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ON TORIC HYPERKAHLER MANIFOLDS WITH COMPACT
COMPLEX SUBMANIFOLDS

YOSIHIKO AOTO

Abstract

A toric hyperkdhler manifold is defined as a hyperkédhler quotient of the flat
quaternionic space H" by a subtorus of the real torus 7V. The purposes of this paper
are to construct compact complex submanifolds of toric hyperkdhler manifolds, and to
show that our hyperkdhler manifold is a resolution of singularities of an affine algebro-
geometric quotient. We also show that these submanifolds are biholomorphic to Delzant
spaces, which are Kihler quotients of CV by subtori of 7¥. Finally, we apply these
results to determining whether complex structures on our hyperkdhler manifold are
equivalent.

1. Introduction

A Riemannian manifold is said to be hyperkdihlerian precisely when this
manifold is equipped with three complex structures I, J, and K that satisfy the
algebraic relations of the quaternions i, j, k and the Riemannian metric is
Kihlerian with respect to I, J, and K. The flat quaternionic space H" is an
example of a hyperkédhler manifold. We denote the Kédhler form corresponding
to the complex structure I (respectively J, K) by wy (respectively wy, wg). There
exists a way to construct a new hyperkdhler manifold from an old one with a
group action: the hyperkdhler quotient method of Hitchin, Karlhede, Lindstrom,
and Rocek [6, §3.(D)]. Bielawski and Dancer defined a toric hyperkdhler manifold
as a hyperkihler quotient of H" by a subtorus of 7V := U (I)N [2, §3]. Let K
be a subtorus of TV. Let f be the Lie algebra of K, and let I* be the dual space
of L. Set ¢ :=1"®C. We restrict the natural action of 7% on H" to K. We
use = (py, ) : HY — £ x I to denote the hyperkdhler moment map for the
action of K on HY. If (o, p) e t* x (. is a regular value of u and if K acts freely
on u!'(x, ), then we obtain the toric hyperkdhler manifold

X(%ﬁ) = ﬂ_l(avﬂ)/K'
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The quotient group 7" = TV/K acts in the natural way on X(o,f). Let
¢: X(x, ) — (R")" x (C")" be the hyperkdhler moment map for the action of
T" on X(a,f).

Let K¢ be the complexification of K. Then the inclusion homomor-
phism Cuc!(B)]%¢ < Cluc'(B)] induces an affine quotient map p : uc'(f) —
Spm Clugc' (B)]*¢ =: uc' (B)//Kc, and the morphism p induces a holomorphic

mapping ¥ (X (o, ), 1) — uc' (B)//Ke.

Let {uy,...,uy} be the dual basis corresponding to the standard basis for RY,
and let i* : (RY)" — f* be the transpose of the inclusion mapping :f— R”Y.
Let 7~ be the set of all codimension one subspaces of t* generated by subsets of
{t*ur,...,r*un}. Set ¥y :={V e |feV ®C}. Bielawski and Dancer showed
([2, Theorem 5.1]) that, if 73 = @, then the mapping ¥ is biholomorphic. On the
other hand, we showed ({1, Theorem 3.3 and Proposition 3.4]) that, if 7} # 0,
then P! is embedded in (X (a,f),I). A result similar to that of us was obtained
independently by Konno [8, Theorem 6.10]. Thus (X(«,f),) is biholomorphic
to an affine variety if and only if 73 = 0.

This paper consists of three parts.

The first part (§3) is devoted to the construction of compact complex sub-
manifolds of (X («,f),I). Suppose that 73 # 0. Let J be a subset of {1,...,N}
such that

(a) {n(e;)|jeJ} is a basis for n(R"), and

(b) let B;€C (jeJ€) be such that =3, B1*u;. Then

{jel|B,=0} #0.

Since 7 # 0, such a J exists. We associate with J a hyperplane arrangement
</; of (R")*. The main result of this part is the following

THEOREM 1.1. Let F be a bounded face of the arrangement </;.

() ¢ "(F x {0}) is a compact complex submanifold of (X (x,p),I), isotropic
with respect to the form wy + v/ —lwg, and invariant under the T"-action.

(ii) The polytope F is Delzant, and ¢~'(F x {0}) is biholomorphic to the
Delzant space associated with F.

This construction not only produces the projective line P! but also higher dimen-
sional compact submanifolds (see Proposition 5.4). In the special case where
p =0, Bielawski and Dancer proved Theorem 1.1 [2, Theorem 6.5(ii), (iii)] (see
also [4, Theorem 3.5(2), (3)]).

Now recall that a point x € ' (f) is said to be stable for the action of K¢
precisely when the orbit x-Kc is a Zariski closed subset of uc!(B) and the
isotropy group of x is finite. Let puc!(f)" denote the set of all stable points for
the Kc-action, and set Up := p(uc'(B)*). The second part of this paper (§4) is
devoted to proving the following

THEOREM 1.2. The mapping Y is a resolution of singularities, that is,
(i) W is proper and surjective,
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(i) W '(Up) is a dense open subset of X(a,p), and
iii) ¥ maps W1 (Uy) biholomorphically onto Uy
B B

To prove Part (i), we use the Transposition Theorem of Stiemke. For another
proof of Part (i), see [9, Proposition 3.7]. Konno’s proof is similar to that of
[10, Proposition 3.10] or [13, Theorem 4.1(1)]. We state a criterion for stability
in terms of the elements of 7. We use this criterion to show that uc!(B)" is
nonempty.

The last part of this paper (§5) is devoted to discussing when complex
structures on X (o, f8) are equivalent. We regard S? as the unit sphere in R3. If
p = "(p1,p2,p3) € S?, then I, := piI + p»J + p3K is also a complex structure on
X (o, ). Set

G p) = {peS*|(X(x,$),1,) is not biholomorphic to an affine variety}.

Let #%(,,5 = 2. Then 6, 5y = {p, —p} for some p € S2. In the preceding paper,
we showed that I, and I,, are equivalent for each pi, p> € Sz\‘é(“, p [1, Theorem
5.2(1)]. In this part, we show that I, and —I, are equivalent. Without the
hypothesis that #%, 3 = 2, however, I, and I, are not necessarily equivalent
for each pi, pr € 6(,,5. We use the results of Sections 3 and 4 to give an example
that illustrates this point (Proposition 5.4). In this example, #%(, g is equal to 8.

Acknowledgements. 1 would like to thank Professor Kazuo Masuda for
useful discussions. I would also like to thank Chikara Nakayama for his help in
providing an elementary proof of irreducibility of uc!(f).

2. The definition of toric hyperkihler manifold

In this section, we sketch the differential geometric construction of toric
hyperkdhler manifolds [2, §3].

Recall that the standard metric on H" is hyperkihlerian. Let {1,7, j k} be
the standard basis for H. Left multiplication by i (respectively j, k) defines a
complex structure I (respectively J, K) on HY. This metric is Kihlerian with
respect to the complex structures I, J, and K.

We identify i € H with v/—1 € C. We define a mapping

cVxc¥ —HY
(zF,z7 )=zt + 27
We use this mapping to identify HY with CY x CY. For (zt,z7) e cV xch,

we write (z,27) = (zf,..., 2y, 21, ..., Zy) with 2,z € C for each j=1,...,N.
Let TV be the real torus

TV .= {t:=(t1,...,ty) eCV ||| = 1 for each j=1,...,N},

and let TV act on the right on HY by (z*,z7)-t=(z* - ¢,z -¢*'). This action
preserves the hyperkéhler structure. Let {ej,...,ey} be the standard basis for
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RY, and let {u,...,uy} be the corresponding dual basis. Then the hyperkihler
moment map u° := (uf, 19, 1%) : HY — (RM)* @ R? for this action is given by

_ 1Y 2 _
1) HE2) =5 07 P = 1y
J:
and
N
(2.2) (W) +V=Tg) (=) = V=T =z
=1

Note that the hyperkdhler moment map is surjective.

Let K be a subtorus of 7V whose Lie algebra f < RY is generated by
rational vectors. Set k := dim K. Let::f— R be the inclusion mapping, and
let 7: RY — R” := R"/f be the canonical projection. Then we obtain an exact
sequence

0-fT5RY SR -0,
and, by duality, an exact sequence
0t & (RY)" Z (R")" —o0.
We now restrict the action of TV on HY to K. We set e =1"®C, and
define g, : HY — £ (respectively uc : HY — %) to be the mapping 1* o u) (re-

spectively 1* o+ v —11" ou%). Then the hyperkdhler moment map for the
action of K on H" is u:= (py,uc) : HY — £ x 1.

DEFINITION 2.1 (Bielawski-Dancer). Let (a,f) € t* x f¢. be a regular value of
u, and let K act freely on g~ '(x,8). Then we refer to the hyperkéhler quotient

X(O‘aﬁ) = :uil(ocaﬁ)/K

as a toric hyperkdihler manifold.

Remarks. (i) A toric hyperkdhler manifold is not a toric manifold in the
usual sense.

(ii) Suppose that 7z(e;,) =0 for some joeN with 1< jyo <N. Then the
toric hyperkdhler manifold X («, ) is a hyperkihler quotient of HY™!
by KNTN!, where HY™! = {(z*,z7) e H" |z} =z, =0} and TV"! =
{ZGTN|I_/0=1}. ‘

Suppose that 1*u;, = 0 for some jo e N with 1 < jo < N. Then the
subtorus K is a subgroup of 7V~! and X(a,p) is the Cartesian product
of H with a hyperkihler quotient of HY~! by K.

These cases are not essential for our purposes. Thus we exclude
these cases in this paper.

For (z*,z7) e u~! (o, B), we denote its equivalence class in X (a,f) by [z+,z7].
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A toric hyperkéhler manifold X («,f) is a non-compact connected manifold
of real dimension 4n. The standard metric on HY and the complex structures
I, J, and K descend to X(«,f), and the induced metric on X (a,f) is hyper-
kéhlerian.

The quotient group 7" = TV /K acts in the natural way on X(a,f), pre-
serving the hyperkihler structure. Let ae (RY)* and b e (CY)* be such that
*a=ao and 1*b=f. Then the hyperkdhler moment map ¢,, := (qﬁ;‘,qﬁé):
X (o, ) — (R")" x (C")* for the natural action is given by '

gz 2 ) =z 27 ) —a
and

dellz27]) = (ug + V=Tug) (=", 27) = b.

Remark. We use the monomorphism 7n* to identify (R")" with ker *.
Then, for each (z%,z7)eu'(o,f), we have wu(zF,z7)—ae(R")" and
(104 V1) (=2 ) — be (C)'

In [2], Bielawski and Dancer gave necessary and sufficient conditions for a
hyperkihler quotient x~!'(x, 8)/K to be smooth or an orbifold. The following
two propositions are due to them [2], partly based on results by Konno [7].

We first give necessary and sufficient conditions for («,f) e I* x f( to be a
regular value of u. Let ae (RY)" and let be (CY)*. For j=1,...,N, set

H(j,a) = {xe (R")"[{x,n(e))) = —<a, ¢},
a hyperplane in (R")", and

He(j, b) = {x e (C")"[<x,m(e))) = —<b,ej>},
a hyperplane in (C")*. For each j=1,...,N, the two closed half-spaces in
(R")" bounded by H(j,a) are

H'(j,a) = {xe R")"[{x,n(g)) = —<a, e},

H(j,a) == {xe R")"[{x,n(e)) < —<a, e}

Let ¥~ be the set of all codimension one subspaces of I* generated by subsets of
{t*uy,...,t*uy}. For each Ve, set Ve =V ®C.

ProposiTION 2.2 (See [2, Theorems 3.2 and 3.3] and [7, Proposition 2.1]).
Letae (RY)" and b e (CN)* be such that 1*a = o and 1*b = . Then the following
Statements are equivalent:

(i) (a,p) is a regular value of u;

(i1) m‘/efH(j,a) X Hc(j,b) = 0 for each subset J of {1,...,N} with #J =

n—+1;

(iii) for each V e ¥", we have either a¢ V or f¢ V. O

We denote the set of all regular values of u by (" x ()

reg*
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We next give necessary and sufficient conditions for K to act freely on

w ().

ProposiTION 2.3 (See [7, Lemma 2.2 and Proposition 2.2]). Suppose that
{n(e1),...,n(e,)} is a basis for R". Let A be the matrix of m relative to the
bases {ei,...,en}, {n(e1),....m(en)}. Let (o, ) € (" X I¢),eq Then the follow-
ing statements are equivalent:

(i) K acts freely on u'(a,p);

(ii) {n(e;)|jeJ} is a Z-basis for n(Z") for each subset J of {1,...,N} such

that {n(e;)|je€J} is a basis for n(R");
(i) A is a totally unimodular matrix, that is, each square submatrix of A has
determinant equal to 0, +1, or —1. O

We consider only the case where a hyperkihler quotient x~'(a,)/K is
smooth. So we suppose throughout this paper that Condition (ii) above holds.

A toric hyperkdhler manifold X («,f), the Kéhler quotient of uc!(B) by K,
can be idetified as follows with the quotient of a suitable open subset of uc!'(f)
by the complexified torus Kc. We start with a basic definition.

DEFINITION 2.4 Let (o, ) € (" X f¢) ., and let (z*,27) € uc' (f). We say
that (z*,z7) is a-stable precisely when the orbit of K¢ through (z*,z7) meets

-1
Hy ().
We denote the set of all o-stable points of uc!(B) by uc'(B)

o—st

Remark. By [8, Theorem 5.2(2)], this definition is equivalent to Konno’s
definition [8, Definition 5.1].

o—st

The set pc' (B)*™*" is Kc-invariant. By definition, we have x~ (o, ) = ' (B)
Hence the inclusion u~'(a, 8) < uc'(B)*™* induces a natural mapping

X (o) = 1 (@, )/ K — uc' ()" /Ke.
By [8, Theorem 5.2], we can use the natural mapping to identify (X (o, f),I) with

~1 o—st
te (B)" /K.
We end the section by giving a useful criterion for o-stability. This criterion
is due to Konno [8]. For each Ve ¥/ fix Yy et such that

V={vet"|{v,Yy) =0}
Let (2,f) € (1" X I¢)ye- Set ¥ :={Ve?"|feVc}, and, for each V € 7}, set
Jp={je{l,....N}| & u, Yy o, Yy) > 0}
and

Jy={je{l,...,N}| "y, Yy )<o, Yy ) < O}

PROPOSITION 2.5 (See [8, Theorem 5.10]). Let (z*,z7) e uc'(B). Then the
following statements are equivalent:
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(i) (zF27)enc' (B
(i) for each V € ¥y, there exists jeJ,,UJ; such that either jeJj, with
zi #0 or jeJ, with z; #0. O

3. A construction of compact complex submanifolds

Suppose that («,f) € (f* X f¢),,,- In this section, we consider only the case
where (X (o, f),I) is not biholomorphic to an affine variety. So we suppose that
¥y # 0 (see [2, Theorem 5.1] and [1, Corollary 3.6]). The purpose of this section
is to construct compact complex submanifolds of (X(«,f),I) that are invariant
under the T"-action. We denote the Kéhler form corresponding to the complex
structure J (respectively K) by wy (respectively wg). We show that these sub-
manifolds are isotropic with respect to the form wy + vV—lwg, and that these
submanifolds are biholomorphic to Delzant spaces.

We first give a brief review of Delzant’s construction of certain toric varieties
from polytopes. We follow the exposition of Guillemin [5, Chapter 1 and Ap-
pendix 1].

Recall that a d-dimensional polytope P in (R?)* is said to be Delzant
precisely when

(i) P is simple, that is, each vertex p of P is contained in precisely d edges

of P, and

(ii) for each vertex p of P, there exists a Z-basis {w,...,wy} for (Z4)* such
that the d edges of P containing the vertex p lie on the rays p + tw;,
0<t<o0.

Let P be the Delzant polytope in (RY)* defined by a system of inequalities of
the form

<xaaj>2yj7 (j:17"'1m)7

where a; €Z? and y,eR for each j=1,...,m and m is the number of facets
of P. Let ¢:R™ =R be a linear mapping for which ¢(e;) = a; for each
j=1,....m. Set l:=kerqg and let i:[— R™ denote the inclusion mapping.

Then we obtain an exact sequence
0—>IL>R”’1>Rd—>O,
and, by duality, an exact sequence
01" & (R L (R — 0,
Since ¢(Z™) < Z?, the mapping ¢ induces a group homomorphism from 7
to T7. Denoting by L the kernel of this homomorphism, we obtain an exact

sequence
l - L—->T" T 1

of abelian groups.
The natural action of 7™ on C™ is Hamiltonian, and its moment map is

1 m
VOZCm—>(Rm)*, (Zla---azm)'_> §Z|Z,|2u,
=
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We restrict the action of 7" on C” to L. The moment map for the action of L
on C"is v:=i*oy':C" = 1*. Set y:= — > vji*u;. Then L acts freely on
the level set v=!(y). Reducing C” with respect to the action of L, we obtain the
Delzant space

Xp :=v(y)/L.

For zev7!(y), we denote its equivalence class in Xp by [z].

The quotient group T¢ = T"/L acts in the natural way on Xp. Set c:=
—> " 7. Then the moment map V : Xp — (RY)* for the natural action is
given by

Y(z]) =2°(z) —c.

Remark. We use the monomorphism ¢* to identify (RY)* with ker i*.
d\ *

Then, for each zev~'(y), we have v'(z) — c e (RY)".

The Delzant space Xp can be identified as follows with the quotient of a
suitable open subset of C™ by the complexified torus Lc. For each subset J of
{1,...,m}, set

C/={(z1,...,2m) €C"|z; =0 if and only if jeJ}.
Each orbit in C™ of the complexified torus 7 is of the form C7' for some subset
J of {1,...,m}. Now let F be a face of P. Then, since P is simple, there

exists a unique subset J of {l,...,m} such that F is defined by a system of
equalities
<x7a/>:y/7 (]GJ)
Let C7 :=CJ. Then
cpi= U cp
F face of P
is an open subset of C”. The set C} contains v~ !(y), and the inclusion
v l(y) < C7 induces a natural mapping
Xp=v'(y)/L— Cph/Lc.

We can use the natural mapping to identify Xp with the orbit space C3/Lc.
Now we are ready to consider our main problem. We need some notation.
Fix a subset J of {l,...,N} such that
(a) {n(e;)|jeJ} is a basis for n(RY), and
(b) let ;e C (jeJ€) be such that =3, ; Bi1*u;. Then

Jo:={jeJ|B, =0} #0.

Since 7 # 0, such a J exists. We can write « = >_._ ;. a1*y; for suitable o; € R.
We set '

a:= Z ou; and b= Zﬂjuj.

jeJe¢ jeJe¢
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We denote by @ the set of all mappings from JUJy to {+,—}. Let ¢€@®.
Then we define two mappings ¢ : JUJy — {+,—} and 0: JUJy — {1,—1} by

o () im + for each je JUJy with ¢(j) = —,
V=L for each j e JUJy with &(j) = +,

and

50) = 1 for each j e JUJy with &(j) = +,
JZ 21 for each je JUJ, with &) = —

For each ¢ € ®, let P, be the polyhedral set

N ’H'S(f)(] a

jeJul,

Now we can state the theorem.

THEOREM 3 1. Let e€® and let F be a bounded face of P..

1) (dap) YF x{0Y) is a compact complex submanifold of (X (a,p),1),
zsotroplc with respect to the form wy+ v —lwg, and invariant under
the T"-action.

(ii) The polytope F is Delzant, and (¢, )" H(F x {0}) is biholomorphic to the
Delzant space Xr.

Remark. By the proof of Theorem 3.3 of [1], we see that P, possesses a
bounded edge for some ¢ € @®.

For the proof, we need

PROPOSITION 3.2. Let [z7,z7] € (¢3)*1(0). Then, for each jeJUJy, the
following holds: )

(i) [z,z7]e(dr)” ( U, ))lfandonlylfz '=0~

AR A RIT if 5 Lz =0

Proof. By assumption, we have
(3.1) 0=<a*(ge(lz",27]) +bey = —V=1zz;
for each jeJUJ,. Since

* a — 1 —
(g2 27]) + a, e ——(|Z+| —lz1%)
for each jeJUJy, the assertions follow immediately from (3.1). O

Proof of Theorem 3.1. We may assume that d :=dim F > 1.
Let xo be a vertex of F, and set J' := {j e JUJy|x0 € H(j,a)}. Then, since
(2, B) € (I" X I¢) e, it follows from Proposition 2.2 that {n(e;)|je J'} is a basis
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for m(RY). We can write

!

o= Y oty and B= ) By
Je{lm NN Jellm NI\

for suitable ocjf e R and for suitable ﬂ]{ e C. Setting

Jo={je{l,....N}\J'| B; = 0},
we have
(3:2) (/o) = (Jo)"
Hence JUJy =J'UJ{, so that Jj # 0. Thus the subset J' satisfies Conditions

(a) and (b). Since JUJy =J'UJ], there exists a unique mapping &' : J'UJ| —
{+, -} such that ¢ =& Set

a:= > dw and b= > Pu.

Let P be the polyhedral set
P= () H'U(j,a).

jeJ'u;

Now let 7: (R")" — (R")" be the translation for which T'(x) = x — x( for each
xe (R")". Since {xg,7(e;)) = (a’ —a,¢;) for each jeJ' and a’ —a € ker 1*, we
have ¢’ —a =n*(x¢). Hence we have T(P,) =P,. Set F':=T(F). Then F'
is a bounded face of P,. Note that the origin is a vertex of F'. Now, since
a' —a=mn*(xp), we have T o ¢} = (/51”/. On the other hand, since b = b’ by (3.2),
we have ¢2 = ¢g. Hence we have (¢a7b)71(}' x {0}) = (qﬁa,‘b,)*l(}" x {0}).
We may therefore assume that the origin is a vertex of F.

For each jeJUJy, we set H;:=MH(j,a), H :=H'(j,a), and H; =
H (j,a). We set ¢, := ¢y and ¢:=¢,,. By rearranging the indices, we may
assume that

J={1,...,d;d+k+1,...,N} and Jo={d+1,...,1},

where d </ <d+k. Since (o,f)€ (I x I¢),,, We have o; #0 for each jeN
with d < j <[. Hence 0 ¢ H; for each j e N with d < j </, so that, since 0 € F,
we have F & H; for each such j. Thus, by a suitable rearrangement of indices,
we can write

m . N
F=(i%n () n,
j=1 j=d+k+1
where d < m < and
m . N
(3.3) F# RN [} H foreachi=1,...m

j=1 Jj=d+k+1
J#i
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(i) Since the canonical projection X (o, ) — X (o, f)/ T " is proper, ¢ is proper
by [2, Theorem 3.1(i)]. Therefore, by assumption, ¢ '(F x {0}) is compact;
moreover, it is invariant under the 7"-action.

We set

M :={(z",z7)eHY |Z;’<j) =0 (1<j<l),

~V-lzfzp = (I<j<d+k), z7=z =0 (d+k<j<N)}

Since B; # 0 for each jeN with / < j <d+k, it follows that M is a complex

submanifold of (HY,I). Let p:u (o, ) — X (o, ) be the canonical projection.
By Proposition 3.2, we have

(3.4) (o) (F x {0}) = M N g5 (2).

The restriction of y; to M is the moment map for the induced action of K on
M. Note that K acts freely on M Nyu;'(x). We obtain the Kihler quotient

(3.5) (M Ny (@) /K = ¢~ (F x {0}).

Hence ¢~ '(F x {0}) is a compact complex submanifold of (X(«,f),I) that is
invariant under the 7"-action.

Now M is isotropic with respect to the holomorphic symplectic form on H"
and so ¢ '(F x {0}) is also isotropic with respect to w; + v/—lwg.

(ii) Let 4 = (a;) be the matrix of = relative to the bases {ej,...,en},
{n(e1),...,n(eq),n(€44k+1),---,7(en)}. Then we have

Kc—{(tl,...,lN)ETév

d+k d+k
—aj; . —a;_
t = ||tjf(131gd), t; = || U d+k<i<N) g
J=d+1 J=d+1

For each j=1,...,d, let «:=0eR. For each j=1,....,m, set a; :=
“aij, ..., aq), and let H; be the hyperplane

Hj = {xe (R)"|{x,a) = —o5}

in (RY)*. Then, for each j=1,...,m, the two closed half-spaces in (R)"
bounded by H; are

"= {xe R [<xa) > —),
'H; = {xe (RY)"|<{x,a)> < —o}.
Let F be the d-dimensional polyhedral set

700).

&
J

F =

s

j=1
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Since F is bounded, the polyhedral set F is a polytope. By (3.3), we have

F # ~;(j) for each i=1,...,m.

s

1
i

Ml

A
J

_ The proof is divided into two parts. In Part A, we prove that the polytope
F is Delzant. In Part B, we prove that ¢ '(F x {0}) is biholomorphic to the
Delzant space Xz.

Part A. Since
N
(Ot,ﬁ) € (f* X fé)reg and F < ﬂ Hj’
j=d+k+1

Proposmon 2.2 implies that each vertex of Fis contained in precisely d facets.
Thus F is simple. Let p be a vertex of F, and let Fi,..., Fy be d facets of F

containing p. Then, for each j=1,...,d, there exists the 1nteger Ay 1 <4 <m,
such that 7 = FN'H,;. Since a,.. Eu , are linearly independent, the rnatrix
A4:= (@,...,a;,)1s ummodular by Proposmon 2.3. Foreachi=1,...,d, let v;
be the ith row vector of A~!. Then the matrix

5(21)1)1

5(;»‘1)0‘1

is also unimodular. Since the polytope F is simple, it follows that

d ~
ﬂ]:
Ji

is an edge of F for each i=1,...,d. For each i = 1,...,d, the edge ¢; lies on
the ray p+ t6(4;)v;, 0 <t < oo. Thus the polytope F is Delzant. Note that

m

L:{(zl,...,tm)eT’”z,-: IT %Y @ <l<d)}

j=d+1

Part B. By [8, Theorem 5.2(2)] and (3.5), we can naturally identify ¢~ (F x {0})
with the orbit space (M Nuc'(B)*™)/Kc.

(a) We construct a holomorphic mapping f: ¢ '(F x {0}) = X 7 Let
(zY,z7) e MNy;' (o). Then we have (zf(l), L zEmy e yI(p). Since vl(y) <

CZ%, we have

(3.6) (... z8my e cm.
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Set &(j) := + and 0(j) := 1 for each j e N with / < j <d + k. Then we have the
following

Cram 1. For each jeN with m < j<d+k, we have z;'m # 0.

Proof. Since —v—1zfz; =f; #0 for each jeN with /< j<d+k, we
have z]?m # 0 for each such j.
We show that

(3.7) FNH;=0 for each jeN with m < j <.

Suppose that FNH;, # 0 for some jo e N with m < j, </, and seek a contra-
diction. Then FNH;, is a face of 7 so that F NH,, is a polytope. Let x be a
vertex of FNH;,. Then x is a vertex of . Hence there exists J; c {I,...,m}

such that #J; =d and xe (), ; M, and so

N
xe () N () H=2Q
JjeiU{jo} Jj=d+k+1

But, by Proposition 2.2, we have Q =(; we have therefore arrived at a
contradicion. Hence we obtain (3.7).

We now prove that z/f:(*’) # 0 for each j e N with m < j </I. Since zje’(j) =0

for each j e N with m < j </, it follows from Part (ii) of Proposition 3.2, (3.4),
and (3.7) that ng(j) # 0 for each jeN with m < j <. O

It follows from (3.6) and Claim 1 that

d+k o d+k o
(3.8) z:= <Zf(1) H (ij(/))al,é(./)rF(l),'“’Zj(d) H (Z]'_S(J))cm,f>(./)f>(d)7

Jj=m+1 j=m+1

e(d+1) &(m)
Zabl s Zm

is also in Cg. Hence we can define a mapping
M0 (@) — €
(zF,z7) =z
This mapping induces a holomorphic mapping
f 17 (F x {0)) = (M N () /K — Cp/Le = X

It is easy to check that the mapping f is well-defined.
(b) We next construct the inverse of f. Let z = (z1,...,2z,) € v (y). Set
(1) zjm :=z; and Z;’(]) =0 for each j=1,...,m,

(2) zfm =1 and z;’m =0 for each j=m+1,...,1,
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3) z :==1 and z;7 :=+v/—18; for each j=1+1,...,d+k, and
j j )
4) z/ :==z; :=0 for each j=d+k+1,...,N.
Then
(3.9) (zF,z7) e M < uc' (B);

moreover, we have the following
CLAmM 2. The point (z*,z7) is a-stable.

Proof. We can write y([z]) :Z;il cju; for suitable ¢j,...,c;eR. Let
{vj|jeJ} be the dual basis of {n(e;)|jeJ}. Set v:= Z]-dzl cjvj. Then ve F.

By [2, Theorem 3.1(i)],1>there exists [wT,w™] e X(o, ) such that ¢([w™,w7]) =

(v,0). Setting w:= (w;"’,...,wn""), we have we v-!(y). Foreach j=1,....,d,
we have
1 ol
On the other hand, we have, for each j=1,...,d,
(3.11) W), &> = <o, n(e))>
= <¢l([w+a W_])77Z(ej)>
1

=5 (W P = ).

It therefore follows from (3.4) that

1 . e(j .
<.//([z}),ej>:55(J)|Wj<f>|2 for each j=1,....d.

Hence, by (3.10), we have ¥([z]) = W([w]), and so there exists r € T™ such that
z=1t-w. Thus, since the point (w', w™) is a-stable, it follows from (3.4), (1), (2),
(3), and Proposition 2.5 that the point (z7,z7) is also o-stable. O

By (3.9) and Claim 2, we can define a mapping
v o) = MOuct (B
ze (zF,27).
This mapping induces a holomorphic mapping
g: Xz =v"'(0)/L— (MOuc"(B)*)/Kc = ¢~ (F x {0}).
It is easy to check that the mapping g is well-defined and that fog =Idy, and
gof =Idy 1z

Thus f is biholomorphic, as required. This completes the proof of Theorem
3.1 O



TORIC HYPERKAHLER MANIFOLDS WITH COMPACT COMPLEX SUBMANIFOLDS 373

4. Resolution of singularities

We use [11] as a reference for basic facts about algebro-geometric quotients.
Suppose that (a,f) € (I* x f¢),,- Then the inclusion homomorphism
Cluc' (B))*C — Cluc'(P)] induces an affine quotient map

p:uc'(B) — Spm Cluc' (B)]* =: uc' (B)//Kc.

The morphism p is given by generators of C[ﬂgl(/)’)]Kc. Let the affine variety
tc'(B)//Kc be equipped with the (usual) Euclidean topology. Then the com-

posite mapping - P
1M @, B) = e (B) = uc (B Ke

induces a holomorphic mapping

W (X (), 1) = (u (@ B)/K.T) — uc' ()] Ke.

The purpose of this section is to prove that the mapping ¥ is a resolution of
singularities (Theorem 4.6).

In this section, we use the fact that uc'(p) is irreducible for each B e f¢.
Since n(e;) #0 for each j=1,...,N, this fact follows immediately from the
following proposition. This proposition is due to C. Nakayama.

PropPOSITION 4.1. Let R be an integral domain, and let ai,...,a, € R\{0}.
Then
A=R[z,....z z(,...,z 1)z —ar,..., 2z, —a)

is also an integral domain.

Proof. Since the natural ring homomorphism R — A is injective, we may
assume that /= 1. Consider the ring homomorphism g¢: R, := R[z{,z;]| —
R[z{,1/z]] for which g(h)=h for each he R[z{] and g(z;) =ai/z{. We
show that ker g = (z{zy —ai)g,. Let hekerg. Then he{zy —a1/z{ dp,1/zt)-
Hence there exist ne N and f e Ry such that (z{)"h = (z{zy —a;)f. Thus,
since a; #0 and z{ is prime element of R;, we have f e {z{)g. Hence
hez{zy —ai)g,, and so ker g = (zfzy —ai)p,. The reverse inclusion is im-
mediate from the definition of g. Thus 4 is an integral domain. O

First, we prove the following
ProroSITION 4.2. The mapping ¥ is proper and surjective.

Proof. Suppose that W is not proper, and look for a contradiction. Then
P 1 (5 ) is not proper. Therefore there exists a compact subset C = uc!(f)//Kc
such that (pl,-1, ﬂ))_l(C) is non-compact. Hence we can choose an unbounded
sequence {z,},.n IN (p|ﬂ,1(“1ﬁ))7l(C). For each veN, we write z, as z, =

+ + = -
(Zwl,...,Zv?N,Zv’l,...,ZV‘N). We set

Jt = {je{l,...,N}\}yirg|z¢j| :+oo}
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and
Jo={Je N+ 1, 2N} Tim|z | = +oo }.

We may assume that
(a) JEUJ, #0;
(b) the sequence {z, },.n is bounded for each je (/7)) and

(c) the sequence {z,; y},n is bounded for each je (J7)°.

By rearranging the indices, we may assume that {:*u,...,1%u;} is a basis
for t*. Let P=(p;) be the matrix of :* relative to the bases {uy,...,uy},
{t*uy,...,r"ux}. By Proposition 2.3, the matrix P is integral. Let P be obtained

from the matrix (P|—P) by replacing the jth column of (P|—P) by 0 for each
Je(D) UL

0
For real row vectors a = (ay,...,a,) and b= (by,...,b,), we write a > b
precisely when a; > b; for each j=1,...,m. We show that there does not exist

y e RF with ‘yP >0 and ‘yP # 0. Suppose that such a y exists, and seek a
contradiction. Let ¢ :=(qi,...,q2n5) := 'yP. Then, by (2.1) and the definition
of u, there exist ¢, ¢;, dieR (ie(J1),je(J,) ) such that

2 R e 2
D aleilt X dlaalH Y almil Y gkl = e
je(W) i=1

ie(5)" j=h+l

for each veN. For each ve N, we set

2 — 2
Xy = Z C[‘Zj:i‘ + Z 61]-|Zv.’j7N|

ie(J5)" jelz)"
and
N 2N
— + 12 - 2
Wy = E qt|Zv,i| + E ‘li|Zvv/7N| .
i=1 j=N+1

It is clear from Conditions (b) and (c) of the hypotheses that the sequence
{xy},en 1s bounded. It follows from the definition of P that ¢; =0 for each
JEWL)UJI,), so that, since ¢ >0 and ¢ # 0, there exists jeJI UJ, such
that ¢; > 0. Hence we have lim,_., y, = +0co. Thus we have lim,_(x, + v)

= +o0. This is a contradiction. Hence there does not exist y € R¥ with ‘yP > 0

and yP #0. A
Thus, since P is a rational matrix, it follows from the Transposition Theorem
of Stiemke [14, p. 95] that there exists a vector m = ‘(my,...,myy) € Z*" such

that m; > 0 for each j=1,...,2N and Pm=0. Setting
/= H =)™ H (ZJZN)mjv
ieJ} JjeJs

we have lim,_,,|f(zy)| = +00. On the other hand, since Pm = 0, the monomial
f is Kc-invariant. Thus, since p(z,) € C for each v € N, the sequence {f(z))},cn
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is bounded. But this contradicts the fact that lim,_,.,|f(z,)| = +00. Hence ¥ is
proper.

We next prove that ¥ is surjective. It follows from Proposition 2.5 that
pc'(B)*™*" is a nonempty Zariski open subset of uc!(f). Thus, since puc'(p) is
irreducible by Proposition 4.1, the set uc!'(f)*™™ is Zariski dense in uc'(f).
Thus, denoting the Zariski closure of a set X by cl*(X), we have

uc' (B)//Ke = p(el™(uc' (B)*™))
< ol (pluc' (B)*™)) < uc' (B)// K-

Hence
uc' (B)//Ke = " (p(uc' (B)*™)).

For a subset X of uc'(B)//Kc, we denote by cl(X) the closure of X in the
Euclidean topology on uc!(B)//Kc. Since p(uc'(f)*™) is constructible [12,
Corollary 2, p. 51], it follows from [12, Corollary 1, p. 60] that

o (p(iic' (B)*™)) = el(p(uc (B ).

Now ¥ is closed, since ¥ is proper. Hence

uc (B) )/ Ke = cl(p(uc' (B)*)) = cl(Im ¥) = Im P.

This completes the proof of Proposition 4.2. O

Suppose that f e f¢. Recall ([11, Definition 5.12]) that a point x € ¢! () is
said to be stable for the action of K¢ precisely when

(i) the orbit x- K¢ is a Zariski closed subset of uc!(B), and

(ii) the isotropy group of x is finite.
Let uc'(B)" denote the set of all stable points for the Kc-action, and set Uy :=
p(ic'(B)°).  The stable set g (§)° = uc! () and its image Uy < uc! (B)//Kc are
Zariski open sets [11, Proposition 5.15].

The following proposition is useful in the rest of this section.

ProposITION 4.3. Let (a,f) € (F* x () Then

reg’
ue' (B)' = uct (B).

Proof. Letx e uc'(B)°. Then, by Proposition 4.2, there exists y € uc' ()"
with p(x) = p(y). It therefore follows from [11, Theorem 5.16] that x- K¢ =
y - Kc. Since the set uc!'(B)* is Kc-invariant, we have x e uc!(f)*™". Hence

uc (B)* = uc (B . O

Since, by Definition 2.4, the variety uc'(B) is smooth at each point of
uc'(B)*", and since Kc acts freely on uc'(B)* ™" [8, Theorem 5.2(1)], it follows
from Proposition 4.3 and [11, Corollary 9.52] that Uy is smooth. Hence, by
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Proposition 4.3 again and [11, Theorem 5.16], the mapping ¥ maps ‘P_I(Up)
biholomorphically onto Uz. Hence

4.1) The exceptional set X (o, B)\¥~'(Up) contains every compact
complex submanifold of (X (a,p),I).

We state a criterion for stability in terms of the elements of .
PROPOSITION 4.4, Let (o, f) € (I* X I¢),, and let (z7,z27) € uc' (B)*".
Then (z*,z7) e uc'(B)" if and only if
4.2) For each V € ¥y, there exists jeJ,;UJ, such that either
JeJy with z; #0 or jelJ, with z #0.
Proof. Set
Ji:={jl1<j<N,zf #0, and z; # 0},
Jry:={jl1<j<N,zf #0, and z; =0},
Jy:={j|1<j<N,zf =0, and z; #0}.

Let Ry (respectively R.y) denote the set of positive (respectively negative) real

numbers. Let
o= E Ri*u; + E Root*u; + E Root*u;.
jei jeh jeJs

We first show that dim o = k. We suppose that dim o < k and look for a
contradiction. Then there exists V' € ¥~ such that

Ri*u;j c V.
jE]]U]zUJ3

Since (z*,27) e uc' (B)*", it follows from (2.1), (2.2), and the definition of x that

o€ E Ri*u; and fe E Crru;.
jEJ[UJgUJ_} jE]]U.IzUJ3

Hence we have w € V' and fe Vc. On the other hand, since («,f) € (1" X f¢) eq
it follows from Proposition 2.2 that either o ¢ V' or f¢ V. This is a contra-
diction. Hence

(4.3) dim o = .

Now let (z*,z7) satisfy Condition (4.2); since (—a,f) € (I* X I¢) e,
osition 2.2, we can deduce from Proposition 2.5 that (z*,z7) e uc!(p)
Hence, by [8, Definition 5.1], we have « € N (—a). In particular, ¢ N (—a) # 0,
and so 6N (—o) is a subspace of *. Thus, since ¢ is an open subset of * by
(4.3), we have * =gN(—0). Hence " =o0.

by Prop-

(—o)—st
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For each v et*, we define a function /,: T — R by

1 & - -
IU(X) _ <U,X> +ZZ(|Z}|»|2672<1 uj, X ) + |z;|2€2<l u,.X}).
Jj=1

CLam 1. Let vet”, and let X €t be such that {v,X) #0. Then we have
lim /,(1X) = +c0.

t——+o0

Proof. The proof of the claim is the same as that of Claim 5.9 of [8] except
for obvious modifications.
We have

(4.4) L(tX) = v, XY+ 1

A1

N
Z(|Zf|2672t<l’u,,X> 4 ‘Z/— |2€2t<1*uj.’X>).
Jj=1

If (v, X> >0, then the claim holds by (4.4). Suppose that {v, X)> < 0. Since
o =1", we can write

v= Z cj(.l)l*uj + Z c']<2>l*uj + Z cj(-3)l*uj,

jedi jed jels

where c_(.l> € R for each je Ji, c}z) € Ry for each j e J,, and c_@ € R for each

jeJs. Thus, since <v, X) < 0, there exists jeJy UJ,UJ; such that either
jeJiUJy with (fup, X)) <0 or jeJ UJs with Gfuyy X > 0.

Hence, by (4.4), we have

lim 1,(1X) = +o0. O

t——+o0

Suppose that the orbit (zF,z7) K¢ = uc'(f) is not Zariski closed, and
seek a contradiction. By [3, Lemma 3.4], there exists an element (w™,w~)e
(CY x CM)\{(z*,z7)} and a one-parameter subgroup % :G,, — K¢ such that

(4.5) (zF,z27) - Alx) — (wh,w™) as x — 0.
We can write the one-parameter subgroup 4 in the form
xeC e (x™,...,x"™) e K¢

with my,...,my € Z. Setting X :='(my,...,my), we have X e f\{0}. Thus
there exists an element vel* such that <{v,X)> <0. By Claim 1, we have
lim, ., [,(tX) = +00. On the other hand, since

N N
. 2 — U -2 ;i 2 -2
tl}f}ﬂ E 1(|Z]+| e, Xy |Zj | Q2C u/,X>) = g 1 (‘W;'| + |Wj [)
J= J=
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by (4.5), using <v,X» <0, we have lim, [,(tX) = —oo. This is a contra-
diction. Hence the orbit (z7,z7)- K¢ is Zariski closed. Thus, since K¢ acts
freely on uc!'(B)*™* [8, Theorem 5.2(1)], we have (z*,z7) e uc!(B)’.
Conversely, suppose that (z*,z7) e uc'(B)°; since (—a,f) € (F* x [c)wee BY
Proposition 2.2, we can deduce from Proposition 4.3 that (z*,z7) € ygl(ﬁ)(f"‘)*”.
Thus, by Proposition 2.5, we see that (zt,z7) satisfies Condition (4.2). O

We use this criterion to prove the following

ProprosITION 4.5. Let fefi.  Then
' (B)* #0.

Proof. Let ael” be such that (a,f)e (" x1g) If ¥5=0, then
uc' (B)* " = puc'(B) by Proposition 2.5. Thus, since Kc acts freely on
uc(B)*™" [8, Theorem 5.2(1)], it follows from [I11, Corollary 5.14] that
tct(B)’ = uc' (B). Hence, since uc!(p) is nonempty, so is uc'(f)"; we therefore
suppose that 7 # 0.

Then, for each V e 7}, there exists jy e J;,UJ;. Let be(CY)" be such
that 1*b = f. Fix xo € (C")" such that xo ¢ Hc(jy,b) for each Ve ¥} By [2,
Theorem 3.1(i)], there exists [z*,z7] € X(«,f3) such that ¢2([z*,z7]) = xo. For
each V e 75, we have zj*;zj’v # 0. Indeed, if z;;zjfy = 0 for some V € ¥}, then we
obtain

<7T*(X0) + bvejv> = <n*(¢g([z+a2_])) + bvejv>
= —V—1ztz;

Jv=Iv
=0.

Thus xo € Hc(jy,b). This is a contradiction. Hence, since (z*,2z7) € uc' (B)*,
it follows from Proposition 4.4 that (z*,z7) € uc'(f)". In particular, uc!'(f)* #

0. O

Since ,uE](ﬁ) //Kc is irreducible by Proposition 4.1, it follows from Prop-
osition 4.5 that the set Uy is Zariski dense in uc'(f)//Kc.
We summarise our discussions in the following

THEOREM 4.6. The mapping ¥ is a resolution of singularities, that is,

(i) Y is proper and surjective,

(i) W '(Up) is a dense open subset of X(a,p), and

(iii) ¥ maps ¥~ (Up) biholomorphically onto Up. O

5. Equivalence of complex structures

Let (o,f) € (' x f¢),,- We can write f =, + vV —1p, for suitable f;,5, €
f*. We regard S? as the unit sphere in R®. If p:=‘(py, ps, p3) € S?, then
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I, := piI + p>»J + p3K is also a complex structure on X(«,f). Set
G p) = {peS*|(X(x,p),1,) is not biholomorphic to an affine variety}.

Let I, and I, be complex structures on X (o, ). We say that I, is equivalent to
I, and write I} ~ I, precisely when (X («, $),1;) is biholomorphic to (X («, £), I2).
In this section, we discuss when two complex structures I, and I, with
D,q € 6, p are equivalent.
We first give a sufficient condition for a complex structure I, to be equivalent
to the conjugate complex structure —I,.

ProrosiTION 5.1, Suppose that either f; = 0 or f, = 0. Let p € 6, 5. Then
I, ~ I,

Proof. We provide a proof for the case where f; = 0; the other case is
similar.

Since f, = 0, it follows from [1, Theorem 3.3] that p, = 0. Let g;,q3 € R be
such that the matrix

p1 0 p3
P=| 0 1 0
g 0 q3
is an element in SO(3). Then we have
o p1o.+ paf,
Pl 0 | = 0
B> g1+ g3,

Hence, if we set
o = pra+pify, and  pi=V—=1(qiz+ g3),

then it follows from [1, Theorem 3.2(2)] that
(X(O(,ﬂ),lp) g (X(O(,aﬂ/)7l)'

Similarly, we have
(X (2, B), =1p) = (X (=o', '), 1).
We can define a biholomorphic map
(X (', ), 1) — (X (=o', '), 1)
[zt,z7 ]~ [z7,27].
Hence we have I, ~ —I,. O

COROLLARY 5.2. Let #%, 5 =2. Then €5 = {p,—p} for some pe S?,
and I, ~ —I,.
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Proof. By [1, Theorem 3.3], we have %, 5 = {p,—p} for some pe S It
therefore follows from [1, Theorem 3.2(2)] that there exists o’ € f* such that
(X (o, ), 1I,) (respectively (X (a,f), —1I,)) is biholomorphic to (X (a’,0),I) (respec-
tively (X («’,0),—1I)). Thus, by [1, Theorem 3.3] and Proposition 5.1, we have
1, ~—I,. O

Example 53. Let f=0. Then, by [1, Theorem 3.3], we have %, =
{e1,—e1}. Hence we have I ~ —I (see also [1, Example 4.1]).

In general, I, and I, need not be equivalent for each p,q € %, 5. We use
the results of Sections 3 and 4 to give such an example.

Let K be the subtorus of 7° whose Lie algebra f < R’® is generated by
e +es, ex+es, and e3 +es+es. Then {n(eq),n(es)} is a basis for R>. Thus
Condition (iii) in Proposition 2.3 holds. Set

o:=1"u; and f:=1"u —1*uy.

Then it follows from Proposition 2.2 that (a,f) € (I* x f¢),,. We obtain the
toric hyperkdhler manifold X(o, ) of complex dimension four. We set

1 0 -1 1

P 0 P 1 P : 1 p : 1
1= ) D = ) 3 == ) 4 ==

0 0 V2 0 V2 0

By [1, Theorem 3.3], we have
(g<fx,/3) = {ipla ip27 ip?)a ip4}

ProrOSITION 5.4. We have

(i) I, ~—I, for each i=1,2,34;

(ii) Tpy ~ Ip,;

(iii) 1, # I, for each i,j=1,2,3 with i # j.

Proof. Set
—1/vV2 1/¥V2 0
P:=| 1/V2 1/V2 0
0 0 -1

Then the matrix P is an element in SO(3). We have
(oc) | (1*u1 — 1", — 1*u3
Pl pl=—| t"u —l*u2+l*u3).
0 V2 0
Hence, if we set
, 1

o = —("uy — t*uy — 1*u3) and p' =

V2

(1"uy — 1"up + 1"u3),

Nia
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then it follows from [1, Theorem 3.2(2)] that

(X (a0, ), Ip,) = (X (o, '), ).

Similarly, we have

(X (e, B),p,) = (X(B,0), 1) and (X (a,B), 1) = (X(B', o), D).

(i) The claim follows immediately from Proposition 5.1
(i) Let (zF,z7)epu (o, B"). Set
wllL = iz;r, Wy = +zl+, wi =4z ;_“ WSi = +zf.

Then we have (w™,w™) e u~'(f’,«'). Hence we can define a biholomorphic map

( (', ), 1) — (X(B', o). 1)

[zh 27— wh W]

+ ¥
w4 = *z4,

Thus we have I, ~ I

(iii) First, we use Theorem 3.1 to construct compact complex submanifolds
of (X(«,p),I). Now set a:=u3 and b:=u; —uy. Let

5
Py = m HJr(jaa)
j=3
(see Figure 1). Then, since P; is an isosceles rlght triangle, the space Xp, is P2
Thus, by Theorem 3. 1 the submanifold X, := ¢, L(P1 x {0}) is biholomorphic to
P2, Set

M, :={(z",z)eH |z3 =z, =25 =0

—Vlzfzy =1,V —1z5z; = =1} Ny ().

H(4,a)

P

H(3,a)

FIGURE 1
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It follows from (3.5) that
(5.1) X, =M /K.

Now take the basis {r*uz,1*ug,1*us} for £*. We have f = 1*us —1*us. We set
b :=us—us. Let Py:=H (1,a)N'H (2,a)N'H"(3,a). Then, since P, is an
isosceles right triangle, the submanifold X, := ¢}, (P> x {0}) is also biholomor-
phic to P?. Set

My :={(z",z7)el |z{f =z =z7 =0,

—Vlzfzy =1,V —lzizs = —1} N ().

It follows from (3.5) that
(5.2) X, = My/K.

Since M| N M, =0, we have X;NX, = 0.
Next, we use Proposition 4.4 to determine the exceptional set X(a«,f)\
W' (Ug). Let ¥y and ¥, be the following two-dimensional subspaces of £*:

Vi :=span{i*u;,1"uy} and V;:= span{i*us,1*us}.

Then we have 73 = {Vi,V>}. We set
YI:=e3+es+es and Y, :=e3 —e] — es.

For each j=1,2, we have Y;ef and V;={vet"|{v,Y;> =0}. Hence we
have

Jy, =1{3,4,5}, J, =0, J,={3}, J,={1,2}.
By (4.1), Proposition 4.4, (5.1), and (5.2), we have
(5.3) X (o, H\PH(Up) = X1 1 X, = P> T P2,

Next, we determine the exceptional set X (o, ﬂ’)\‘I’_l(Uﬁ/). Let V' be the
two-dimensional subspace V' := span{i*uy,*us} of t*. Then we have 7 = {V'}.
We can prove

(5.4) X, fN\Y " (Uy) = P?

in a way similar to that just used for (5.3).
Finally, we construct a compact complex submanifold of (X(f,a),I).
Let
Pyi= () H'(j,0)0 () H (j,b)
j=1,4 j=2,5
(see Figure 2). Then, since P; is a square, the space Xp, is P' x P'. Thus, by
Theorem 3.1, the submanifold X3 := (/5;711(733 x {0}) is biholomorphic to P! x P!
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H(5,b)
P;
H(2,b)
H(4,b) H(1,b)
FIGURE 2
Hence, by (4.1), we have
(5.5) P' x P! = X; c X(,0)\¥P 1(U,).
The claim follows from (4.1), (5.3), (5.4), and (5.5). O
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