectively ðXða; bÞ;�IpÞ) is biholomorphic to ðXða 0; 0Þ; IÞ (respec-
tively ðXða 0; 0Þ;�IÞ). Thus, by [1, Theorem 3.3] and Proposition 5.1, we have
Ip @�Ip. r

Example 5.3. Let b ¼ 0. Then, by [1, Theorem 3.3], we have Cða;0Þ ¼
fe1;�e1g. Hence we have I @�I (see also [1, Example 4.1]).

In general, Ip and Iq need not be equivalent for each p; q A Cða;bÞ. We use
the results of Sections 3 and 4 to give such an example.

Let K be the subtorus of T 5 whose Lie algebra kHR5 is generated by
e1 þ e4, e2 þ e5, and e3 þ e4 þ e5. Then fpðe4Þ; pðe5Þg is a basis for R2. Thus
Condition (iii) in Proposition 2.3 holds. Set

a :¼ i�u3 and b :¼ i�u1 � i�u2:

Then it follows from Proposition 2.2 that ða; bÞ A ðk� � k�CÞreg. We obtain the
toric hyperkähler manifold Xða; bÞ of complex dimension four. We set

p1 :¼
1

0

0

0
B@

1
CA; p2 :¼

0

1

0

0
B@

1
CA; p3 :¼

1ffiffiffi
2
p

�1
1

0

0
B@

1
CA; p4 :¼

1ffiffiffi
2
p

1

1

0

0
B@

1
CA:

By [1, Theorem 3.3], we have

Cða;bÞ ¼ fGp1;Gp2;Gp3;Gp4g:

Proposition 5.4. We have
(i) Ipi @�Ipi for each i ¼ 1; 2; 3; 4;
(ii) Ip3 @ Ip4 ;
(iii) Ipi S I pj for each i; j ¼ 1; 2; 3 with i0 j.

Proof. Set

P :¼
�1=

ffiffiffi
2
p

1=
ffiffiffi
2
p

0

1=
ffiffiffi
2
p

1=
ffiffiffi
2
p

0

0 0 �1

0
B@

1
CA:

Then the matrix P is an element in SOð3Þ. We have

P

a

b

0

0
@

1
A¼ 1ffiffiffi

2
p

i�u1 � i�u2 � i�u3
i�u1 � i�u2 þ i�u3

0

0
@

1
A:

Hence, if we set

a 0 :¼ 1ffiffiffi
2
p ði�u1 � i�u2 � i�u3Þ and b 0 :¼ 1ffiffiffi

2
p ði�u1 � i�u2 þ i�u3Þ;
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then it follows from [1, Theorem 3.2(2)] that

ðX ða; bÞ; Ip3ÞG ðXða 0; b 0Þ; IÞ:
Similarly, we have

ðXða; bÞ; Ip2ÞG ðXðb; aÞ; IÞ and ðXða; bÞ; Ip4ÞG ðXðb 0; a 0Þ; IÞ:
(i) The claim follows immediately from Proposition 5.1.
(ii) Let ðzþ; z�Þ A m�1ða 0; b 0Þ. Set

wG
1 :¼GzH2 ; wG

2 :¼GzH1 ; wG
3 :¼GzH3 ; wG

4 :¼GzH5 ; wG
5 :¼GzH4 :

Then we have ðwþ;w�Þ A m�1ðb 0; a 0Þ. Hence we can define a biholomorphic map

ðX ða 0; b 0Þ; IÞ ! ðX ðb 0; a 0Þ; IÞ
½zþ; z�� 7! ½wþ;w��:

Thus we have I p3 @ I p4 .
(iii) First, we use Theorem 3.1 to construct compact complex submanifolds

of ðXða; bÞ; IÞ. Now set a :¼ u3 and b :¼ u1 � u2. Let

P1 :¼ 7
5

j¼3
Hþð j; aÞ

(see Figure 1). Then, since P1 is an isosceles right triangle, the space XP1
is P2.

Thus, by Theorem 3.1, the submanifold X1 :¼ f�1a;bðP1 � f0gÞ is biholomorphic to
P2. Set

M1 :¼ fðzþ; z�Þ A H5 j z�3 ¼ z�4 ¼ z�5 ¼ 0;

�
ffiffiffiffiffiffiffi
�1
p

zþ1 z
�
1 ¼ 1;�

ffiffiffiffiffiffiffi
�1
p

zþ2 z
�
2 ¼ �1gV m�1I ðaÞ:

Figure 1
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It follows from (3.5) that

X1 ¼M1=K :ð5:1Þ

Now take the basis fi�u3; i�u4; i�u5g for k�. We have b ¼ i�u4 � i�u5. We set
b 0 :¼ u4 � u5. Let P2 :¼ H�ð1; aÞVH�ð2; aÞVHþð3; aÞ. Then, since P2 is an
isosceles right triangle, the submanifold X2 :¼ f�1a;b 0 ðP2 � f0gÞ is also biholomor-
phic to P2. Set

M2 :¼ fðzþ; z�Þ A H5 j zþ1 ¼ zþ2 ¼ z�3 ¼ 0;

�
ffiffiffiffiffiffiffi
�1
p

zþ4 z
�
4 ¼ 1;�

ffiffiffiffiffiffiffi
�1
p

zþ5 z
�
5 ¼ �1gV m�1I ðaÞ:

It follows from (3.5) that

X2 ¼M2=K :ð5:2Þ

Since M1 VM2 ¼ j, we have X1 VX2 ¼ j.
Next, we use Proposition 4.4 to determine the exceptional set Xða; bÞn

C�1ðUbÞ. Let V1 and V2 be the following two-dimensional subspaces of k�:

V1 :¼ spanfi�u1; i�u2g and V2 :¼ spanfi�u4; i�u5g:

Then we have Vb ¼ fV1;V2g. We set

Y1 :¼ e3 þ e4 þ e5 and Y2 :¼ e3 � e1 � e2:

For each j ¼ 1; 2, we have Yj A k and Vj ¼ fv A k� j hv;Yji ¼ 0g. Hence we
have

JþV1
¼ f3; 4; 5g; J�V1

¼ j; JþV2
¼ f3g; J�V2

¼ f1; 2g:

By (4.1), Proposition 4.4, (5.1), and (5.2), we have

X ða; bÞnC�1ðUbÞ ¼ X1 q X2 GP2 q P2:ð5:3Þ

Next, we determine the exceptional set Xða 0; b 0ÞnC�1ðUb 0 Þ. Let V be the
two-dimensional subspace V :¼ spanfi�u2; i�u4g of k�. Then we have Vb 0 ¼ fVg.
We can prove

Xða 0; b 0ÞnC�1ðUb 0 ÞGP2ð5:4Þ
in a way similar to that just used for (5.3).

Finally, we construct a compact complex submanifold of ðXðb; aÞ; IÞ.
Let

P3 :¼ 7
j¼1;4
Hþð j; bÞV 7

j¼2;5
H�ð j; bÞ

(see Figure 2). Then, since P3 is a square, the space XP3
is P1 � P1. Thus, by

Theorem 3.1, the submanifold X3 :¼ f�1b;aðP3 � f0gÞ is biholomorphic to P1 � P1.
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Hence, by (4.1), we have

P1 � P1 GX3 HXðb; aÞnC�1ðUaÞ:ð5:5Þ

The claim follows from (4.1), (5.3), (5.4), and (5.5). r
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