ON TORIC HYPERKÄHLER MANIFOLDS WITH COMPACT COMPLEX SUBMANIFOLDS

Yosihiko Аото

Abstract

A toric hyperkähler manifold is defined as a hyperkähler quotient of the flat quaternionic space \mathbf{H}^{N} by a subtorus of the real torus T^{N}. The purposes of this paper are to construct compact complex submanifolds of toric hyperkähler manifolds, and to show that our hyperkähler manifold is a resolution of singularities of an affine algebrogeometric quotient. We also show that these submanifolds are biholomorphic to Delzant spaces, which are Kähler quotients of \mathbf{C}^{N} by subtori of T^{N}. Finally, we apply these results to determining whether complex structures on our hyperkähler manifold are equivalent.

1. Introduction

A Riemannian manifold is said to be hyperkählerian precisely when this manifold is equipped with three complex structures $\boldsymbol{I}, \boldsymbol{J}$, and \boldsymbol{K} that satisfy the algebraic relations of the quaternions i, j, k and the Riemannian metric is Kählerian with respect to $\boldsymbol{I}, \boldsymbol{J}$, and \boldsymbol{K}. The flat quaternionic space \mathbf{H}^{N} is an example of a hyperkähler manifold. We denote the Kähler form corresponding to the complex structure \boldsymbol{I} (respectively $\boldsymbol{J}, \boldsymbol{K}$) by $\omega_{\boldsymbol{I}}$ (respectively $\omega_{\boldsymbol{J}}, \omega_{\boldsymbol{K}}$). There exists a way to construct a new hyperkähler manifold from an old one with a group action: the hyperkähler quotient method of Hitchin, Karlhede, Lindström, and Roček [6, §3.(D)]. Bielawski and Dancer defined a toric hyperkähler manifold as a hyperkähler quotient of \mathbf{H}^{N} by a subtorus of $T^{N}:=U(1)^{N}[2, \S 3]$. Let K be a subtorus of T^{N}. Let \mathfrak{f} be the Lie algebra of K, and let \mathfrak{f}^{*} be the dual space of \mathfrak{f}. Set $\mathfrak{f}_{\mathbf{C}}^{*}:=\mathfrak{f}^{*} \otimes \mathbf{C}$. We restrict the natural action of T^{N} on \mathbf{H}^{N} to K. We use $\mu:=\left(\mu_{\mathbf{C}}, \mu_{\mathbf{C}}\right): \mathbf{H}^{N} \rightarrow \mathfrak{f}^{*} \times \mathfrak{f}_{\mathbf{C}}^{*}$ to denote the hyperkähler moment map for the action of K on \mathbf{H}^{N}. If $(\alpha, \beta) \in \mathfrak{f}^{*} \times \mathfrak{f}_{\mathrm{C}}^{*}$ is a regular value of μ and if K acts freely on $\mu^{-1}(\alpha, \beta)$, then we obtain the toric hyperkähler manifold

$$
X(\alpha, \beta):=\mu^{-1}(\alpha, \beta) / K
$$

[^0]The quotient group $T^{n}=T^{N} / K$ acts in the natural way on $X(\alpha, \beta)$. Let $\phi: X(\alpha, \beta) \rightarrow\left(\mathbf{R}^{n}\right)^{*} \times\left(\mathbf{C}^{n}\right)^{*}$ be the hyperkähler moment map for the action of T^{n} on $X(\alpha, \beta)$.

Let $K_{\mathbf{C}}$ be the complexification of K. Then the inclusion homomorphism $\mathbf{C}\left[\mu_{\mathbf{C}}^{-1}(\beta)\right]^{K_{\mathbf{C}}} \hookrightarrow \mathbf{C}\left[\mu_{\mathbf{C}}^{-1}(\beta)\right]$ induces an affine quotient map $p: \mu_{\mathbf{C}}^{-1}(\beta) \rightarrow$ $\operatorname{Spm} \mathbf{C}\left[\mu_{\mathbf{C}}^{-1}(\beta)\right]^{K_{\mathbf{C}}}=: \mu_{\mathbf{C}}^{-1}(\beta) / / K_{\mathbf{C}}$, and the morphism p induces a holomorphic mapping

$$
\Psi:(X(\alpha, \beta), \boldsymbol{I}) \rightarrow \mu_{\mathbf{C}}^{-1}(\beta) / / K_{\mathbf{C}} .
$$

Let $\left\{u_{1}, \ldots, u_{N}\right\}$ be the dual basis corresponding to the standard basis for \mathbf{R}^{N}, and let $\imath^{*}:\left(\mathbf{R}^{N}\right)^{*} \rightarrow \mathfrak{f}^{*}$ be the transpose of the inclusion mapping $\imath: \mathfrak{f} \rightarrow \mathbf{R}^{N}$. Let \mathscr{V} be the set of all codimension one subspaces of \mathfrak{f}^{*} generated by subsets of $\left\{\imath^{*} u_{1}, \ldots, \iota^{*} u_{N}\right\} . \quad$ Set $\mathscr{V}_{\beta}:=\{V \in \mathscr{V} \mid \beta \in V \otimes \mathbf{C}\}$. Bielawski and Dancer showed ($\left[2\right.$, Theorem 5.1]) that, if $\mathscr{V}_{\beta}=\emptyset$, then the mapping Ψ is biholomorphic. On the other hand, we showed ([1, Theorem 3.3 and Proposition 3.4]) that, if $\mathscr{V}_{\beta} \neq \emptyset$, then \mathbf{P}^{1} is embedded in $(X(\alpha, \beta), \boldsymbol{I})$. A result similar to that of us was obtained independently by Konno [8, Theorem 6.10]. Thus $(X(\alpha, \beta), \boldsymbol{I})$ is biholomorphic to an affine variety if and only if $\mathscr{V}_{\beta}=\emptyset$.

This paper consists of three parts.
The first part (§3) is devoted to the construction of compact complex submanifolds of $(X(\alpha, \beta), \boldsymbol{I})$. Suppose that $\mathscr{V}_{\beta} \neq \emptyset$. Let J be a subset of $\{1, \ldots, N\}$ such that
(a) $\left\{\pi\left(e_{j}\right) \mid j \in J\right\}$ is a basis for $\pi\left(\mathbf{R}^{N}\right)$, and
(b) let $\beta_{j} \in \mathbf{C}\left(j \in J^{c}\right)$ be such that $\beta=\sum_{j \in J^{c}} \beta_{j} l^{*} u_{j}$. Then

$$
\left\{j \in J^{c} \mid \beta_{j}=0\right\} \neq \emptyset
$$

Since $\mathscr{V}_{\beta} \neq \emptyset$, such a J exists. We associate with J a hyperplane arrangement \mathscr{A}_{J} of $\left(\mathbf{R}^{n}\right)^{*}$. The main result of this part is the following

Theorem 1.1. Let \mathcal{F} be a bounded face of the arrangement \mathscr{A}_{J}.
(i) $\phi^{-1}(\mathcal{F} \times\{0\})$ is a compact complex submanifold of $(X(\alpha, \beta), \boldsymbol{I})$, isotropic with respect to the form $\omega_{\boldsymbol{J}}+\sqrt{-1} \omega_{K}$, and invariant under the T^{n}-action.
(ii) The polytope \mathcal{F} is Delzant, and $\phi^{-1}(\mathcal{F} \times\{0\})$ is biholomorphic to the Delzant space associated with \mathcal{F}.
This construction not only produces the projective line \mathbf{P}^{1} but also higher dimensional compact submanifolds (see Proposition 5.4). In the special case where $\beta=0$, Bielawski and Dancer proved Theorem 1.1 [2, Theorem 6.5(ii), (iii)] (see also [4, Theorem 3.5(2), (3)]).

Now recall that a point $x \in \mu_{\mathbf{C}}^{-1}(\beta)$ is said to be stable for the action of $K_{\mathbf{C}}$ precisely when the orbit $x \cdot K_{\mathbf{C}}$ is a Zariski closed subset of $\mu_{\mathbf{C}}^{-1}(\beta)$ and the isotropy group of x is finite. Let $\mu_{\mathbf{C}}^{-1}(\beta)^{s}$ denote the set of all stable points for the $K_{\mathbf{C}}$-action, and set $U_{\beta}:=p\left(\mu_{\mathbf{C}}^{-1}(\beta)^{s}\right)$. The second part of this paper (§4) is devoted to proving the following

Theorem 1.2. The mapping Ψ is a resolution of singularities, that is,
(i) Ψ is proper and surjective,
(ii) $\Psi^{-1}\left(U_{\beta}\right)$ is a dense open subset of $X(\alpha, \beta)$, and
(iii) Ψ maps $\Psi^{-1}\left(U_{\beta}\right)$ biholomorphically onto U_{β}.

To prove Part (i), we use the Transposition Theorem of Stiemke. For another proof of Part (i), see [9, Proposition 3.7]. Konno's proof is similar to that of [10, Proposition 3.10] or [13, Theorem 4.1(1)]. We state a criterion for stability in terms of the elements of \mathscr{V}_{β}. We use this criterion to show that $\mu_{\mathbf{C}}^{-1}(\beta)^{s}$ is nonempty.

The last part of this paper (§5) is devoted to discussing when complex structures on $X(\alpha, \beta)$ are equivalent. We regard S^{2} as the unit sphere in \mathbf{R}^{3}. If $p:={ }^{t}\left(p_{1}, p_{2}, p_{3}\right) \in \boldsymbol{S}^{2}$, then $\boldsymbol{I}_{p}:=p_{1} \boldsymbol{I}+p_{2} \boldsymbol{J}+p_{3} \boldsymbol{K}$ is also a complex structure on $X(\alpha, \beta)$. Set

$$
\mathscr{C}_{(\alpha, \beta)}:=\left\{p \in S^{2} \mid\left(X(\alpha, \beta), \boldsymbol{I}_{p}\right) \text { is not biholomorphic to an affine variety }\right\}
$$

Let $\# \mathscr{C}_{(\alpha, \beta)}=2$. Then $\mathscr{C}_{(\alpha, \beta)}=\{p,-p\}$ for some $p \in S^{2}$. In the preceding paper, we showed that $\boldsymbol{I}_{p_{1}}$ and $\boldsymbol{I}_{p_{2}}$ are equivalent for each $p_{1}, p_{2} \in S^{2} \backslash \mathscr{C}_{(\alpha, \beta)}[1$, Theorem 5.2(1)]. In this part, we show that \boldsymbol{I}_{p} and $-\boldsymbol{I}_{p}$ are equivalent. Without the hypothesis that $\# \mathscr{C}_{(\alpha, \beta)}=2$, however, $\boldsymbol{I}_{p_{1}}$ and $\boldsymbol{I}_{p_{2}}$ are not necessarily equivalent for each $p_{1}, p_{2} \in \mathscr{C}_{(\alpha, \beta)}$. We use the results of Sections 3 and 4 to give an example that illustrates this point (Proposition 5.4). In this example, $\# \mathscr{C}_{(\alpha, \beta)}$ is equal to 8 .

Acknowledgements. I would like to thank Professor Kazuo Masuda for useful discussions. I would also like to thank Chikara Nakayama for his help in providing an elementary proof of irreducibility of $\mu_{\mathbf{C}}^{-1}(\beta)$.

2. The definition of toric hyperkähler manifold

In this section, we sketch the differential geometric construction of toric hyperkähler manifolds [2, §3].

Recall that the standard metric on \mathbf{H}^{N} is hyperkählerian. Let $\{1, i, j, k\}$ be the standard basis for \mathbf{H}. Left multiplication by i (respectively j, k) defines a complex structure \boldsymbol{I} (respectively $\boldsymbol{J}, \boldsymbol{K}$) on \mathbf{H}^{N}. This metric is Kählerian with respect to the complex structures $\boldsymbol{I}, \boldsymbol{J}$, and \boldsymbol{K}.

We identify $i \in \mathbf{H}$ with $\sqrt{-1} \in \mathbf{C}$. We define a mapping

$$
\begin{aligned}
\mathbf{C}^{N} \times \mathbf{C}^{N} & \rightarrow \mathbf{H}^{N} \\
\left(z^{+}, z^{-}\right) & \mapsto z^{+}+z^{-} j
\end{aligned}
$$

We use this mapping to identify \mathbf{H}^{N} with $\mathbf{C}^{N} \times \mathbf{C}^{N}$. For $\left(z^{+}, z^{-}\right) \in \mathbf{C}^{N} \times \mathbf{C}^{N}$, we write $\left(z^{+}, z^{-}\right)=\left(z_{1}^{+}, \ldots, z_{N}^{+}, z_{1}^{-}, \ldots, z_{N}^{-}\right)$with $z_{j}^{+}, z_{j}^{-} \in \mathbf{C}$ for each $j=1, \ldots, N$.

Let T^{N} be the real torus

$$
T^{N}:=\left\{t:=\left(t_{1}, \ldots, t_{N}\right) \in \mathbf{C}^{N}| | t_{j} \mid=1 \text { for each } j=1, \ldots, N\right\}
$$

and let T^{N} act on the right on \mathbf{H}^{N} by $\left(z^{+}, z^{-}\right) \cdot t=\left(z^{+} \cdot t, z^{-} \cdot t^{-1}\right)$. This action preserves the hyperkähler structure. Let $\left\{e_{1}, \ldots, e_{N}\right\}$ be the standard basis for
\mathbf{R}^{N}, and let $\left\{u_{1}, \ldots, u_{N}\right\}$ be the corresponding dual basis. Then the hyperkähler moment map $\mu^{0}:=\left(\mu_{\boldsymbol{I}}^{0}, \mu_{\mathbf{J}}^{0}, \mu_{\mathbf{K}}^{0}\right): \mathbf{H}^{N} \rightarrow\left(\mathbf{R}^{N}\right)^{*} \otimes \mathbf{R}^{3}$ for this action is given by

$$
\begin{equation*}
\mu_{\boldsymbol{I}}^{0}\left(z^{+}, z^{-}\right)=\frac{1}{2} \sum_{j=1}^{N}\left(\left|z_{j}^{+}\right|^{2}-\left|z_{j}^{-}\right|^{2}\right) u_{j} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\mu_{\boldsymbol{J}}^{0}+\sqrt{-1} \mu_{\boldsymbol{K}}^{0}\right)\left(z^{+}, z^{-}\right)=-\sqrt{-1} \sum_{j=1}^{N} z_{j}^{+} z_{j}^{-} u_{j} . \tag{2.2}
\end{equation*}
$$

Note that the hyperkähler moment map is surjective.
Let K be a subtorus of T^{N} whose Lie algebra $\mathfrak{f} \subset \mathbf{R}^{N}$ is generated by rational vectors. Set $k:=\operatorname{dim} K$. Let $l: \mathfrak{f} \rightarrow \mathbf{R}^{N}$ be the inclusion mapping, and let $\pi: \mathbf{R}^{N} \rightarrow \mathbf{R}^{n}:=\mathbf{R}^{N} /$ f be the canonical projection. Then we obtain an exact sequence

$$
0 \rightarrow \mathfrak{f} \xrightarrow{l} \mathbf{R}^{N} \xrightarrow{\pi} \mathbf{R}^{n} \rightarrow 0,
$$

and, by duality, an exact sequence

$$
0 \leftarrow \mathfrak{f}^{*} \stackrel{i^{*}}{\leftarrow}\left(\mathbf{R}^{N}\right)^{*} \stackrel{\pi^{*}}{\leftarrow}\left(\mathbf{R}^{n}\right)^{*} \leftarrow 0
$$

We now restrict the action of T^{N} on \mathbf{H}^{N} to K. We set $\mathfrak{f}_{\mathbf{C}}^{*}:=\mathfrak{f}^{*} \otimes \mathbf{C}$, and define $\mu_{\boldsymbol{I}}: \mathbf{H}^{N} \rightarrow \mathfrak{f}^{*}$ (respectively $\mu_{\mathbf{C}}: \mathbf{H}^{N} \rightarrow \mathfrak{f}_{\mathbf{C}}^{*}$) to be the mapping $\iota^{*} \circ \mu_{\boldsymbol{I}}^{0}$ (respectively $l^{*} \circ \mu_{\boldsymbol{J}}^{0}+\sqrt{-1} l^{*} \circ \mu_{\boldsymbol{K}}^{0}$). Then the hyperkähler moment map for the action of K on \mathbf{H}^{N} is $\mu:=\left(\mu_{I}, \mu_{\mathbf{C}}\right): \mathbf{H}^{N} \rightarrow \mathfrak{t}^{*} \times \mathfrak{f}_{\mathbf{C}}^{*}$.

Definition 2.1 (Bielawski-Dancer). Let $(\alpha, \beta) \in \mathfrak{f}^{*} \times \mathfrak{f}_{\mathbf{C}}^{*}$ be a regular value of μ, and let K act freely on $\mu^{-1}(\alpha, \beta)$. Then we refer to the hyperkähler quotient

$$
X(\alpha, \beta):=\mu^{-1}(\alpha, \beta) / K
$$

as a toric hyperkähler manifold.
Remarks. (i) A toric hyperkähler manifold is not a toric manifold in the usual sense.
(ii) Suppose that $\pi\left(e_{j_{0}}\right)=0$ for some $j_{0} \in \mathbf{N}$ with $1 \leq j_{0} \leq N$. Then the toric hyperkähler manifold $X(\alpha, \beta)$ is a hyperkähler quotient of \mathbf{H}^{N-1} by $K \cap T^{N-1}$, where $\mathbf{H}^{N-1}=\left\{\left(z^{+}, z^{-}\right) \in \mathbf{H}^{N} \mid z_{j_{0}}^{+}=z_{j_{0}}^{-}=0\right\}$ and $T^{N-1}=$ $\left\{t \in T^{N} \mid t_{j_{0}}=1\right\}$.

Suppose that $\imath^{*} u_{j_{0}}=0$ for some $j_{0} \in \mathbf{N}$ with $1 \leq j_{0} \leq N$. Then the subtorus K is a subgroup of T^{N-1}, and $X(\alpha, \beta)$ is the Cartesian product of \mathbf{H} with a hyperkähler quotient of \mathbf{H}^{N-1} by K.

These cases are not essential for our purposes. Thus we exclude these cases in this paper.

For $\left(z^{+}, z^{-}\right) \in \mu^{-1}(\alpha, \beta)$, we denote its equivalence class in $X(\alpha, \beta)$ by $\left[z^{+}, z^{-}\right]$.

A toric hyperkähler manifold $X(\alpha, \beta)$ is a non-compact connected manifold of real dimension $4 n$. The standard metric on \mathbf{H}^{N} and the complex structures $\boldsymbol{I}, \boldsymbol{J}$, and \boldsymbol{K} descend to $X(\alpha, \beta)$, and the induced metric on $X(\alpha, \beta)$ is hyperkählerian.

The quotient group $T^{n}=T^{N} / K$ acts in the natural way on $X(\alpha, \beta)$, preserving the hyperkähler structure. Let $a \in\left(\mathbf{R}^{N}\right)^{*}$ and $b \in\left(\mathbf{C}^{N}\right)^{*}$ be such that $l^{*} a=\alpha$ and $l^{*} b=\beta$. Then the hyperkähler moment map $\phi_{a, b}:=\left(\phi_{\boldsymbol{I}}^{a}, \phi_{\mathbf{C}}^{b}\right):$ $X(\alpha, \beta) \rightarrow\left(\mathbf{R}^{n}\right)^{*} \times\left(\mathbf{C}^{n}\right)^{*}$ for the natural action is given by

$$
\phi_{\boldsymbol{I}}^{a}\left(\left[z^{+}, z^{-}\right]\right)=\mu_{\boldsymbol{I}}^{0}\left(z^{+}, z^{-}\right)-a
$$

and

$$
\phi_{\mathbf{C}}^{b}\left(\left[z^{+}, z^{-}\right]\right)=\left(\mu_{\boldsymbol{J}}^{0}+\sqrt{-1} \mu_{\boldsymbol{K}}^{0}\right)\left(z^{+}, z^{-}\right)-b .
$$

Remark. We use the monomorphism π^{*} to identify $\left(\mathbf{R}^{n}\right)^{*}$ with $\operatorname{ker} \iota^{*}$. Then, for each $\left(z^{+}, z^{-}\right) \in \mu^{-1}(\alpha, \beta)$, we have $\mu_{\boldsymbol{I}}^{0}\left(z^{+}, z^{-}\right)-a \in\left(\mathbf{R}^{n}\right)^{*}$ and $\left(\mu_{\boldsymbol{J}}^{0}+\sqrt{-1} \mu_{\boldsymbol{K}}^{0}\right)\left(z^{+}, z^{-}\right)-b \in\left(\mathbf{C}^{n}\right)^{*}$.

In [2], Bielawski and Dancer gave necessary and sufficient conditions for a hyperkähler quotient $\mu^{-1}(\alpha, \beta) / K$ to be smooth or an orbifold. The following two propositions are due to them [2], partly based on results by Konno [7].

We first give necessary and sufficient conditions for $(\alpha, \beta) \in \mathfrak{f}^{*} \times \mathfrak{f}_{\mathbf{C}}^{*}$ to be a regular value of μ. Let $a \in\left(\mathbf{R}^{N}\right)^{*}$ and let $b \in\left(\mathbf{C}^{N}\right)^{*}$. For $j=1, \ldots, N$, set

$$
\mathcal{H}(j, a):=\left\{x \in\left(\mathbf{R}^{n}\right)^{*} \mid\left\langle x, \pi\left(e_{j}\right)\right\rangle=-\left\langle a, e_{j}\right\rangle\right\},
$$

a hyperplane in $\left(\mathbf{R}^{n}\right)^{*}$, and

$$
\mathcal{H}_{\mathbf{C}}(j, b):=\left\{x \in\left(\mathbf{C}^{n}\right)^{*} \mid\left\langle x, \pi\left(e_{j}\right)\right\rangle=-\left\langle b, e_{j}\right\rangle\right\}
$$

a hyperplane in $\left(\mathbf{C}^{n}\right)^{*}$. For each $j=1, \ldots, N$, the two closed half-spaces in $\left(\mathbf{R}^{n}\right)^{*}$ bounded by $\mathcal{H}(j, a)$ are

$$
\begin{aligned}
\mathcal{H}^{+}(j, a) & :=\left\{x \in\left(\mathbf{R}^{n}\right)^{*} \mid\left\langle x, \pi\left(e_{j}\right)\right\rangle \geq-\left\langle a, e_{j}\right\rangle\right\}, \\
\mathcal{H}^{-}(j, a) & :=\left\{x \in\left(\mathbf{R}^{n}\right)^{*} \mid\left\langle x, \pi\left(e_{j}\right)\right\rangle \leq-\left\langle a, e_{j}\right\rangle\right\} .
\end{aligned}
$$

Let \mathscr{V} be the set of all codimension one subspaces of \mathfrak{f}^{*} generated by subsets of $\left\{\imath^{*} u_{1}, \ldots, l^{*} u_{N}\right\}$. For each $V \in \mathscr{V}$, set $V_{\mathbf{C}}:=V \otimes \mathbf{C}$.

Proposition 2.2 (See [2, Theorems 3.2 and 3.3] and [7, Proposition 2.1]). Let $a \in\left(\mathbf{R}^{N}\right)^{*}$ and $b \in\left(\mathbf{C}^{N}\right)^{*}$ be such that $l^{*} a=\alpha$ and $l^{*} b=\beta$. Then the following statements are equivalent:
(i) (α, β) is a regular value of μ;
(ii) $\bigcap_{j \in J} \mathcal{H}(j, a) \times \mathcal{H}_{\mathbf{C}}(j, b)=\emptyset$ for each subset J of $\{1, \ldots, N\}$ with $\# J=$
(iii) for each $V \in \mathscr{V}$, we have either $\alpha \notin V$ or $\beta \notin V_{\mathbf{C}}$.

We denote the set of all regular values of μ by $\left(\mathfrak{f}^{*} \times \mathfrak{f}_{\mathrm{C}}^{*}\right)_{\text {reg }}$.

We next give necessary and sufficient conditions for K to act freely on $\mu^{-1}(\alpha, \beta)$.

Proposition 2.3 (See [7, Lemma 2.2 and Proposition 2.2]). Suppose that $\left\{\pi\left(e_{1}\right), \ldots, \pi\left(e_{n}\right)\right\}$ is a basis for \mathbf{R}^{n}. Let A be the matrix of π relative to the bases $\left\{e_{1}, \ldots, e_{N}\right\},\left\{\pi\left(e_{1}\right), \ldots, \pi\left(e_{n}\right)\right\} . \quad$ Let $(\alpha, \beta) \in\left(\mathfrak{F}^{*} \times \mathfrak{F}_{\mathbf{C}}^{*}\right)_{\text {reg }}$. Then the following statements are equivalent:
(i) K acts freely on $\mu^{-1}(\alpha, \beta)$;
(ii) $\left\{\pi\left(e_{j}\right) \mid j \in J\right\}$ is a \mathbf{Z}-basis for $\pi\left(\mathbf{Z}^{N}\right)$ for each subset J of $\{1, \ldots, N\}$ such that $\left\{\pi\left(e_{j}\right) \mid j \in J\right\}$ is a basis for $\pi\left(\mathbf{R}^{N}\right)$;
(iii) A is a totally unimodular matrix, that is, each square submatrix of A has determinant equal to $0,+1$, or -1 .

We consider only the case where a hyperkähler quotient $\mu^{-1}(\alpha, \beta) / K$ is smooth. So we suppose throughout this paper that Condition (ii) above holds.

A toric hyperkähler manifold $X(\alpha, \beta)$, the Kähler quotient of $\mu_{\mathbf{C}}^{-1}(\beta)$ by K, can be idetified as follows with the quotient of a suitable open subset of $\mu_{\mathbf{C}}^{-1}(\beta)$ by the complexified torus $K_{\mathbf{C}}$. We start with a basic definition.

Definition 2.4. Let $(\alpha, \beta) \in\left(\mathfrak{f}^{*} \times \mathfrak{f}_{\mathbf{C}}^{*}\right)_{\text {reg }}$ and let $\left(z^{+}, z^{-}\right) \in \mu_{\mathbf{C}}^{-1}(\beta)$. We say that $\left(z^{+}, z^{-}\right)$is α-stable precisely when the orbit of $K_{\mathbf{C}}$ through $\left(z^{+}, z^{-}\right)$meets $\mu_{I}^{-1}(\alpha)$.

We denote the set of all α-stable points of $\mu_{\mathbf{C}}^{-1}(\beta)$ by $\mu_{\mathbf{C}}^{-1}(\beta)^{\alpha-s t}$.
Remark. By [8, Theorem 5.2(2)], this definition is equivalent to Konno's definition [8, Definition 5.1].

The set $\mu_{\mathbf{C}}^{-1}(\beta)^{\alpha-s t}$ is $K_{\mathbf{C}}$-invariant. By definition, we have $\mu^{-1}(\alpha, \beta) \subset \mu_{\mathbf{C}}^{-1}(\beta)^{\alpha-s t}$. Hence the inclusion $\mu^{-1}(\alpha, \beta) \subset \mu_{\mathbf{C}}^{-1}(\beta)^{\alpha-s t}$ induces a natural mapping

$$
X(\alpha, \beta)=\mu^{-1}(\alpha, \beta) / K \rightarrow \mu_{\mathbf{C}}^{-1}(\beta)^{\alpha-s t} / K_{\mathbf{C}} .
$$

By [8, Theorem 5.2], we can use the natural mapping to identify $(X(\alpha, \beta), I)$ with $\mu_{\mathbf{C}}^{-1}(\beta)^{\alpha-s t} / K_{\mathbf{C}}$.

We end the section by giving a useful criterion for α-stability. This criterion is due to Konno [8]. For each $V \in \mathscr{V}$, fix $Y_{V} \in \mathfrak{f}$ such that

$$
V=\left\{v \in \mathfrak{f}^{*} \mid\left\langle v, Y_{V}\right\rangle=0\right\} .
$$

Let $(\alpha, \beta) \in\left(\mathfrak{f}^{*} \times \mathfrak{f}_{\mathbf{C}}^{*}\right)_{\text {reg }}$. Set $\mathscr{V}_{\beta}:=\left\{V \in \mathscr{V} \mid \beta \in V_{\mathbf{C}}\right\}$, and, for each $V \in \mathscr{V}_{\beta}$, set

$$
J_{V}^{+}:=\left\{j \in\{1, \ldots, N\} \mid\left\langle\iota^{*} u_{j}, Y_{V}\right\rangle\left\langle\alpha, Y_{V}\right\rangle>0\right\}
$$

and

$$
J_{V}^{-}:=\left\{j \in\{1, \ldots, N\} \mid\left\langle l^{*} u_{j}, Y_{V}\right\rangle\left\langle\alpha, Y_{V}\right\rangle<0\right\} .
$$

Proposition 2.5 (See [8, Theorem 5.10]). Let $\left(z^{+}, z^{-}\right) \in \mu_{\mathbf{C}}^{-1}(\beta)$. Then the following statements are equivalent:
(i) $\left(z^{+}, z^{-}\right) \in \mu_{\mathrm{C}}^{-1}(\beta)^{\alpha-s t}$;
(ii) for each $V \in \mathscr{V}_{\beta}$, there exists $j \in J_{V}^{+} \cup J_{V}^{-}$such that either $j \in J_{V}^{+}$with $z_{j}^{+} \neq 0$ or $j \in J_{V}^{-}$with $z_{j}^{-} \neq 0$.

3. A construction of compact complex submanifolds

Suppose that $(\alpha, \beta) \in\left(\mathfrak{f}^{*} \times \mathfrak{f}_{\mathbf{C}}^{*}\right)_{\text {reg }}$. In this section, we consider only the case where $(X(\alpha, \beta), \boldsymbol{I})$ is not biholomorphic to an affine variety. So we suppose that $\mathscr{V}_{\beta} \neq \emptyset$ (see [2, Theorem 5.1] and [1, Corollary 3.6]). The purpose of this section is to construct compact complex submanifolds of $(X(\alpha, \beta), \boldsymbol{I})$ that are invariant under the T^{n}-action. We denote the Kähler form corresponding to the complex structure \boldsymbol{J} (respectively \boldsymbol{K}) by $\omega_{\boldsymbol{J}}$ (respectively $\omega_{\boldsymbol{K}}$). We show that these submanifolds are isotropic with respect to the form $\omega_{J}+\sqrt{-1} \omega_{K}$, and that these submanifolds are biholomorphic to Delzant spaces.

We first give a brief review of Delzant's construction of certain toric varieties from polytopes. We follow the exposition of Guillemin [5, Chapter 1 and Appendix 1].

Recall that a d-dimensional polytope \mathcal{P} in $\left(\mathbf{R}^{d}\right)^{*}$ is said to be Delzant precisely when
(i) \mathcal{P} is simple, that is, each vertex p of \mathcal{P} is contained in precisely d edges of \mathcal{P}, and
(ii) for each vertex p of \mathcal{P}, there exists a \mathbf{Z}-basis $\left\{w_{1}, \ldots, w_{d}\right\}$ for $\left(\mathbf{Z}^{d}\right)^{*}$ such that the d edges of \mathcal{P} containing the vertex p lie on the rays $p+t w_{i}$, $0 \leq t<\infty$.
Let \mathcal{P} be the Delzant polytope in $\left(\mathbf{R}^{d}\right)^{*}$ defined by a system of inequalities of the form

$$
\left\langle x, a_{j}\right\rangle \geq \gamma_{j}, \quad(j=1, \ldots, m)
$$

where $a_{j} \in \mathbf{Z}^{d}$ and $\gamma_{j} \in \mathbf{R}$ for each $j=1, \ldots, m$ and m is the number of facets of \mathcal{P}. Let $q: \mathbf{R}^{m} \rightarrow \mathbf{R}^{d}$ be a linear mapping for which $q\left(e_{j}\right)=a_{j}$ for each $j=1, \ldots, m$. Set $\mathrm{I}:=\operatorname{ker} q$ and let $i: \mathrm{I} \rightarrow \mathbf{R}^{m}$ denote the inclusion mapping. Then we obtain an exact sequence

$$
0 \rightarrow \mathrm{I} \xrightarrow{i} \mathbf{R}^{m} \xrightarrow{q} \mathbf{R}^{d} \rightarrow 0,
$$

and, by duality, an exact sequence

$$
0 \leftarrow \mathfrak{l}^{*} \stackrel{i^{*}}{\leftarrow}\left(\mathbf{R}^{m}\right)^{*} \stackrel{q^{*}}{\leftarrow}\left(\mathbf{R}^{d}\right)^{*} \leftarrow 0
$$

Since $q\left(\mathbf{Z}^{m}\right) \subset \mathbf{Z}^{d}$, the mapping q induces a group homomorphism from T^{m} to T^{d}. Denoting by L the kernel of this homomorphism, we obtain an exact sequence

$$
1 \rightarrow L \rightarrow T^{m} \rightarrow T^{d} \rightarrow 1
$$

of abelian groups.
The natural action of T^{m} on \mathbf{C}^{m} is Hamiltonian, and its moment map is

$$
v^{0}: \mathbf{C}^{m} \rightarrow\left(\mathbf{R}^{m}\right)^{*}, \quad\left(z_{1}, \ldots, z_{m}\right) \mapsto \frac{1}{2} \sum_{j=1}^{m}\left|z_{j}\right|^{2} u_{j} .
$$

We restrict the action of T^{m} on \mathbf{C}^{m} to L. The moment map for the action of L on \mathbf{C}^{m} is $v:=i^{*} \circ v^{0}: \mathbf{C}^{m} \rightarrow \mathfrak{I}^{*}$. Set $\gamma:=-\sum_{j=1}^{m} \gamma_{j} i^{*} u_{j}$. Then L acts freely on the level set $v^{-1}(\gamma)$. Reducing \mathbf{C}^{m} with respect to the action of L, we obtain the Delzant space

$$
X_{\mathcal{P}}:=v^{-1}(\gamma) / L
$$

For $z \in v^{-1}(\gamma)$, we denote its equivalence class in $X_{\mathcal{P}}$ by $[z]$.
The quotient group $T^{d}=T^{m} / L$ acts in the natural way on $X_{\mathcal{P}}$. Set $c:=$ $-\sum_{j=1}^{m} \gamma_{j} u_{j}$. Then the moment map $\psi: X_{\mathcal{P}} \rightarrow\left(\mathbf{R}^{d}\right)^{*}$ for the natural action is given by

$$
\psi([z])=v^{0}(z)-c .
$$

Remark. We use the monomorphism q^{*} to identify $\left(\mathbf{R}^{d}\right)^{*}$ with ker i^{*}. Then, for each $z \in v^{-1}(\gamma)$, we have $v^{0}(z)-c \in\left(\mathbf{R}^{d}\right)^{*}$.

The Delzant space $X_{\mathcal{P}}$ can be identified as follows with the quotient of a suitable open subset of \mathbf{C}^{m} by the complexified torus $L_{\mathbf{C}}$. For each subset J of $\{1, \ldots, m\}$, set

$$
\mathbf{C}_{J}^{m}:=\left\{\left(z_{1}, \ldots, z_{m}\right) \in \mathbf{C}^{m} \mid z_{j}=0 \text { if and only if } j \in J\right\} .
$$

Each orbit in \mathbf{C}^{m} of the complexified torus $T_{\mathbf{C}}^{m}$ is of the form \mathbf{C}_{J}^{m} for some subset J of $\{1, \ldots, m\}$. Now let \mathcal{F} be a face of \mathcal{P}. Then, since \mathcal{P} is simple, there exists a unique subset J of $\{1, \ldots, m\}$ such that \mathcal{F} is defined by a system of equalities

$$
\left\langle x, a_{j}\right\rangle=\gamma_{j}, \quad(j \in J) .
$$

Let $\mathbf{C}_{\mathcal{F}}^{m}:=\mathbf{C}_{J}^{m}$. Then

$$
\mathbf{C}_{\mathcal{P}}^{m}:=\bigcup_{\mathcal{F} \text { face of } \mathcal{P}} \mathbf{C}_{\mathcal{F}}^{m}
$$

is an open subset of \mathbf{C}^{m}. The set $\mathbf{C}_{\mathcal{P}}^{m}$ contains $v^{-1}(\gamma)$, and the inclusion $v^{-1}(\gamma) \subset \mathbf{C}_{\mathcal{P}}^{m}$ induces a natural mapping

$$
X_{\mathcal{P}}=v^{-1}(\gamma) / L \rightarrow \mathbf{C}_{\mathcal{P}}^{m} / L_{\mathbf{C}} .
$$

We can use the natural mapping to identify $X_{\mathcal{P}}$ with the orbit space $\mathbf{C}_{\mathcal{P}}^{m} / L_{\mathbf{C}}$.
Now we are ready to consider our main problem. We need some notation.
Fix a subset J of $\{1, \ldots, N\}$ such that
(a) $\left\{\pi\left(e_{j}\right) \mid j \in J\right\}$ is a basis for $\pi\left(\mathbf{R}^{N}\right)$, and
(b) let $\beta_{j} \in \mathbf{C}\left(j \in J^{c}\right)$ be such that $\beta=\sum_{j \in J^{c}} \beta_{j} l^{*} u_{j}$. Then

$$
J_{0}:=\left\{j \in J^{c} \mid \beta_{j}=0\right\} \neq \emptyset
$$

Since $\mathscr{V}_{\beta} \neq \emptyset$, such a J exists. We can write $\alpha=\sum_{j \in J^{c}} \alpha_{j} l^{*} u_{j}$ for suitable $\alpha_{j} \in \mathbf{R}$. We set

$$
a:=\sum_{j \in J^{c}} \alpha_{j} u_{j} \quad \text { and } \quad b:=\sum_{j \in J^{c}} \beta_{j} u_{j} .
$$

We denote by Θ the set of all mappings from $J \cup J_{0}$ to $\{+,-\}$. Let $\varepsilon \in \Theta$. Then we define two mappings $\varepsilon_{-}: J \cup J_{0} \rightarrow\{+,-\}$ and $\delta: J \cup J_{0} \rightarrow\{1,-1\}$ by

$$
\varepsilon_{-}(j):= \begin{cases}+ & \text { for each } j \in J \cup J_{0} \text { with } \varepsilon(j)=-, \\ - & \text { for each } j \in J \cup J_{0} \text { with } \varepsilon(j)=+,\end{cases}
$$

and

$$
\delta(j):= \begin{cases}1 & \text { for each } j \in J \cup J_{0} \text { with } \varepsilon(j)=+, \\ -1 & \text { for each } j \in J \cup J_{0} \text { with } \varepsilon(j)=-.\end{cases}
$$

For each $\varepsilon \in \Theta$, let $\mathcal{P}_{\varepsilon}$ be the polyhedral set

$$
\mathcal{P}_{\varepsilon}:=\bigcap_{j \in J \cup J_{0}} \mathcal{H}^{\varepsilon(j)}(j, a) .
$$

Now we can state the theorem.
Theorem 3.1. Let $\varepsilon \in \Theta$ and let \mathcal{F} be a bounded face of $\mathcal{P}_{\varepsilon}$.
(i) $\left(\phi_{a, b}\right)^{-1}(\mathcal{F} \times\{0\})$ is a compact complex submanifold of $(X(\alpha, \beta), \boldsymbol{I})$, isotropic with respect to the form $\omega_{J}+\sqrt{-1} \omega_{K}$, and invariant under the T^{n}-action.
(ii) The polytope \mathcal{F} is Delzant, and $\left(\phi_{a, b}\right)^{-1}(\mathcal{F} \times\{0\})$ is biholomorphic to the Delzant space $X_{\mathcal{F}}$.

Remark. By the proof of Theorem 3.3 of [1], we see that $\mathcal{P}_{\varepsilon}$ possesses a bounded edge for some $\varepsilon \in \Theta$.

For the proof, we need
Proposition 3.2. Let $\left[z^{+}, z^{-}\right] \in\left(\phi_{\mathbf{C}}^{b}\right)^{-1}(0)$. Then, for each $j \in J \cup J_{0}$, the following holds:
(i) $\left[z^{+}, z^{-}\right] \in\left(\phi_{I}^{a}\right)^{-1}\left(\mathcal{H}^{\varepsilon(j)}(j, a)\right)$ if and only if $z_{j}^{\varepsilon_{j}^{-(j)}}=0$.
(ii) $\left[z^{+}, z^{-}\right] \in\left(\phi_{I}^{a}\right)^{-1}(\mathcal{H}(j, a))$ if and only if $z_{j}^{+}=z_{j}^{-}=0$.

Proof. By assumption, we have

$$
\begin{equation*}
0=\left\langle\pi^{*}\left(\phi_{\mathbf{C}}^{b}\left(\left[z^{+}, z^{-}\right]\right)\right)+b, e_{j}\right\rangle=-\sqrt{-1} z_{j}^{+} z_{j}^{-} \tag{3.1}
\end{equation*}
$$

for each $j \in J \cup J_{0}$. Since

$$
\left\langle\pi^{*}\left(\phi_{\boldsymbol{I}}^{a}\left(\left[z^{+}, z^{-}\right]\right)\right)+a, e_{j}\right\rangle=\frac{1}{2}\left(\left|z_{j}^{+}\right|^{2}-\left|z_{j}^{-}\right|^{2}\right)
$$

for each $j \in J \cup J_{0}$, the assertions follow immediately from (3.1).
Proof of Theorem 3.1. We may assume that $d:=\operatorname{dim} \mathcal{F} \geq 1$.
Let x_{0} be a vertex of \mathcal{F}, and set $J^{\prime}:=\left\{j \in J \cup J_{0} \mid x_{0} \in \mathcal{H}(j, a)\right\}$. Then, since $(\alpha, \beta) \in\left(\mathfrak{f}^{*} \times \mathfrak{f}_{\mathbf{C}}^{*}\right)_{\text {reg }}$, it follows from Proposition 2.2 that $\left\{\pi\left(e_{j}\right) \mid j \in J^{\prime}\right\}$ is a basis
for $\pi\left(\mathbf{R}^{N}\right)$. We can write

$$
\alpha=\sum_{j \in\{1, \ldots, N\} \backslash J^{\prime}} \alpha_{j}^{\prime} l^{*} u_{j} \quad \text { and } \quad \beta=\sum_{j \in\{1, \ldots, N\} \backslash J^{\prime}} \beta_{j}^{\prime} \imath^{*} u_{j}
$$

for suitable $\alpha_{j}^{\prime} \in \mathbf{R}$ and for suitable $\beta_{j}^{\prime} \in \mathbf{C}$. Setting

$$
J_{0}^{\prime}:=\left\{j \in\{1, \ldots, N\} \backslash J^{\prime} \mid \beta_{j}^{\prime}=0\right\},
$$

we have

$$
\begin{equation*}
\left(J_{0}^{\prime}\right)^{c}=\left(J_{0}\right)^{c} . \tag{3.2}
\end{equation*}
$$

Hence $J \cup J_{0}=J^{\prime} \cup J_{0}^{\prime}$, so that $J_{0}^{\prime} \neq \emptyset$. Thus the subset J^{\prime} satisfies Conditions (a) and (b). Since $J \cup J_{0}=J^{\prime} \cup J_{0}^{\prime}$, there exists a unique mapping $\varepsilon^{\prime}: J^{\prime} \cup J_{0}^{\prime} \rightarrow$ $\{+,-\}$ such that $\varepsilon^{\prime}=\varepsilon$. Set

$$
a^{\prime}:=\sum_{j \in\{1, \ldots, N\} \backslash J^{\prime}} \alpha_{j}^{\prime} u_{j} \quad \text { and } \quad b^{\prime}:=\sum_{j \in\{1, \ldots, N\} \backslash J^{\prime}} \beta_{j}^{\prime} u_{j} .
$$

Let $\mathcal{P}_{\varepsilon^{\prime}}$ be the polyhedral set

$$
\mathcal{P}_{\varepsilon^{\prime}}:=\bigcap_{j \in J^{\prime} \cup J_{0}^{\prime}} \mathcal{H}^{\varepsilon^{\prime}(j)}\left(j, a^{\prime}\right) .
$$

Now let $T:\left(\mathbf{R}^{n}\right)^{*} \rightarrow\left(\mathbf{R}^{n}\right)^{*}$ be the translation for which $T(x)=x-x_{0}$ for each $x \in\left(\mathbf{R}^{n}\right)^{*}$. Since $\left\langle x_{0}, \pi\left(e_{j}\right)\right\rangle=\left\langle a^{\prime}-a, e_{j}\right\rangle$ for each $j \in J^{\prime}$ and $a^{\prime}-a \in \operatorname{ker} l^{*}$, we have $a^{\prime}-a=\pi^{*}\left(x_{0}\right)$. Hence we have $T\left(\mathcal{P}_{\varepsilon}\right)=\mathcal{P}_{\varepsilon^{\prime}}$. Set $\mathcal{F}^{\prime}:=T(\mathcal{F})$. Then \mathcal{F}^{\prime} is a bounded face of $\mathcal{P}_{\varepsilon^{\prime}}$. Note that the origin is a vertex of \mathcal{F}^{\prime}. Now, since $a^{\prime}-a=\pi^{*}\left(x_{0}\right)$, we have $T \circ \phi_{I}^{a}=\phi_{I}^{a^{\prime}}$. On the other hand, since $b=b^{\prime}$ by (3.2), we have $\phi_{\mathbf{C}}^{b}=\phi_{\mathbf{C}}^{b^{\prime}}$. Hence we have $\left(\phi_{a, b}\right)^{-1}(\mathcal{F} \times\{0\})=\left(\phi_{a^{\prime}, b^{\prime}}\right)^{-1}\left(\mathcal{F}^{\prime} \times\{0\}\right)$. We may therefore assume that the origin is a vertex of \mathcal{F}.

For each $j \in J \cup J_{0}$, we set $\mathcal{H}_{j}:=\mathcal{H}(j, a), \quad \mathcal{H}_{j}^{+}:=\mathcal{H}^{+}(j, a)$, and $\mathcal{H}_{j}^{-}:=$ $\mathcal{H}^{-}(j, a)$. We set $\phi_{I}:=\phi_{I}^{a}$ and $\phi:=\phi_{a, b}$. By rearranging the indices, we may assume that

$$
J=\{1, \ldots, d, d+k+1, \ldots, N\} \quad \text { and } \quad J_{0}=\{d+1, \ldots, l\},
$$

where $d<l \leq d+k$. Since $(\alpha, \beta) \in\left(\mathfrak{f}^{*} \times \mathfrak{f}_{\mathbf{C}}^{*}\right)_{\text {reg }}$, we have $\alpha_{j} \neq 0$ for each $j \in \mathbf{N}$ with $d<j \leq l$. Hence $0 \notin \mathcal{H}_{j}$ for each $j \in \mathbf{N}$ with $d<j \leq l$, so that, since $0 \in \mathcal{F}$, we have $\mathcal{F} \not \subset \mathcal{H}_{j}$ for each such j. Thus, by a suitable rearrangement of indices, we can write

$$
\mathcal{F}=\bigcap_{j=1}^{m} \mathcal{H}_{j}^{\varepsilon(j)} \cap \bigcap_{j=d+k+1}^{N} \mathcal{H}_{j},
$$

where $d<m \leq l$ and

$$
\begin{equation*}
\mathcal{F} \neq \bigcap_{\substack{j=1 \\ j \neq i}}^{m} \mathcal{H}_{j}^{\varepsilon(j)} \cap \bigcap_{j=d+k+1}^{N} \mathcal{H}_{j} \quad \text { for each } i=1, \ldots, m \tag{3.3}
\end{equation*}
$$

(i) Since the canonical projection $X(\alpha, \beta) \rightarrow X(\alpha, \beta) / T^{n}$ is proper, ϕ is proper by [2, Theorem 3.1(i)]. Therefore, by assumption, $\phi^{-1}(\mathcal{F} \times\{0\})$ is compact; moreover, it is invariant under the T^{n}-action.

We set

$$
\begin{aligned}
M:=\{ & \left(z^{+}, z^{-}\right) \in \mathbf{H}^{N} \mid z_{j}^{\varepsilon_{-}(j)}=0(1 \leq j \leq l), \\
& \left.-\sqrt{-1} z_{j}^{+} z_{j}^{-}=\beta_{j}(l<j \leq d+k), \quad z_{j}^{+}=z_{j}^{-}=0(d+k<j \leq N)\right\} .
\end{aligned}
$$

Since $\beta_{j} \neq 0$ for each $j \in \mathbf{N}$ with $l<j \leq d+k$, it follows that M is a complex submanifold of $\left(\mathbf{H}^{N}, \boldsymbol{I}\right)$. Let $\rho: \mu^{-1}(\alpha, \beta) \rightarrow X(\alpha, \beta)$ be the canonical projection. By Proposition 3.2, we have

$$
\begin{equation*}
(\phi \circ \rho)^{-1}(\mathcal{F} \times\{0\})=M \cap \mu_{I}^{-1}(\alpha) . \tag{3.4}
\end{equation*}
$$

The restriction of μ_{I} to M is the moment map for the induced action of K on M. Note that K acts freely on $M \cap \mu_{I}^{-1}(\alpha)$. We obtain the Kähler quotient

$$
\begin{equation*}
\left(M \cap \mu_{\boldsymbol{I}}^{-1}(\alpha)\right) / K=\phi^{-1}(\mathcal{F} \times\{0\}) . \tag{3.5}
\end{equation*}
$$

Hence $\phi^{-1}(\mathcal{F} \times\{0\})$ is a compact complex submanifold of $(X(\alpha, \beta), I)$ that is invariant under the T^{n}-action.

Now M is isotropic with respect to the holomorphic symplectic form on \mathbf{H}^{N}, and so $\phi^{-1}(\mathcal{F} \times\{0\})$ is also isotropic with respect to $\omega_{\boldsymbol{J}}+\sqrt{-1} \omega_{\boldsymbol{K}}$.
(ii) Let $A=\left(a_{i j}\right)$ be the matrix of π relative to the bases $\left\{e_{1}, \ldots, e_{N}\right\}$, $\left\{\pi\left(e_{1}\right), \ldots, \pi\left(e_{d}\right), \pi\left(e_{d+k+1}\right), \ldots, \pi\left(e_{N}\right)\right\}$. Then we have

$$
\begin{aligned}
K_{\mathbf{C}}= & \left\{\left(t_{1}, \ldots, t_{N}\right) \in T_{\mathbf{C}}^{N} \mid\right. \\
& \left.t_{i}=\prod_{j=d+1}^{d+k} t_{j}^{-a_{j j}}(1 \leq i \leq d), \quad t_{i}=\prod_{j=d+1}^{d+k} t_{j}^{-a_{i-k, j}}(d+k<i \leq N)\right\} .
\end{aligned}
$$

For each $j=1, \ldots, d_{2}$ let $\alpha_{j}:=0 \in \mathbf{R}$. For each $j=1, \ldots, m$, set $\tilde{a}_{j}:=$ ${ }^{t}\left(a_{1 j}, \ldots, a_{d j}\right)$, and let $\tilde{\mathcal{H}}_{j}$ be the hyperplane

$$
\tilde{\mathcal{H}}_{j}:=\left\{x \in\left(\mathbf{R}^{d}\right)^{*} \mid\left\langle x, \tilde{a}_{j}\right\rangle=-\alpha_{j}\right\}
$$

in $\left(\mathbf{R}^{d}\right)^{*}$. Then, for each $j=1, \ldots, m$, the two closed half-spaces in $\left(\mathbf{R}^{d}\right)^{*}$ bounded by $\tilde{\mathcal{H}}_{j}$ are

$$
\begin{aligned}
\tilde{\mathcal{H}}_{j}^{+} & :=\left\{x \in\left(\mathbf{R}^{d}\right)^{*} \mid\left\langle x, \tilde{a}_{j}\right\rangle \geq-\alpha_{j}\right\}, \\
\tilde{\mathcal{H}}_{j}^{-} & :=\left\{x \in\left(\mathbf{R}^{d}\right)^{*} \mid\left\langle x, \tilde{a}_{j}\right\rangle \leq-\alpha_{j}\right\} .
\end{aligned}
$$

Let $\tilde{\mathcal{F}}$ be the d-dimensional polyhedral set

$$
\tilde{\mathcal{F}}:=\bigcap_{j=1}^{m} \tilde{\mathcal{H}}_{j}^{\varepsilon(j)} .
$$

Since \mathcal{F} is bounded, the polyhedral set $\tilde{\mathcal{F}}$ is a polytope. By (3.3), we have

$$
\tilde{\mathcal{F}} \neq \bigcap_{\substack{j=1 \\ j \neq i}}^{m} \tilde{\mathcal{H}}_{j}^{\varepsilon(j)} \quad \text { for each } i=1, \ldots, m
$$

The proof is divided into two parts. In Part A, we prove that the polytope $\tilde{\mathcal{F}}$ is Delzant. In Part B, we prove that $\phi^{-1}(\mathcal{F} \times\{0\})$ is biholomorphic to the Delzant space $X_{\tilde{\mathcal{F}}}$.

Part A. Since

$$
(\alpha, \beta) \in\left(\mathfrak{f}^{*} \times \mathfrak{f}_{\mathbf{C}}^{*}\right)_{\text {reg }} \quad \text { and } \quad \mathcal{F} \subset \bigcap_{j=d+k+1}^{N} \mathcal{H}_{j},
$$

Proposition 2.2 implies that each vertex of $\tilde{\mathcal{F}}$ is contained in precisely d facets. Thus $\tilde{\mathcal{F}}$ is simple. Let p be a vertex of $\tilde{\mathcal{F}}$, and let $\tilde{\mathcal{F}}_{1}, \ldots, \tilde{\mathcal{F}}_{d}$ be d facets of $\dot{\tilde{\mathcal{F}}}$ containing $p_{\tilde{\mathcal{F}}}^{j}$. Then, for each $j=1, \ldots, d$, there exists the integer $\lambda_{j}, 1 \leq \lambda_{j} \leq m$, such that $\tilde{\mathcal{F}}_{j}=\tilde{\mathcal{F}} \cap \tilde{\mathcal{H}}_{\lambda_{j}}$. Since $\tilde{a}_{\lambda_{1}}, \ldots, \tilde{a}_{\lambda_{d}}$ are linearly independent, the matrix $\tilde{A}:=\left(\tilde{a}_{\lambda_{1}}, \ldots, \tilde{a}_{\lambda_{d}}\right)$ is unimodular by Proposition 2.3. For each $i=1, \ldots, d$, let v_{i} be the i th row vector of \tilde{A}^{-1}. Then the matrix

$$
\left(\begin{array}{c}
\delta\left(\lambda_{1}\right) v_{1} \\
\vdots \\
\delta\left(\lambda_{d}\right) v_{d}
\end{array}\right)
$$

is also unimodular. Since the polytope $\tilde{\mathcal{F}}$ is simple, it follows that

$$
\tilde{e}_{i}=\bigcap_{\substack{j=1 \\ j \neq i}}^{d} \tilde{\mathcal{F}}_{j}
$$

is an edge of $\tilde{\mathcal{F}}$ for each $i=1, \ldots, d$. For each $i=1, \ldots, d$, the edge $\tilde{\boldsymbol{e}}_{i}$ lies on the ray $p+t \delta\left(\lambda_{i}\right) v_{i}, 0 \leq t<\infty$. Thus the polytope $\tilde{\mathcal{F}}$ is Delzant. Note that

$$
L=\left\{\left(t_{1}, \ldots, t_{m}\right) \in T^{m} \mid t_{i}=\prod_{j=d+1}^{m} t_{j}^{-\delta(i) \delta(j) a_{i j}}(1 \leq i \leq d)\right\} .
$$

Part B. By $\left[8\right.$, Theorem 5.2(2)] and (3.5), we can naturally identify $\phi^{-1}(\mathcal{F} \times\{0\})$ with the orbit space $\left(M \cap \mu_{\mathbf{C}}^{-1}(\beta)^{\alpha-s t}\right) / K_{\mathbf{C}}$.
(a) We construct a holomorphic mapping $f: \phi^{-1}(\mathcal{F} \times\{0\}) \rightarrow X_{\tilde{\mathcal{F}}}$. Let $\left(z^{+}, z^{-}\right) \in M \cap \mu_{\boldsymbol{I}}^{-1}(\alpha)$. Then we have $\left(z_{1}^{\varepsilon(1)}, \ldots, z_{m}^{\varepsilon(m)}\right) \in v^{-1}(\gamma)$. Since $v^{-1}(\gamma) \subset$ $\mathbf{C}_{\tilde{\mathcal{F}}}^{m}$, we have

$$
\begin{equation*}
\left(z_{1}^{\varepsilon(1)}, \ldots, z_{m}^{\varepsilon(m)}\right) \in \mathbf{C}_{\tilde{\mathcal{F}}}^{m} . \tag{3.6}
\end{equation*}
$$

Set $\varepsilon(j):=+$ and $\delta(j):=1$ for each $j \in \mathbf{N}$ with $l<j \leq d+k$. Then we have the following

Claim 1. For each $j \in \mathbf{N}$ with $m<j \leq d+k$, we have $z_{j}^{\varepsilon(j)} \neq 0$.
Proof. Since $-\sqrt{-1} z_{j}^{+} z_{j}^{-}=\beta_{j} \neq 0$ for each $j \in \mathbf{N}$ with $l<j \leq d+k$, we have $z_{j}^{\varepsilon(j)} \neq 0$ for each such j.

We show that

$$
\begin{equation*}
\mathcal{F} \cap \mathcal{H}_{j}=\emptyset \quad \text { for each } j \in \mathbf{N} \text { with } m<j \leq l . \tag{3.7}
\end{equation*}
$$

Suppose that $\mathcal{F} \cap \mathcal{H}_{j_{0}} \neq \emptyset$ for some $j_{0} \in \mathbf{N}$ with $m<j_{0} \leq l$, and seek a contradiction. Then $\mathcal{F} \cap \mathcal{H}_{j_{0}}$ is a face of \mathcal{F}, so that $\mathcal{F} \cap \mathcal{H}_{j_{0}}$ is a polytope. Let x be a vertex of $\mathcal{F} \cap \mathcal{H}_{j_{0}}$. Then x is a vertex of \mathcal{F}. Hence there exists $J_{1} \subset\{1, \ldots, m\}$ such that $\# J_{1}=d$ and $x \in \bigcap_{j \in J_{1}} \mathcal{H}_{j}$, and so

$$
x \in \bigcap_{j \in J_{1} \cup\left\{j_{0}\right\}} \mathcal{H}_{j} \cap \bigcap_{j=d+k+1}^{N} \mathcal{H}_{j}=: \mathcal{Q} .
$$

But, by Proposition 2.2, we have $\mathcal{Q}=\emptyset$; we have therefore arrived at a contradicion. Hence we obtain (3.7).

We now prove that $z_{j}^{\varepsilon(j)} \neq 0$ for each $j \in \mathbf{N}$ with $m<j \leq l$. Since $z_{j}^{\varepsilon_{j}^{-(j)}}=0$ for each $j \in \mathbf{N}$ with $m<j \leq l$, it follows from Part (ii) of Proposition 3.2, (3.4), and (3.7) that $z_{j}^{\varepsilon(j)} \neq 0$ for each $j \in \mathbf{N}$ with $m<j \leq l$.

It follows from (3.6) and Claim 1 that

$$
\begin{align*}
z:= & \left(z_{1}^{\varepsilon(1)} \prod_{j=m+1}^{d+k}\left(z_{j}^{\varepsilon(j)}\right)^{a_{1 j} \delta(j) \delta(1)}, \ldots, z_{d}^{\varepsilon(d)} \prod_{j=m+1}^{d+k}\left(z_{j}^{\varepsilon(j)}\right)^{a_{d j} \delta(j) \delta(d)},\right. \tag{3.8}\\
& \left.z_{d+1}^{\varepsilon(d+1)}, \ldots, z_{m}^{\varepsilon(m)}\right)
\end{align*}
$$

is also in $\mathbf{C}_{\tilde{\mathcal{F}}}^{m}$. Hence we can define a mapping

$$
\begin{aligned}
M \cap \mu_{\boldsymbol{I}}^{-1}(\alpha) & \rightarrow \mathbf{C}_{\tilde{\mathcal{F}}}^{m} \\
\left(z^{+}, z^{-}\right) & \mapsto z .
\end{aligned}
$$

This mapping induces a holomorphic mapping

$$
f: \phi^{-1}(\mathcal{F} \times\{0\})=\left(M \cap \mu_{\boldsymbol{I}}^{-1}(\alpha)\right) / K \rightarrow \mathbf{C}_{\tilde{\mathcal{F}}}^{m} / L_{\mathbf{C}}=X_{\tilde{\mathcal{F}}}
$$

It is easy to check that the mapping f is well-defined.
(b) We next construct the inverse of f. Let $z=\left(z_{1}, \ldots, z_{m}\right) \in v^{-1}(\gamma)$. Set
(1) $z_{j}^{\varepsilon(j)}:=z_{j}$ and $z_{j}^{\varepsilon_{-}(j)}:=0$ for each $j=1, \ldots, m$,
(2) $z_{j}^{\varepsilon(j)}:=1$ and $z_{j}^{\varepsilon_{-}(j)}:=0$ for each $j=m+1, \ldots, l$,
(3) $z_{j}^{+}:=1$ and $z_{j}^{-}:=\sqrt{-1} \beta_{j}$ for each $j=l+1, \ldots, d+k$, and (4) $z_{j}^{+}:=z_{j}^{-}:=0$ for each $j=d+k+1, \ldots, N$.

Then

$$
\begin{equation*}
\left(z^{+}, z^{-}\right) \in M \subset \mu_{\mathbf{C}}^{-1}(\beta) ; \tag{3.9}
\end{equation*}
$$

moreover, we have the following
Claim 2. The point $\left(z^{+}, z^{-}\right)$is α-stable.
Proof. We can write $\psi([z])=\sum_{j=1}^{d} c_{j} u_{j}$ for suitable $c_{1}, \ldots, c_{d} \in \mathbf{R}$. Let $\left\{v_{j} \mid j \in J\right\}$ be the dual basis of $\left\{\pi\left(e_{j}\right) \mid j \in J\right\}$. Set $v:=\sum_{j=1}^{d} c_{j} v_{j}$. Then $v \in \mathcal{F}$. By $[2$, Theorem $3.1(\mathrm{i})]$, there exists $\left[w^{+}, w^{-}\right] \in X(\alpha, \beta)$ such that $\phi\left(\left[w^{+}, w^{-}\right]\right)=$ $(v, 0)$. Setting $w:=\left(w_{1}^{\varepsilon(1)}, \ldots, w_{m}^{\varepsilon(m)}\right)$, we have $w \in v^{-1}(\gamma)$. For each $j=1, \ldots, d$, we have

$$
\begin{equation*}
\left\langle\psi([w]), e_{j}\right\rangle=\left\langle\psi([w]), \delta(j) q\left(e_{j}\right)\right\rangle=\frac{1}{2} \delta(j)\left|w_{j}^{\varepsilon(j)}\right|^{2} \tag{3.10}
\end{equation*}
$$

On the other hand, we have, for each $j=1, \ldots, d$,

$$
\begin{align*}
\left\langle\psi([z]), e_{j}\right\rangle & =\left\langle v, \pi\left(e_{j}\right)\right\rangle \tag{3.11}\\
& =\left\langle\phi_{\boldsymbol{I}}\left(\left[w^{+}, w^{-}\right]\right), \pi\left(e_{j}\right)\right\rangle \\
& =\frac{1}{2}\left(\left|w_{j}^{+}\right|^{2}-\left|w_{j}^{-}\right|^{2}\right) .
\end{align*}
$$

It therefore follows from (3.4) that

$$
\left\langle\psi([z]), e_{j}\right\rangle=\frac{1}{2} \delta(j)\left|w_{j}^{\varepsilon(j)}\right|^{2} \quad \text { for each } j=1, \ldots, d
$$

Hence, by (3.10), we have $\psi([z])=\psi([w])$, and so there exists $t \in T^{m}$ such that $z=t \cdot w$. Thus, since the point $\left(w^{+}, w^{-}\right)$is α-stable, it follows from (3.4), (1), (2), (3), and Proposition 2.5 that the point $\left(z^{+}, z^{-}\right)$is also α-stable.

By (3.9) and Claim 2, we can define a mapping

$$
\begin{aligned}
v^{-1}(\gamma) & \rightarrow M \cap \mu_{\mathbf{C}}^{-1}(\beta)^{\alpha-s t} \\
z & \mapsto\left(z^{+}, z^{-}\right) .
\end{aligned}
$$

This mapping induces a holomorphic mapping

$$
g: X_{\tilde{\mathcal{F}}}=v^{-1}(\gamma) / L \rightarrow\left(M \cap \mu_{\mathbf{C}}^{-1}(\beta)^{\alpha-s t}\right) / K_{\mathbf{C}}=\phi^{-1}(\mathcal{F} \times\{0\}) .
$$

It is easy to check that the mapping g is well-defined and that $f \circ g=\operatorname{Id}_{X_{\tilde{\mathcal{F}}}}$ and $g \circ f=\operatorname{Id}_{\phi^{-1}(\mathcal{F} \times\{0\})}$.

Thus f is biholomorphic, as required. This completes the proof of Theorem 3.1.

4. Resolution of singularities

We use [11] as a reference for basic facts about algebro-geometric quotients.
Suppose that $(\alpha, \beta) \in\left(\mathfrak{f}^{*} \times \mathfrak{f}_{\mathbf{C}}^{*}\right)_{\text {reg }}$. Then the inclusion homomorphism $\mathbf{C}\left[\mu_{\mathbf{C}}^{-1}(\beta)\right]^{K_{\mathbf{C}}} \hookrightarrow \mathbf{C}\left[\mu_{\mathbf{C}}^{-1}(\beta)\right]$ induces an affine quotient map

$$
p: \mu_{\mathbf{C}}^{-1}(\beta) \rightarrow \operatorname{Spm} \mathbf{C}\left[\mu_{\mathbf{C}}^{-1}(\beta)\right]^{K_{\mathbf{C}}}=: \mu_{\mathbf{C}}^{-1}(\beta) / / K_{\mathbf{C}}
$$

The morphism p is given by generators of $\mathbf{C}\left[\mu_{\mathbf{C}}^{-1}(\beta)\right]^{K_{\mathrm{C}}}$. Let the affine variety $\mu_{\mathbf{C}}^{-1}(\beta) / / K_{\mathbf{C}}$ be equipped with the (usual) Euclidean topology. Then the composite mapping

$$
\mu^{-1}(\alpha, \beta) \xrightarrow{\subset} \mu_{\mathbf{C}}^{-1}(\beta) \xrightarrow{p} \mu_{\mathbf{C}}^{-1}(\beta) / / K_{\mathbf{C}}
$$

induces a holomorphic mapping

$$
\Psi:(X(\alpha, \beta), \boldsymbol{I})=\left(\mu^{-1}(\alpha, \beta) / K, \boldsymbol{I}\right) \rightarrow \mu_{\mathbf{C}}^{-1}(\beta) / / K_{\mathbf{C}} .
$$

The purpose of this section is to prove that the mapping Ψ is a resolution of singularities (Theorem 4.6).

In this section, we use the fact that $\mu_{\mathbf{C}}^{-1}(\beta)$ is irreducible for each $\beta \in \mathfrak{f}_{\mathbf{C}}^{*}$. Since $\pi\left(e_{j}\right) \neq 0$ for each $j=1, \ldots, N$, this fact follows immediately from the following proposition. This proposition is due to C. Nakayama.

Proposition 4.1. Let R be an integral domain, and let $a_{1}, \ldots, a_{t} \in R \backslash\{0\}$. Then

$$
A:=R\left[z_{1}^{+}, \ldots, z_{t}^{+}, z_{1}^{-}, \ldots, z_{t}^{-}\right] /\left(z_{1}^{+} z_{1}^{-}-a_{1}, \ldots, z_{t}^{+} z_{t}^{-}-a_{t}\right)
$$

is also an integral domain.
Proof. Since the natural ring homomorphism $R \rightarrow A$ is injective, we may assume that $t=1$. Consider the ring homomorphism $g: R_{1}:=R\left[z_{1}^{+}, z_{1}^{-}\right] \rightarrow$ $R\left[z_{1}^{+}, 1 / z_{1}^{+}\right]$for which $g(h)=h$ for each $h \in R\left[z_{1}^{+}\right]$and $g\left(z_{1}^{-}\right)=a_{1} / z_{1}^{+}$. We show that $\operatorname{ker} g=\left\langle z_{1}^{+} z_{1}^{-}-a_{1}\right\rangle_{R_{1}}$. Let $h \in \operatorname{ker} g$. Then $h \in\left\langle z_{1}^{-}-a_{1} / z_{1}^{+}\right\rangle_{R_{1}\left[1 / z_{1}^{+}\right]}$. Hence there exist $n \in \mathbf{N}$ and $f \in R_{1}$ such that $\left(z_{1}^{+}\right)^{n} h=\left(z_{1}^{+} z_{1}^{-}-a_{1}\right) f$. Thus, since $a_{1} \neq 0$ and z_{1}^{+}is prime element of R_{1}, we have $f \in\left\langle z_{1}^{+}\right\rangle_{R_{1}}$. Hence $h \in\left\langle z_{1}^{+} z_{1}^{-}-a_{1}\right\rangle_{R_{1}}$, and so $\operatorname{ker} g \subset\left\langle z_{1}^{+} z_{1}^{-}-a_{1}\right\rangle_{R_{1}}$. The reverse inclusion is immediate from the definition of g. Thus A is an integral domain.

First, we prove the following
Proposition 4.2. The mapping Ψ is proper and surjective.
Proof. Suppose that Ψ is not proper, and look for a contradiction. Then $\left.p\right|_{\mu^{-1}(\alpha, \beta)}$ is not proper. Therefore there exists a compact subset $C \subset \mu_{\mathbf{C}}^{-1}(\beta) / / K_{\mathbf{C}}$ such that $\left(\left.p\right|_{\mu^{-1}(\alpha, \beta)}\right)^{-1}(C)$ is non-compact. Hence we can choose an unbounded sequence $\left\{z_{v}\right\}_{v \in \mathbf{N}}$ in $\left(\left.p\right|_{\mu^{-1}(\alpha, \beta)}\right)^{-1}(C)$. For each $v \in \mathbf{N}$, we write z_{v} as $z_{v}=$ $\left(z_{v, 1}^{+}, \ldots, z_{v, N}^{+}, z_{v, 1}^{-}, \ldots, z_{v, N}^{-}\right)$. We set

$$
J_{\infty}^{+}:=\left\{j \in\{1, \ldots, N\}\left|\lim _{v \rightarrow \infty}\right| z_{v, j}^{+} \mid=+\infty\right\}
$$

and

$$
J_{\infty}^{-}:=\left\{j \in\{N+1, \ldots, 2 N\}\left|\lim _{v \rightarrow \infty}\right| z_{v, j-N}^{-} \mid=+\infty\right\} .
$$

We may assume that
(a) $J_{\infty}^{+} \cup J_{\infty}^{-} \neq \emptyset$;
(b) the sequence $\left\{z_{v, j}^{+}\right\}_{v \in \mathbf{N}}$ is bounded for each $j \in\left(J_{\infty}^{+}\right)^{c}$; and
(c) the sequence $\left\{z_{v, j-N}^{-}\right\}_{v \in \mathbf{N}}$ is bounded for each $j \in\left(J_{\infty}^{-}\right)^{c}$.

By rearranging the indices, we may assume that $\left\{\imath^{*} u_{1}, \ldots, l^{*} u_{k}\right\}$ is a basis for \mathfrak{f}^{*}. Let $P=\left(p_{i j}\right)$ be the matrix of ι^{*} relative to the bases $\left\{u_{1}, \ldots, u_{N}\right\}$, $\left\{\imath^{*} u_{1}, \ldots, l^{*} u_{k}\right\}$. By Proposition 2.3, the matrix P is integral. Let \hat{P} be obtained from the matrix $(P \mid-P)$ by replacing the j th column of $(P \mid-P)$ by 0 for each $j \in\left(J_{\infty}^{+}\right)^{c} \cup\left(J_{\infty}^{-}\right)^{c}$.

For real row vectors $a=\left(a_{1}, \ldots, a_{m}\right)$ and $b=\left(b_{1}, \ldots, b_{m}\right)$, we write $a \geq b$ precisely when $a_{j} \geq b_{j}$ for each $j=1, \ldots, m$. We show that there does not exist $y \in \mathbf{R}^{k}$ with ${ }^{t} y \hat{P} \geq 0$ and ${ }^{t} y \hat{P} \neq 0$. Suppose that such a y exists, and seek a contradiction. Let $q:=\left(q_{1}, \ldots, q_{2 N}\right):={ }^{t} y \hat{P}$. Then, by (2.1) and the definition of $\mu_{\boldsymbol{I}}$, there exist $c, c_{i}, d_{j} \in \mathbf{R}\left(i \in\left(J_{\infty}^{+}\right)^{c}, j \in\left(J_{\infty}^{-}\right)^{c}\right)$ such that

$$
\sum_{i \in\left(J_{\infty}^{+}\right)^{c}} c_{i}\left|z_{v, i}^{+}\right|^{2}+\sum_{j \in\left(J_{\bar{\infty}}^{-}\right)^{c}} d_{j}\left|z_{v, j-N}^{-}\right|^{2}+\sum_{i=1}^{N} q_{i}\left|z_{v, i}^{+}\right|^{2}+\sum_{j=N+1}^{2 N} q_{j}\left|z_{v, j-N}^{-}\right|^{2}=c
$$

for each $v \in \mathbf{N}$. For each $v \in \mathbf{N}$, we set

$$
x_{v}:=\sum_{i \in\left(J_{\infty}^{+}\right)^{c}} c_{i}\left|z_{v, i}^{+}\right|^{2}+\sum_{j \in\left(J_{\infty}^{-}\right)^{c}} d_{j}\left|z_{v, j-N}^{-}\right|^{2}
$$

and

$$
y_{v}:=\sum_{i=1}^{N} q_{i}\left|z_{v, i}^{+}\right|^{2}+\sum_{j=N+1}^{2 N} q_{j}\left|z_{v, j-N}^{-}\right|^{2} .
$$

It is clear from Conditions (b) and (c) of the hypotheses that the sequence $\left\{x_{v}\right\}_{v \in \mathbf{N}}$ is bounded. It follows from the definition of \hat{P} that $q_{j}=0$ for each $j \in\left(J_{\infty}^{+}\right)^{c} \cup\left(J_{\infty}^{-}\right)^{c}$, so that, since $q \geq 0$ and $q \neq 0$, there exists $j \in J_{\infty}^{+} \cup J_{\infty}^{-}$such that $q_{j}>0$. Hence we have $\lim _{v \rightarrow \infty} y_{v}=+\infty$. Thus we have $\lim _{v \rightarrow \infty}\left(x_{v}+y_{v}\right)$ $=+\infty$. This is a contradiction. Hence there does not exist $y \in \mathbf{R}^{k}$ with ${ }^{t} y \hat{P} \geq 0$ and ${ }^{t} y \hat{P} \neq 0$.

Thus, since \hat{P} is a rational matrix, it follows from the Transposition Theorem of Stiemke [14, p. 95] that there exists a vector $m={ }^{t}\left(m_{1}, \ldots, m_{2 N}\right) \in \mathbf{Z}^{2 N}$ such that $m_{j}>0$ for each $j=1, \ldots, 2 N$ and $\hat{P} m=0$. Setting
we have $\lim _{v \rightarrow \infty}\left|f\left(z_{v}\right)\right|=+\infty$. On the other hand, since $\hat{P} m=0$, the monomial f is $K_{\mathbf{C}}$-invariant. Thus, since $p\left(z_{v}\right) \in C$ for each $v \in \mathbf{N}$, the sequence $\left\{f\left(z_{v}\right)\right\}_{v \in \mathbf{N}}$
is bounded. But this contradicts the fact that $\lim _{v \rightarrow \infty}\left|f\left(z_{v}\right)\right|=+\infty$. Hence Ψ is proper.

We next prove that Ψ is surjective. It follows from Proposition 2.5 that $\mu_{\mathbf{C}}^{-1}(\beta)^{\alpha-s t}$ is a nonempty Zariski open subset of $\mu_{\mathbf{C}}^{-1}(\beta)$. Thus, since $\mu_{\mathbf{C}}^{-1}(\beta)$ is irreducible by Proposition 4.1, the set $\mu_{\mathbf{C}}^{-1}(\beta)^{\alpha-s t}$ is Zariski dense in $\mu_{\mathbf{C}}^{-1}(\beta)$. Thus, denoting the Zariski closure of a set X by $\mathrm{cl}^{*}(X)$, we have

$$
\begin{aligned}
\mu_{\mathbf{C}}^{-1}(\beta) / / K_{\mathbf{C}} & =p\left(\mathrm{cl}^{*}\left(\mu_{\mathbf{C}}^{-1}(\beta)^{\alpha-s t}\right)\right) \\
& \subset \operatorname{cl}^{*}\left(p\left(\mu_{\mathbf{C}}^{-1}(\beta)^{\alpha-s t}\right)\right) \subset \mu_{\mathbf{C}}^{-1}(\beta) / / K_{\mathbf{C}} .
\end{aligned}
$$

Hence

$$
\mu_{\mathbf{C}}^{-1}(\beta) / / K_{\mathbf{C}}=\operatorname{cl}^{*}\left(p\left(\mu_{\mathbf{C}}^{-1}(\beta)^{\alpha-s t}\right)\right) .
$$

For a subset X of $\mu_{\mathbf{C}}^{-1}(\beta) / / K_{\mathbf{C}}$, we denote by $\mathrm{cl}(X)$ the closure of X in the Euclidean topology on $\mu_{\mathbf{C}}^{-1}(\beta) / / K_{\mathbf{C}}$. Since $p\left(\mu_{\mathbf{C}}^{-1}(\beta)^{\alpha-s t}\right)$ is constructible [12, Corollary 2, p. 51], it follows from [12, Corollary 1, p. 60] that

$$
\operatorname{cl}^{*}\left(p\left(\mu_{\mathbf{C}}^{-1}(\beta)^{\alpha-s t}\right)\right)=\operatorname{cl}\left(p\left(\mu_{\mathbf{C}}^{-1}(\beta)^{\alpha-s t}\right)\right)
$$

Now Ψ is closed, since Ψ is proper. Hence

$$
\mu_{\mathbf{C}}^{-1}(\beta) / / K_{\mathbf{C}}=\operatorname{cl}\left(p\left(\mu_{\mathbf{C}}^{-1}(\beta)^{\alpha-s t}\right)\right)=\operatorname{cl}(\operatorname{Im} \Psi)=\operatorname{Im} \Psi .
$$

This completes the proof of Proposition 4.2.
Suppose that $\beta \in \mathfrak{f}_{\mathbf{C}}^{*}$. Recall ([11, Definition 5.12]) that a point $x \in \mu_{\mathbf{C}}^{-1}(\beta)$ is said to be stable for the action of $K_{\mathbf{C}}$ precisely when
(i) the orbit $x \cdot K_{\mathbf{C}}$ is a Zariski closed subset of $\mu_{\mathbf{C}}^{-1}(\beta)$, and
(ii) the isotropy group of x is finite.

Let $\mu_{\mathbf{C}}^{-1}(\beta)^{s}$ denote the set of all stable points for the $K_{\mathbf{C}}$-action, and set $U_{\beta}:=$ $p\left(\mu_{\mathbf{C}}^{-1}(\beta)^{s}\right)$. The stable set $\mu_{\mathbf{C}}^{-1}(\beta)^{s} \subset \mu_{\mathbf{C}}^{-1}(\beta)$ and its image $U_{\beta} \subset \mu_{\mathbf{C}}^{-1}(\beta) / / K_{\mathbf{C}}$ are Zariski open sets [11, Proposition 5.15].

The following proposition is useful in the rest of this section.
Proposition 4.3. Let $(\alpha, \beta) \in\left(\mathfrak{f}^{*} \times \mathfrak{f}_{\mathbf{C}}^{*}\right)_{\text {reg }}$. Then

$$
\mu_{\mathbf{C}}^{-1}(\beta)^{s} \subset \mu_{\mathbf{C}}^{-1}(\beta)^{\alpha-s t} .
$$

Proof. Let $x \in \mu_{\mathbf{C}}^{-1}(\beta)^{s}$. Then, by Proposition 4.2, there exists $y \in \mu_{\mathbf{C}}^{-1}(\beta)^{\alpha-s t}$ with $p(x)=p(y)$. It therefore follows from [11, Theorem 5.16] that $x \cdot K_{\mathbf{C}}=$ $y \cdot K_{\mathbf{C}}$. Since the set $\mu_{\mathbf{C}}^{-1}(\beta)^{\alpha-s t}$ is $K_{\mathbf{C}}$-invariant, we have $x \in \mu_{\mathbf{C}}^{-1}(\beta)^{\alpha-s t}$. Hence $\mu_{\mathbf{C}}^{-1}(\beta)^{s} \subset \mu_{\mathbf{C}}^{-1}(\beta)^{\alpha-s t}$.

Since, by Definition 2.4, the variety $\mu_{\mathbf{C}}^{-1}(\beta)$ is smooth at each point of $\mu_{\mathbf{C}}^{-1}(\beta)^{\alpha-s t}$, and since $K_{\mathbf{C}}$ acts freely on $\mu_{\mathbf{C}}^{-1}(\beta)^{\alpha-s t}$ [8, Theorem 5.2(1)], it follows from Proposition 4.3 and [11, Corollary 9.52] that U_{β} is smooth. Hence, by

Proposition 4.3 again and [11, Theorem 5.16], the mapping Ψ maps $\Psi^{-1}\left(U_{\beta}\right)$ biholomorphically onto U_{β}. Hence

The exceptional set $X(\alpha, \beta) \backslash \Psi^{-1}\left(U_{\beta}\right)$ contains every compact complex submanifold of $(X(\alpha, \beta), \boldsymbol{I})$.
We state a criterion for stability in terms of the elements of \mathscr{V}_{β}.
Proposition 4.4. Let $(\alpha, \beta) \in\left(\mathfrak{f}^{*} \times \mathfrak{f}_{\mathbf{C}}^{*}\right)_{\text {reg }}$, and let $\left(z^{+}, z^{-}\right) \in \mu_{\mathbf{C}}^{-1}(\beta)^{\alpha-s t}$. Then $\left(z^{+}, z^{-}\right) \in \mu_{\mathbf{C}}^{-1}(\beta)^{s}$ if and only if
(4.2) \quad For each $V \in \mathscr{V}_{\beta}$, there exists $j \in J_{V}^{+} \cup J_{V}^{-}$such that either $j \in J_{V}^{+}$with $z_{j}^{-} \neq 0$ or $j \in J_{V}^{-}$with $z_{j}^{+} \neq 0$.

Proof. Set

$$
\begin{aligned}
& J_{1}:=\left\{j \mid 1 \leq j \leq N, z_{j}^{+} \neq 0, \text { and } z_{j}^{-} \neq 0\right\}, \\
& J_{2}:=\left\{j \mid 1 \leq j \leq N, z_{j}^{+} \neq 0, \text { and } z_{j}^{-}=0\right\}, \\
& J_{3}:=\left\{j \mid 1 \leq j \leq N, z_{j}^{+}=0, \text { and } z_{j}^{-} \neq 0\right\} .
\end{aligned}
$$

Let $\mathbf{R}_{>0}$ (respectively $\mathbf{R}_{<0}$) denote the set of positive (respectively negative) real numbers. Let

$$
\sigma:=\sum_{j \in J_{1}} \mathbf{R}^{*} u_{j}+\sum_{j \in J_{2}} \mathbf{R}_{>0} l^{*} u_{j}+\sum_{j \in J_{3}} \mathbf{R}_{<0} l^{*} u_{j} .
$$

We first show that $\operatorname{dim} \sigma=k$. We suppose that $\operatorname{dim} \sigma<k$ and look for a contradiction. Then there exists $V \in \mathscr{V}$ such that

$$
\sum_{j \in J_{1} \cup J_{2} \cup J_{3}} \mathbf{R}^{*} u_{j} \subset V
$$

Since $\left(z^{+}, z^{-}\right) \in \mu_{\mathbf{C}}^{-1}(\beta)^{\alpha-s t}$, it follows from (2.1), (2.2), and the definition of μ that

$$
\alpha \in \sum_{j \in J_{1} \cup J_{2} \cup J_{3}} \mathbf{R}^{*} u_{j} \quad \text { and } \quad \beta \in \sum_{j \in J_{1} \cup J_{2} \cup J_{3}} \mathbf{C}^{*} u_{j} .
$$

Hence we have $\alpha \in V$ and $\beta \in V_{\mathbf{C}}$. On the other hand, since $(\alpha, \beta) \in\left(\mathfrak{f}^{*} \times \mathfrak{f}_{\mathbf{C}}^{*}\right)_{\text {reg }}$, it follows from Proposition 2.2 that either $\alpha \notin V$ or $\beta \notin V_{\mathbf{C}}$. This is a contradiction. Hence

$$
\begin{equation*}
\operatorname{dim} \sigma=k \tag{4.3}
\end{equation*}
$$

Now let $\left(z^{+}, z^{-}\right)$satisfy Condition (4.2); since $(-\alpha, \beta) \in\left(\mathfrak{f}^{*} \times \mathfrak{f}_{\mathbf{C}}^{*}\right)_{\text {reg }}$ by Proposition 2.2, we can deduce from Proposition 2.5 that $\left(z^{+}, z^{-}\right) \in \mu_{\mathbf{C}}^{-1}(\beta)^{(-\alpha)-s t}$. Hence, by [8, Definition 5.1], we have $\alpha \in \sigma \cap(-\sigma)$. In particular, $\sigma \cap(-\sigma) \neq \emptyset$, and so $\sigma \cap(-\sigma)$ is a subspace of \mathfrak{f}^{*}. Thus, since σ is an open subset of \mathfrak{f}^{*} by (4.3), we have $\mathfrak{f}^{*}=\sigma \cap(-\sigma)$. Hence $\mathfrak{f}^{*}=\sigma$.

For each $v \in \mathfrak{f}^{*}$, we define a function $l_{v}: \mathfrak{f} \rightarrow \mathbf{R}$ by

$$
l_{v}(X)=\langle v, X\rangle+\frac{1}{4} \sum_{j=1}^{N}\left(\left|z_{j}^{+}\right|^{2} e^{-2\left\langle l^{*} u_{j}, X\right\rangle}+\left|z_{j}^{-}\right|^{2} e^{2\left\langle\iota^{*} u_{j}, X\right\rangle}\right) .
$$

Claim 1. Let $v \in \mathfrak{f}^{*}$, and let $X \in \mathfrak{f}$ be such that $\langle v, X\rangle \neq 0$. Then we have

$$
\lim _{t \rightarrow+\infty} l_{v}(t X)=+\infty .
$$

Proof. The proof of the claim is the same as that of Claim 5.9 of [8] except for obvious modifications.

We have

$$
\begin{equation*}
l_{v}(t X)=t\langle v, X\rangle+\frac{1}{4} \sum_{j=1}^{N}\left(\left|z_{j}^{+}\right|^{2} e^{-2 t\left\langle\iota^{*} u_{j}, X\right\rangle}+\left|z_{j}^{-}\right|^{2} e^{2 t\left\langle\iota^{*} u_{j}, X\right\rangle}\right) . \tag{4.4}
\end{equation*}
$$

If $\langle v, X\rangle>0$, then the claim holds by (4.4). Suppose that $\langle v, X\rangle\langle 0$. Since $\sigma=\mathfrak{f}^{*}$, we can write

$$
v=\sum_{j \in J_{1}} c_{j}^{(1)} l^{*} u_{j}+\sum_{j \in J_{2}} c_{j}^{(2)} l^{*} u_{j}+\sum_{j \in J_{3}} c_{j}^{(3)} l^{*} u_{j}
$$

where $c_{j}^{(1)} \in \mathbf{R}$ for each $j \in J_{1}, c_{j}^{(2)} \in \mathbf{R}_{>0}$ for each $j \in J_{2}$, and $c_{j}^{(3)} \in \mathbf{R}_{<0}$ for each $j \in J_{3}$. Thus, since $\langle v, X\rangle<0$, there exists $j \in J_{1} \cup J_{2} \cup J_{3}$ such that either

$$
j \in J_{1} \cup J_{2} \text { with }\left\langle l^{*} u_{j}, X\right\rangle<0 \quad \text { or } \quad j \in J_{1} \cup J_{3} \text { with }\left\langle l^{*} u_{j}, X\right\rangle>0 .
$$

Hence, by (4.4), we have

$$
\lim _{t \rightarrow+\infty} l_{v}(t X)=+\infty .
$$

Suppose that the orbit $\left(z^{+}, z^{-}\right) \cdot K_{\mathbf{C}} \subset \mu_{\mathbf{C}}^{-1}(\beta)$ is not Zariski closed, and seek a contradiction. By [3, Lemma 3.4], there exists an element $\left(w^{+}, w^{-}\right) \in$ $\left(\mathbf{C}^{N} \times \mathbf{C}^{N}\right) \backslash\left\{\left(z^{+}, z^{-}\right)\right\}$and a one-parameter subgroup $\lambda: \mathbf{G}_{m} \rightarrow K_{\mathbf{C}}$ such that

$$
\begin{equation*}
\left(z^{+}, z^{-}\right) \cdot \lambda(x) \rightarrow\left(w^{+}, w^{-}\right) \quad \text { as } x \rightarrow 0 . \tag{4.5}
\end{equation*}
$$

We can write the one-parameter subgroup λ in the form

$$
x \in \mathbf{C}^{*} \mapsto\left(x^{m_{1}}, \ldots, x^{m_{N}}\right) \in K_{\mathbf{C}}
$$

with $m_{1}, \ldots, m_{N} \in \mathbf{Z}$. Setting $X:={ }^{t}\left(m_{1}, \ldots, m_{N}\right)$, we have $X \in \mathcal{f} \backslash\{0\}$. Thus there exists an element $v \in \mathfrak{f}^{*}$ such that $\langle v, X\rangle<0$. By Claim 1, we have $\lim _{t \rightarrow+\infty} l_{v}(t X)=+\infty$. On the other hand, since

$$
\lim _{t \rightarrow+\infty} \sum_{j=1}^{N}\left(\left|z_{j}^{+}\right|^{2} e^{-2 t\left\langle\iota^{*} u_{j}, X\right\rangle}+\left|z_{j}^{-}\right|^{2} e^{2 t\left\langle\iota^{*} u_{j}, X\right\rangle}\right)=\sum_{j=1}^{N}\left(\left|w_{j}^{+}\right|^{2}+\left|w_{j}^{-}\right|^{2}\right)
$$

by (4.5), using $\langle v, X\rangle<0$, we have $\lim _{t \rightarrow+\infty} l_{v}(t X)=-\infty$. This is a contradiction. Hence the orbit $\left(z^{+}, z^{-}\right) \cdot K_{\mathbf{C}}$ is Zariski closed. Thus, since $K_{\mathbf{C}}$ acts freely on $\mu_{\mathbf{C}}^{-1}(\beta)^{\alpha-s t}\left[8\right.$, Theorem 5.2(1)], we have $\left(z^{+}, z^{-}\right) \in \mu_{\mathbf{C}}^{-1}(\beta)^{s}$.

Conversely, suppose that $\left(z^{+}, z^{-}\right) \in \mu_{\mathbf{C}}^{-1}(\beta)^{s}$; since $(-\alpha, \beta) \in\left(\mathfrak{f}^{*} \times \mathfrak{f}_{\mathbf{C}}^{*}\right)_{\text {reg }}$ by Proposition 2.2, we can deduce from Proposition 4.3 that $\left(z^{+}, z^{-}\right) \in \mu_{\mathbf{C}}^{-1}(\beta)^{(-\alpha)-s t}$. Thus, by Proposition 2.5, we see that $\left(z^{+}, z^{-}\right)$satisfies Condition (4.2).

We use this criterion to prove the following

Proposition 4.5. Let $\beta \in \mathfrak{f}_{\mathbf{C}}^{*}$. Then

$$
\mu_{\mathbf{C}}^{-1}(\beta)^{s} \neq \emptyset
$$

Proof. Let $\alpha \in \mathfrak{f}^{*}$ be such that $(\alpha, \beta) \in\left(\mathfrak{f}^{*} \times \mathfrak{f}_{\mathbf{C}}^{*}\right)_{\text {reg }}$. If $\mathscr{V}_{\beta}=\emptyset$, then $\mu_{\mathbf{C}}^{-1}(\beta)^{\alpha-s t}=\mu_{\mathbf{C}}^{-1}(\beta)$ by Proposition 2.5. Thus, since $K_{\mathbf{C}}$ acts freely on $\mu_{\mathbf{C}}^{-1}(\beta)^{\alpha-s t}$ [8, Theorem 5.2(1)], it follows from [11, Corollary 5.14] that $\mu_{\mathbf{C}}^{-1}(\beta)^{s}=\mu_{\mathbf{C}}^{-1}(\beta)$. Hence, since $\mu_{\mathbf{C}}^{-1}(\beta)$ is nonempty, so is $\mu_{\mathbf{C}}^{-1}(\beta)^{s}$; we therefore suppose that $\mathscr{V}_{\beta} \neq \emptyset$.

Then, for each $V \in \mathscr{V}_{\beta}$, there exists $j_{V} \in J_{V}^{+} \cup J_{V}^{-}$. Let $b \in\left(\mathbf{C}^{N}\right)^{*}$ be such that $l^{*} b=\beta$. Fix $x_{0} \in\left(\mathbf{C}^{n}\right)^{*}$ such that $x_{0} \notin \mathcal{H}_{\mathbf{C}}\left(j_{V}, b\right)$ for each $V \in \mathscr{V}_{\beta}$. By [2, Theorem 3.1(i)], there exists $\left[z^{+}, z^{-}\right] \in X(\alpha, \beta)$ such that $\phi_{\mathbf{C}}^{b}\left(\left[z^{+}, z^{-}\right]\right)=x_{0}$. For each $V \in \mathscr{V}_{\beta}$, we have $z_{j_{V}}^{+} z_{j_{V}}^{-} \neq 0$. Indeed, if $z_{j_{V}}^{+} z_{j_{V}}^{-}=0$ for some $V \in \mathscr{V}_{\beta}$, then we obtain

$$
\begin{aligned}
\left\langle\pi^{*}\left(x_{0}\right)+b, e_{j_{V}}\right\rangle & =\left\langle\pi^{*}\left(\phi_{\mathbf{C}}^{b}\left(\left[z^{+}, z^{-}\right]\right)\right)+b, e_{j_{V}}\right\rangle \\
& =-\sqrt{-1} z_{j_{V}}^{+} z_{j_{V}}^{-} \\
& =0 .
\end{aligned}
$$

Thus $x_{0} \in \mathcal{H}_{\mathbf{C}}\left(j_{V}, b\right)$. This is a contradiction. Hence, since $\left(z^{+}, z^{-}\right) \in \mu_{\mathbf{C}}^{-1}(\beta)^{\alpha-s t}$, it follows from Proposition 4.4 that $\left(z^{+}, z^{-}\right) \in \mu_{\mathbf{C}}^{-1}(\beta)^{s}$. In particular, $\mu_{\mathbf{C}}^{-1}(\beta)^{s} \neq$ \emptyset.

Since $\mu_{\mathbf{C}}^{-1}(\beta) / / K_{\mathbf{C}}$ is irreducible by Proposition 4.1, it follows from Proposition 4.5 that the set U_{β} is Zariski dense in $\mu_{\mathbf{C}}^{-1}(\beta) / / K_{\mathbf{C}}$.

We summarise our discussions in the following
Theorem 4.6. The mapping Ψ is a resolution of singularities, that is,
(i) Ψ is proper and surjective,
(ii) $\Psi^{-1}\left(U_{\beta}\right)$ is a dense open subset of $X(\alpha, \beta)$, and
(iii) Ψ maps $\Psi^{-1}\left(U_{\beta}\right)$ biholomorphically onto U_{β}.

5. Equivalence of complex structures

Let $(\alpha, \beta) \in\left(\mathfrak{f}^{*} \times \mathfrak{f}_{\mathbf{C}}^{*}\right)_{\text {reg }}$. We can write $\beta=\beta_{1}+\sqrt{-1} \beta_{2}$ for suitable $\beta_{1}, \beta_{2} \in$ \mathfrak{f}^{*}. We regard S^{2} as the unit sphere in \mathbf{R}^{3}. If $p:={ }^{t}\left(p_{1}, p_{2}, p_{3}\right) \in S^{2}$, then
$\boldsymbol{I}_{p}:=p_{1} \boldsymbol{I}+p_{2} \boldsymbol{J}+p_{3} \boldsymbol{K}$ is also a complex structure on $X(\alpha, \beta)$. Set
$\mathscr{C}_{(\alpha, \beta)}:=\left\{p \in S^{2} \mid\left(X(\alpha, \beta), \boldsymbol{I}_{p}\right)\right.$ is not biholomorphic to an affine variety $\}$.
Let \boldsymbol{I}_{1} and \boldsymbol{I}_{2} be complex structures on $X(\alpha, \beta)$. We say that \boldsymbol{I}_{1} is equivalent to \boldsymbol{I}_{2} and write $\boldsymbol{I}_{1} \sim \boldsymbol{I}_{2}$, precisely when $\left(X(\alpha, \beta), \boldsymbol{I}_{1}\right)$ is biholomorphic to $\left(X(\alpha, \beta), \boldsymbol{I}_{2}\right)$.

In this section, we discuss when two complex structures \boldsymbol{I}_{p} and \boldsymbol{I}_{q} with $p, q \in \mathscr{C}_{(\alpha, \beta)}$ are equivalent.

We first give a sufficient condition for a complex structure \boldsymbol{I}_{p} to be equivalent to the conjugate complex structure $-\boldsymbol{I}_{p}$.

Proposition 5.1. Suppose that either $\beta_{1}=0$ or $\beta_{2}=0$. Let $p \in \mathscr{C}_{(\alpha, \beta)}$. Then $\boldsymbol{I}_{p} \sim-\boldsymbol{I}_{p}$.

Proof. We provide a proof for the case where $\beta_{1}=0$; the other case is similar.

Since $\beta_{1}=0$, it follows from [1, Theorem 3.3] that $p_{2}=0$. Let $q_{1}, q_{3} \in \mathbf{R}$ be such that the matrix

$$
P:=\left(\begin{array}{ccc}
p_{1} & 0 & p_{3} \\
0 & 1 & 0 \\
q_{1} & 0 & q_{3}
\end{array}\right)
$$

is an element in $S O(3)$. Then we have

$$
P\left(\begin{array}{c}
\alpha \\
0 \\
\beta_{2}
\end{array}\right)=\left(\begin{array}{c}
p_{1} \alpha+p_{3} \beta_{2} \\
0 \\
q_{1} \alpha+q_{3} \beta_{2}
\end{array}\right) .
$$

Hence, if we set

$$
\alpha^{\prime}:=p_{1} \alpha+p_{3} \beta_{2} \quad \text { and } \quad \beta^{\prime}:=\sqrt{-1}\left(q_{1} \alpha+q_{3} \beta_{2}\right)
$$

then it follows from [1, Theorem 3.2(2)] that

$$
\left(X(\alpha, \beta), \boldsymbol{I}_{p}\right) \cong\left(X\left(\alpha^{\prime}, \beta^{\prime}\right), \boldsymbol{I}\right) .
$$

Similarly, we have

$$
\left(X(\alpha, \beta),-\boldsymbol{I}_{p}\right) \cong\left(X\left(-\alpha^{\prime}, \beta^{\prime}\right), \boldsymbol{I}\right) .
$$

We can define a biholomorphic map

$$
\begin{aligned}
\left(X\left(\alpha^{\prime}, \beta^{\prime}\right), \boldsymbol{I}\right) & \rightarrow\left(X\left(-\alpha^{\prime}, \beta^{\prime}\right), \boldsymbol{I}\right) \\
{\left[z^{+}, z^{-}\right] } & \mapsto\left[z^{-}, z^{+}\right] .
\end{aligned}
$$

Hence we have $\boldsymbol{I}_{p} \sim-\boldsymbol{I}_{p}$.
Corollary 5.2. Let $\# \mathscr{C}_{(\alpha, \beta)}=2$. Then $\mathscr{C}_{(\alpha, \beta)}=\{p,-p\}$ for some $p \in S^{2}$, and $\boldsymbol{I}_{p} \sim-\boldsymbol{I}_{p}$.

Proof. By [1, Theorem 3.3], we have $\mathscr{C}_{(\alpha, \beta)}=\{p,-p\}$ for some $p \in S^{2}$. It therefore follows from [1, Theorem 3.2(2)] that there exists $\alpha^{\prime} \in \mathfrak{f}^{*}$ such that $\left(X(\alpha, \beta), \boldsymbol{I}_{p}\right)$ (respectively $\left.\left(X(\alpha, \beta),-\boldsymbol{I}_{p}\right)\right)$ is biholomorphic to $\left(X\left(\alpha^{\prime}, 0\right), \boldsymbol{I}\right)$ (respectively $\left(X\left(\alpha^{\prime}, 0\right),-\boldsymbol{I}\right)$). Thus, by [1, Theorem 3.3] and Proposition 5.1, we have $\boldsymbol{I}_{p} \sim-\boldsymbol{I}_{p}$.

Example 5.3. Let $\beta=0$. Then, by [1, Theorem 3.3], we have $\mathscr{C}_{(\alpha, 0)}=$ $\left\{e_{1},-e_{1}\right\}$. Hence we have $\boldsymbol{I} \sim-\boldsymbol{I}$ (see also [1, Example 4.1]).

In general, \boldsymbol{I}_{p} and \boldsymbol{I}_{q} need not be equivalent for each $p, q \in \mathscr{C}_{(\alpha, \beta)}$. We use the results of Sections 3 and 4 to give such an example.

Let K be the subtorus of T^{5} whose Lie algebra $\mathfrak{f} \subset \mathbf{R}^{5}$ is generated by $e_{1}+e_{4}, e_{2}+e_{5}$, and $e_{3}+e_{4}+e_{5}$. Then $\left\{\pi\left(e_{4}\right), \pi\left(e_{5}\right)\right\}$ is a basis for \mathbf{R}^{2}. Thus Condition (iii) in Proposition 2.3 holds. Set

$$
\alpha:=\iota^{*} u_{3} \quad \text { and } \quad \beta:=\iota^{*} u_{1}-\iota^{*} u_{2} .
$$

Then it follows from Proposition 2.2 that $(\alpha, \beta) \in\left(\mathfrak{f}^{*} \times \mathfrak{f}_{\mathbf{C}}^{*}\right)_{\text {reg }}$. We obtain the toric hyperkähler manifold $X(\alpha, \beta)$ of complex dimension four. We set

$$
p_{1}:=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), \quad p_{2}:=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right), \quad p_{3}:=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right), \quad p_{4}:=\frac{1}{\sqrt{2}}\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right) .
$$

By [1, Theorem 3.3], we have

$$
\mathscr{C}_{(\alpha, \beta)}=\left\{ \pm p_{1}, \pm p_{2}, \pm p_{3}, \pm p_{4}\right\} .
$$

Proposition 5.4. We have
(i) $\boldsymbol{I}_{p_{i}} \sim-\boldsymbol{I}_{p_{i}}$ for each $i=1,2,3,4$;
(ii) $\boldsymbol{I}_{p_{3}} \sim \boldsymbol{I}_{p_{4}}$;
(iii) $\boldsymbol{I}_{p_{i}} \nsim \boldsymbol{I}_{p_{j}}$ for each $i, j=1,2,3$ with $i \neq j$.

Proof. Set

$$
P:=\left(\begin{array}{ccc}
-1 / \sqrt{2} & 1 / \sqrt{2} & 0 \\
1 / \sqrt{2} & 1 / \sqrt{2} & 0 \\
0 & 0 & -1
\end{array}\right) .
$$

Then the matrix P is an element in $S O(3)$. We have

$$
P\left(\begin{array}{l}
\alpha \\
\beta \\
0
\end{array}\right)=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
l^{*} u_{1}-l^{*} u_{2}-l^{*} u_{3} \\
l^{*} u_{1}-l^{*} u_{2}+l^{*} u_{3} \\
0
\end{array}\right) .
$$

Hence, if we set

$$
\alpha^{\prime}:=\frac{1}{\sqrt{2}}\left(\imath^{*} u_{1}-\imath^{*} u_{2}-\imath^{*} u_{3}\right) \quad \text { and } \quad \beta^{\prime}:=\frac{1}{\sqrt{2}}\left(l^{*} u_{1}-\imath^{*} u_{2}+\imath^{*} u_{3}\right),
$$

then it follows from [1, Theorem 3.2(2)] that

$$
\left(X(\alpha, \beta), \boldsymbol{I}_{p_{3}}\right) \cong\left(X\left(\alpha^{\prime}, \beta^{\prime}\right), \boldsymbol{I}\right) .
$$

Similarly, we have

$$
\left(X(\alpha, \beta), \boldsymbol{I}_{p_{2}}\right) \cong(X(\beta, \alpha), \boldsymbol{I}) \quad \text { and } \quad\left(X(\alpha, \beta), \boldsymbol{I}_{p_{4}}\right) \cong\left(X\left(\beta^{\prime}, \alpha^{\prime}\right), \boldsymbol{I}\right) .
$$

(i) The claim follows immediately from Proposition 5.1.
(ii) Let $\left(z^{+}, z^{-}\right) \in \mu^{-1}\left(\alpha^{\prime}, \beta^{\prime}\right)$. Set

$$
w_{1}^{ \pm}:= \pm z_{2}^{\mp}, \quad w_{2}^{ \pm}:= \pm z_{1}^{\mp}, \quad w_{3}^{ \pm}:= \pm z_{3}^{\mp}, \quad w_{4}^{ \pm}:= \pm z_{5}^{\mp}, \quad w_{5}^{ \pm}:= \pm z_{4}^{\mp} .
$$

Then we have $\left(w^{+}, w^{-}\right) \in \mu^{-1}\left(\beta^{\prime}, \alpha^{\prime}\right)$. Hence we can define a biholomorphic map

$$
\begin{aligned}
\left(X\left(\alpha^{\prime}, \beta^{\prime}\right), \boldsymbol{I}\right) & \rightarrow\left(X\left(\beta^{\prime}, \alpha^{\prime}\right), \boldsymbol{I}\right) \\
{\left[z^{+}, z^{-}\right] } & \mapsto\left[w^{+}, w^{-}\right] .
\end{aligned}
$$

Thus we have $\boldsymbol{I}_{p_{3}} \sim \boldsymbol{I}_{p_{4}}$.
(iii) First, we use Theorem 3.1 to construct compact complex submanifolds of $(X(\alpha, \beta), \boldsymbol{I})$. Now set $a:=u_{3}$ and $b:=u_{1}-u_{2}$. Let

$$
\mathcal{P}_{1}:=\bigcap_{j=3}^{5} \mathcal{H}^{+}(j, a)
$$

(see Figure 1). Then, since \mathcal{P}_{1} is an isosceles right triangle, the space $X_{\mathcal{P}_{1}}$ is \mathbf{P}^{2}. Thus, by Theorem 3.1, the submanifold $X_{1}:=\phi_{a, b}^{-1}\left(\mathcal{P}_{1} \times\{0\}\right)$ is biholomorphic to \mathbf{P}^{2}. Set

$$
\begin{aligned}
M_{1}:=\{ & \left(z^{+}, z^{-}\right) \in \mathbf{H}^{5} \mid z_{3}^{-}=z_{4}^{-}=z_{5}^{-}=0, \\
& \left.-\sqrt{-1} z_{1}^{+} z_{1}^{-}=1,-\sqrt{-1} z_{2}^{+} z_{2}^{-}=-1\right\} \cap \mu_{I}^{-1}(\alpha) .
\end{aligned}
$$

Figure 1

It follows from (3.5) that

$$
\begin{equation*}
X_{1}=M_{1} / K \tag{5.1}
\end{equation*}
$$

Now take the basis $\left\{\imath^{*} u_{3}, \iota^{*} u_{4}, l^{*} u_{5}\right\}$ for $\mathfrak{\mathfrak { q }}^{*}$. We have $\beta=\iota^{*} u_{4}-\iota^{*} u_{5}$. We set $b^{\prime}:=u_{4}-u_{5}$. Let $\mathcal{P}_{2}:=\mathcal{H}^{-}(1, a) \cap \mathcal{H}^{-}(2, a) \cap \mathcal{H}^{+}(3, a)$. Then, since \mathcal{P}_{2} is an isosceles right triangle, the submanifold $X_{2}:=\phi_{a, b^{\prime}}^{-1}\left(\mathcal{P}_{2} \times\{0\}\right)$ is also biholomorphic to \mathbf{P}^{2}. Set

$$
\begin{aligned}
M_{2}:=\{ & \left(z^{+}, z^{-}\right) \in \mathbf{H}^{5} \mid z_{1}^{+}=z_{2}^{+}=z_{3}^{-}=0, \\
& \left.-\sqrt{-1} z_{4}^{+} z_{4}^{-}=1,-\sqrt{-1} z_{5}^{+} z_{5}^{-}=-1\right\} \cap \mu_{I}^{-1}(\alpha) .
\end{aligned}
$$

It follows from (3.5) that

$$
\begin{equation*}
X_{2}=M_{2} / K \tag{5.2}
\end{equation*}
$$

Since $M_{1} \cap M_{2}=\emptyset$, we have $X_{1} \cap X_{2}=\emptyset$.
Next, we use Proposition 4.4 to determine the exceptional set $X(\alpha, \beta) \backslash$ $\Psi^{-1}\left(U_{\beta}\right)$. Let V_{1} and V_{2} be the following two-dimensional subspaces of \mathfrak{f}^{*} :

$$
V_{1}:=\operatorname{span}\left\{\imath^{*} u_{1}, l^{*} u_{2}\right\} \quad \text { and } \quad V_{2}:=\operatorname{span}\left\{\imath^{*} u_{4}, l^{*} u_{5}\right\} .
$$

Then we have $\mathscr{V}_{\beta}=\left\{V_{1}, V_{2}\right\}$. We set

$$
Y_{1}:=e_{3}+e_{4}+e_{5} \quad \text { and } \quad Y_{2}:=e_{3}-e_{1}-e_{2} .
$$

For each $j=1,2$, we have $Y_{j} \in \mathfrak{f}$ and $V_{j}=\left\{v \in \mathfrak{f}^{*} \mid\left\langle v, Y_{j}\right\rangle=0\right\}$. Hence we have

$$
J_{V_{1}}^{+}=\{3,4,5\}, \quad J_{V_{1}}^{-}=\emptyset, \quad J_{V_{2}}^{+}=\{3\}, \quad J_{V_{2}}^{-}=\{1,2\} .
$$

By (4.1), Proposition 4.4, (5.1), and (5.2), we have

$$
\begin{equation*}
X(\alpha, \beta) \backslash \Psi^{-1}\left(U_{\beta}\right)=X_{1} \amalg X_{2} \cong \mathbf{P}^{2} \amalg \mathbf{P}^{2} . \tag{5.3}
\end{equation*}
$$

Next, we determine the exceptional set $X\left(\alpha^{\prime}, \beta^{\prime}\right) \backslash \Psi^{-1}\left(U_{\beta^{\prime}}\right)$. Let V be the two-dimensional subspace $V:=\operatorname{span}\left\{\imath^{*} u_{2}, l^{*} u_{4}\right\}$ of \mathfrak{f}^{*}. Then we have $\mathscr{V}_{\beta^{\prime}}=\{V\}$. We can prove

$$
\begin{equation*}
X\left(\alpha^{\prime}, \beta^{\prime}\right) \backslash \Psi^{-1}\left(U_{\beta^{\prime}}\right) \cong \mathbf{P}^{2} \tag{5.4}
\end{equation*}
$$

in a way similar to that just used for (5.3).
Finally, we construct a compact complex submanifold of $(X(\beta, \alpha), \boldsymbol{I})$. Let

$$
\mathcal{P}_{3}:=\bigcap_{j=1,4} \mathcal{H}^{+}(j, b) \cap \bigcap_{j=2,5} \mathcal{H}^{-}(j, b)
$$

(see Figure 2). Then, since \mathcal{P}_{3} is a square, the space $X_{\mathcal{P}_{3}}$ is $\mathbf{P}^{1} \times \mathbf{P}^{1}$. Thus, by Theorem 3.1, the submanifold $X_{3}:=\phi_{b, a}^{-1}\left(\mathcal{P}_{3} \times\{0\}\right)$ is biholomorphic to $\mathbf{P}^{1} \times \mathbf{P}^{1}$.

Figure 2

Hence, by (4.1), we have

$$
\begin{equation*}
\mathbf{P}^{1} \times \mathbf{P}^{1} \cong X_{3} \subset X(\beta, \alpha) \backslash \Psi^{-1}\left(U_{\alpha}\right) . \tag{5.5}
\end{equation*}
$$

The claim follows from (4.1), (5.3), (5.4), and (5.5).

References

[1] Y. Аото, Complex structures of toric hyperkähler manifolds, Osaka J. Math. 41 (2004), 583603.
[2] R. Bielawski and A. Dancer, The geometry and topology of toric hyperkähler manifolds, Comm. Anal. Geom. 8 (2000), 727-760.
[3] D. Birkes, Orbits of linear algebraic groups, Ann. of Math. 93 (1971), 459-475.
[4] R. Gото, On toric hyper-Kähler manifolds given by the hyper-Kähler quotient method, in: "Infinite Analysis" (Kyoto 1991) part A, 317-338, Adv. Ser. Math. Phys., 16, World Sci. Publ., River Edge, NJ, 1992.
[5] V. Guillemin, Moment maps and combinatorial invariants of Hamiltonian T^{n}-spaces, Progress in math. 122, Birkhäuser, Boston-Basel-Berlin, 1994.
[6] N. J. Hitchin, A. Karlhede, U. Lindström and M. Roček, Hyperkäler metrics and supersymmetry, Comm. Math. Phys. 108 (1987), 535-589.
[7] H. Konno, Cohomology rings of toric hyperkähler manifolds, Internat. J. Math. 11 (2000), 1001-1026.
[8] H. Konno, Variation of toric hyperkähler manifolds, Internat. J. Math. 14 (2003), 289-311.
[9] H. Konno, The geometry of toric hyperkähler varieties, Contemp. Math. 460, 241-260, Amer. Math. Soc., Providence, RI, 2008.
[10] P. B. Kronheimer, The construction of ALE spaces as hyper-Kähler quotients, J. Differential Geom. 29 (1989), 665-683.
[11] S. MukaI, An introduction to invariants and moduli, Cambridge studies in advanced math. 81, Cambridge University Press, Cambridge, 2003.
[12] D. Mumford, The red book of varieties and schemes, Lecture notes in math. 1358, 2nd expanded ed., Springer, Berlin-Heidelberg-New York, 1999.
[13] H. Nakajima, Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras, Duke Math. J. 76 (1994), 365-416.
[14] A. Schrivver, Theory of linear and integer programming, Wiley, Chichester, NY, 1986.

Yosihiko Aoto
Department of Mathematics
Tokyo Institute of Technology
2-12-1 Ôokayama, Meguro-ku
Токуo 152-8551
Japan
E-mail: aoto@math.titech.ac.jp

[^0]: 2000 Mathematics Subject Classification. Primary 53C26, Secondary 53D20.
 Key words and phrases. toric hyperkähler manifold, compact complex submanifold, resolution of singularities, stability.

 Received December 26, 2007; revised March 3, 2008.

