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TOTALLY CONTACT UMBILICAL LIGHTLIKE HYPERSURFACES
OF INDEFINITE SASAKIAN MANIFOLDS

FORTUNE MASSAMBA

Abstract

This paper investigates totally contact umbilical lightlike hypersurfaces which are
tangent to the structure vector field. Theorems on Killing distributions, geodesibility of
lightlike hypersurfaces are obtained. The geometrical configuration of such lightlike
hypersurfaces and its screen distributions are established. We prove the non-existence
of totally contact umbilical lightlike hypersurfaces and lightlike hypersurfaces with
totally contact umbilical screen distributions in indefinite Sasakian space forms under
some conditions. Some characterizations of totally contact geodesic lightlike hyper-
surfaces and screen distributions are also given.

1. Introduction

The totally contact umbilical concept was considered in [1], [6], [7], [12], [13]
and others references therein where some classifications are given in submanifold
of the Sasakian manifolds of codimension greater than 1. The present paper
aims to investigate similar concept, namely, totally contact umbilical lightlike
hypersurfaces of indefinite Sasakian manifolds.

As it is well known, contrary to timelike and spacelike hypersurfaces, the
geometry of a lightlike hypersurface is different and rather difficult since the
normal bundle and the tangent bundle have non-zero intersection. To overcome
this difficulty, a theory on the differential geometry of lightlike hypersurfaces
developed by Duggal and Bejancu [4] introduces a non-degenerate screen dis-
tribution and construct the corresponding lightlike transversal vector bundle.
This enables to define an induced linear connection (depending on the screen
distribution, and hence is not unique in general).

The paper is organized as follows. In Section 2, we recall some basic
definitions and formulas for indefinite Sasakian manifolds and lightlike hyper-
surfaces of semi-Riemannian manifolds. In Section 3, for those lightlike hyper-
surfaces of indefinite Sasakian manifolds which are tangential to the structure
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vector field, the decomposition of almost contact metric is given. Theorems on
Killing distributions, geodesibility of lightlike hypersurfaces of indefinite Sasakian
manifolds are obtained. A characterization of lightlike hypersurfaces of indef-
inite Sasakian manifolds with parallel vector field is also given. In Section 4, we
study totally contact umbilical lightlike hypersurfaces of an indefinite Sasakian
manifold. By Theorem 4.3 and 4.10, we establish the geometrical configuration
of such lightlike hypersurfaces, tangent to the structure vector field, and its screen
distributions in Sasakian space forms. We prove the non-existence of totally
contact umbilical lightlike hypersurfaces and lightlike hypersurfaces with totally
contact umbilical screen distributions, tangent to the structure vector field, in
indefinite Sasakian manifold under some conditions. Some characterizations of
totally contact geodesic lightlike hypersurfaces and screen distributions are also
given. Finally, we discuss, in section 5, the effect of the change of the screen
distribution on different results found.

2. Preliminaries

A (2n+ 1)-dimensional semi-Riemannian manifold (M,g) is said to be an
indefinite Sasakian manifold if it admits an almost contact structure (¢, &,7), i.e. ¢
is a tensor field of type (1,1) of rank 2n, ¢ is a vector field, and # is a 1-form,

satisfying
21 P=-1+n®& né =1, nog=0, ¢i=
n(X)=g(&,X), géx 45) g(X,Y) —n(X )(17)7 Vil = —¢(X),
(Vi Y =g(¢X,Y), (Vgh)Y =g(X,Y)¢-n(Y)X, VX,YeD[(TM),

where V is the Levi-Civita connection for a semi-Riemannian metric g. o
A plane section ¢ in T, M is called a ¢-section if it is spanned by X and ¢JX,
where X is a unit tangent vector field orthogonal to . The sectional curvature
of a ¢-section o is called a ¢-sectional curvature. A Sasakian manifold M with
constant ¢-sectional curvature ¢ is said to be a Sasakian space form and is
denoted by M(c). The curvature tensor R of a Sasakian space form M(c) is
given by [13]

c—1 — = =

g nX)n(2)Y
—n(Y(Z2)X +3(X, Z)n(Y)¢ - g(Y, Z)n(X)é + §(9Y, Z)gX
~ (X, Z2)pY - 2§(¢X, Y)$Z}, X.Y,ZeD(TM).
di

(Y, 2)X —g(X,Z)Y} +

Q|

(22) RX.1)Z="7"{

Let (M,g) be a (2n+ 1)-dimensional semi-Riemannian manifold with index s,
0<s<2n+1 and let (M,g) be a hypersurface of M, with g=0gmu- M is a
lightlike hypersurface of M if g is of constant rank 2n — 1 and the normal bundle
TM+ is a distribution of rank 1 on M [4]. A complementary bundle of TM~ in
TM is a rank 2n — 1 non-degenerate distribution over M. It is called a screen
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distribution and is often denoted by S(TM). A lightlike hypersurface endowed
with a specific screen distribution is denoted by the triple (M,g,S(TM)). As
TM* lies in the tangent bundle, the following result has an important role in
studying the geometry of a lightlike hypersurface.

TueoreM 2.1 [4]. Let (M,g,S(TM)) be a lightlike hypersurface of M.
Then, there exists a unique vector bundle N(TM) of rank 1 over M such that for
any non-zero section E of TM* on a coordinate neighborhood U = M, there exist
a unique section N of N(TM) on % satisfying G(N,E)=1 and Gg(N,N) =
g(N, W) =0, for any W eT'(S(TM)

)

Throughout the paper, all manifolds are supposed to be paracompact and
smooth. We denote I'(E) the smooth sections of the vector bundle E. Also
by L and @ we denote the orthogonal and nonorthogonal direct sum of two
vector bundles. By Theorem 2.1 we may write down the following decompo-
sition

(2.3) TM = S(TM) L TM*,

(2.4) TM =TM ®N(TM) = S(TM) L (TM* @ N(TM)).

Let V be the Levi-Civita connection on (M,g), then by using the second
decomposition of (2.3), we have Gauss and Weingarten formulae in the form

(2.5) VY =VyY +h(X,Y), VYX,YeDl(TM),
(2.6) and VyV =—-AyX +V3V, VX el (TM), Vel (N(TM)),

where Vy Y, Ay X e [(TM) and h(X,Y),VyV e [(N(TM)). V is a symmetric
linear connection on M called an induced linear connection, V* is a linear
connection on the vector bundle N(TM). his a I'(N(TM))-valued symmetric
bilinear form and Ay is the shape operator of M concerning V.

Equivalently, consider a normalizing pair {E, N} as in Theorem 2.1. Then
(2.5) and (2.6) take the form

(2.7) VxY =VyY+B(X,Y)N, VX,Yel(TM|,)
(2.8) and VyN = —AyX +t(X)N, VX e[ (TM|,).

It is important to mention that the second fundamental form B is independent of
the choice of screen distribution, in fact, from (2.7), we obtain

B(X,Y)=g(VxY,E) and t(X)=g(VEN,E) VX,YeD(TM|,).

Let P be the projection morphism of TM on S(TM) with respect to the
orthogonal decomposition of 7M. We have

(2.9) VyPY =V,PY + C(X,PY)E, VX,YeD(TM|,)
(2.10) and VyE=—A.X —t(X)E, VX eD(TM|,),
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where V3 PY and 4} X belong to I'(S(TM)). C, Aj and V* are called the local
second fundamental form, the local shape operator and the induced connection
on S(TM). The induced linear connection V is not a metric connection and we
have

(2.11)  (Vxg)(Y,Z) = B(X,Y)0(Z) + B(X,Z)0(Y), VX,YeTl(TM|,),

where 6 is a differential 1-form locally defined on M by 6(-) := g(N,-). Also, we
have the following identities,

(212) g(ApX,PY) = B(X,PY), g(4zX,N)=0,
B(X,E) =0, VYX,YeD(TM|,).

Finally, using (2.7), R and R are the curvature tensor fields of M and M are
related as

(2.13)  R(X,Y)Z=R(X,Y)Z+B(X,Z)AyY — B(Y,Z)AxX + {(VxB)(Y,Z)
— (VyB)(X,Z) +(X)B(Y,Z) — «(Y)B(X, Z)}N,
(2.14)  where (VyB)(Y,Z)=X.B(Y,Z)— B(VyY,Z)— B(Y,VxZ).

3. Lightlike hypersurfaces of indefinite Sasakian manifolds

Let (M,¢,&,5,G) be an indefinite Sasakian manifold and (M,g) be its
lightlike hypersurface, tangent to the structure vector field & (€ TM)'. If Eis a
local section of TM*, then G(#E,E)=0, and §E is tangent to M. Thus
$(TM™) is a distribution on M of rank 1 such that ¢(TM+)NTM* = {0}. This
enables us to choose a screen distribution S(7M) such that it contains ¢(TM*)
as vector subbundle. Consider a local section N of N(TM). Since §(¢N,E) =
—g(N,¢E) = 0, we deduce that ¢N is also tangent to M. On the other hand,
since g(¢N,N) =0, we see that the components of ¢_N_ with respect to E
vanishes. Thus ¢N € I'(S(TM)). From (2.1), we have G(¢N,pE) =1. There-
fore, ¢(TM*) @ ¢(N(TM)) (direct sum but not orthogonal) is a nondegenerate
vector subbundle of S(TM) of rank 2.

It is known [3] that if M is tangent to the structure vector field &, then, ¢
belongs to S(TM). Using this, and since g(¢E,¢) = g(¢N,&) = 0, there exists a
nondegenerate distribution Dy of rank 2n —4 on M such that

(3.1) S(TM) = {¢(TM*) @ (N(TM))} L Dy L (&,
where (&) is the distribution spanned by ¢, thats is, (&) = Span{¢}.

!Many geometers use to consider ¢ tangent to the manifold because in the theory of CR
submanifolds the condition M normal to ¢ leads to M anti-invariant submanifold (see [11];
Proposition 1.1, p. 43) and the condition ¢ oblique gives very complicated embedding equations.
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PrROPOSITION 3.1.  Let M be a lightlike hypersurface of an indefinite Sasakian
manifold M with &€ TM.  Then, the distribution Dy is an invariant with respect to
¢, that is, ¢(D0) = Dy.

Proof. For any X el(Dy) and Y eI(TM), we have g(4X,Y)=
—g(X,¢9Y). ForY = ¢FE,weobtaing(¢pX,9E) = g(X,E) —n(X)n(E) =0. Thus

¢X L §(TM*). On the other hand we have ¢(¢X,E)=—g(X,¢E)=0,
for any EeT(TM"). Hence ¢X L TM*. Also, we have §(¢X,&) =0 and
G(dX,oN) =gG(X,N) —n(X)n(N) =0, for any N e '(N(TM)). Thus

¢X L {H(TM") @ $(N(TM))} L TM* L <&}

Finally we derive g(¢X,N) = —g(X,¢N) =0 and by summing up these results
we deduce

¢X L {H(TM") @ $(N(TM))} L TM* L <& @ N(TM)},

that is ¢(Dy) = Dy which proves our assertion. O

Example 3.2. Let R’ be the 7-dimensional real number space. We con-
sider {x;},_,.; as cartesian coordinates on R’ and define with respect to the

natural field of frames {%} a tensor field ¢ of type (1,1) by its matrix.

(0 0 —( 0 0 0 (0 0
3.2 L P B D B
(3.2) ¢<0x1) 0xy’ ¢<@X2> 6x1+x46xf ¢<(’)x3> 0xy’
(0 0 0 (0 0

(o) =a 9o) =

The differential 1-form # is defined by

(3.3) n = dx7 — Xadx; — Xedx3.
The vector field ¢ is defined by & =0/0x;. It is easy to check (2.1) and thus
(¢,¢,n) is an almost contact structure on R’. Finally we define metric § by
(3.4) g = (xj — Ddxi —dx3 + (xz + 1)dx] + dx] — dx3 — dx} + dx?

— xadx1 ® dx7 — xadx7 @ dxy + xaxedx; ® dxs

+ x4x6dx3 ® dx; — xgdx; ® dx7 — xedx7 ® dxs.
with respect to the natural field of frames. It is easy to check that g is a semi-

Riemannian metric and (¢,¢&,7,7) given by (3.2)—(3.4) is a Sasakian structure
on R
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We now define a hypersurface M of (R’,$,&n,5) as M=
{(x1,...,x7) eR” : x5 = x4}. Thus the tangent space TM is spanned by
{Ui}lgists where

0 0 0
(35) Ul _axlv Uz_a_xz7 U3_a_x3)
0 0 0
U = —_— —_— = — U —
4 aX4 6)(5’ 5 ax67 6 é

and the 1-dimensional distribution TM* of rank 1 is spanned by E, where
0 N 0
T O0xs  Oxs’

It follows that TM+ < TM. Then M is a 6-dimensional lightlike hypersurface
of R7. Also, the transversal bundle N(7M) is spanned by

(3.7) N:%(i—i)

5)(4 6x5

(3.6)

On the other hand, by using the almost contact structure of R’ and also by
taking into account of the decomposition (3.1), the distribution Dy is spanned by
{F,§F}, where F = U,, ¢F = U, + x4¢ and the distributions (&), ¢(TM*) and

#(N(TM)) are spanned, respectively, by

(Us + Us + x68).

N —

(3.8) EQE = Us — Us + x¢¢ and ¢N =

Hence M is a lightlike hypersurface of R’.
Moreover, from (2.3) and (3.1) we obtain the decomposition

(3.9) TM = {§(TM*) ® $(N(TM))} L Do L <& L TM,
(3.10) and TM = {p(TM*) @ $(N(TM))} L Dy L (& L (TM*- @ N(TM)).

Now, we consider the distributions on M,

(3.11) D:=TM"* L $§(TM*) L Dy, D':=¢(N(TM)).
Then D is invariant under ¢ and

(3.12) TM =D@® D’ L (&,

Let us consider the local lightlike vector fields

(3.13) U:=—¢N, V:=—¢E.

Then, from (3.12), any X € I'(TM) is written as

(3.14) X =RX+0X+n(X)¢, QX =ulX)U,

where R and Q are the projection morphisms of TM into D and D’, respectively,
and u is a differential 1-form locally defined on M by u(-) :=g(V,-).
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Applying ¢ to X and using (2.1) (note that >N = —N), we obtain q?i\’ =
dX + u(X)N, where ¢ is a tensor field of type (1, 1) defined on M by ¢X := §RX
and we also have

(3.15) $*X = X +p(X)é+u(X)U, VX el (TM).

Now applying ¢ to ¢>X and since ¢U = 0, we obtain ¢> + ¢ = 0, which shows
that ¢ is an f-structure [13] of constant rank. By using (2.1) we derive

(3.16)  g(¢X,4Y) = g(X,Y) = n(X)n(Y) — u(Y)o(X) — u(X)v(Y),

where v is a l-form locally defined on M by v(-) = g(U,-). We note that

(3.17) 99X, Y) +9(X,9Y) = —u(X)0(Y) — u(Y)0(X).
We have the following useful identities

(3.18) Vyé=—¢X,

(319)  B(X,&) = —u(X),

(320)  C(X,&) = —u(X),

(3.21) B(X,U)=C(X,V)

(3.22) (Vxu)Y = —=B(X,¢Y) —u(Y)r(X),

(3.23) (Vx)Y =g(X, Y)E—n(Y)X —BX,Y)U+u(Y)AnX.

PROPOSITION 3.3. Let M be a lightlike hypersurface of an indefinite Sasakian
manifold M with £ € TM. The Lie derivative of g with respect to the vector field
V is given by,

(3.24) (Lyg)(X,Y) = Xu(Y) + Yu(X) + u([X, Y]) — 2u(Vy Y),
VX,Y e T(TM).

Proof. From a straightforward calculation, we have, for any X,Y e
(TM),

u(VxY) =g(VxY, V) =g(VxY,V)=X.g(Y, V) —g(Y,VxV)
=Xg(Y,V)—g(Y,[X,V]) - g(Y,VVX)

=Xg(Y,V)—g(Y,[X,V]) = V.g(Y,X) +g(Vy Y, X)

=Xg(Y, V) +g(Y,[V.X]) = Vg(Y,X) +g([V, Y], X) + §(Vy V., X)
=Xg(Y,V) = (Lvg)(X,Y) + Y.g(X,V) = g(V,Vy X
=Xu(Y)—(Lyg)(X,Y)+ YulX)+u([X,Y]) —u(VxY)

(3.24) is proved. U
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It is known that lightlike submanifolds whose screen distribution is integrable
have interesting properties. Therefore, we investigate the integrability of the
screen distributions. First, for any X, Y e I'(D L <&)),

(3.25) u([X, Y]) = B(X,9Y) — B(¢X,Y).
It is now easy to see that the distribution D 1 (&) is integrable if and only if
B(X,9Y)=B(¢X,Y), VX, Y eI'(D L {&)). We have

Lemma 3.4. Let (M,g) be a lightlike hypersurface of an indefinite Sasakian
manifold (M,g) with £€ TM. If M is D-totally geodesic, then $(TM=) is D-
Killing distribution.

Proof. Let M be a D-totally geodesic lightlike hypersurface. Then, for
any X,Y eI'(D), B(X,Y)=0. So, u(VxY)=B(X,¢Y) =0, since D is invari-
ant under ¢. We have (Lyg)(X,Y)=u([X,Y]), VX,Y e (D) which implies
(Lyg)(X,Y)=—(Lyg)(Y,X). On the other hand, (Lyg)(X,Y)— (Lyg)(Y,X)
=2(u([X,Y]) — B(X,¢9Y) + B(¢X,Y)) =0. Therefore,

(Lrg)(X,Y) = (Lyg)(Y,X) = —(Lyg)(X,Y).
Thus, (Lyg)(X,Y) =0 and ¢(TM") is D-Killing distribution. O
We are now concerned with the structure equations of the immersions of a
lightlike hypersurface in a semi-Riemannian manifold.
Let M(c) be an indefinite Sasakian space form and M be a lightlike

hypersurface of M(c). Let us consider the pair {E, N} on % = M (see Theorem
2.1) and by using (2.13), we obtain

(326)  (VyB)(Y,Z)— (VyB)(X,Z)
=1(Y)B(X,Z) — 1(X)B(Y,Z)

+ % {9(#Y, Z)u(X) - §(¢X, Z)u(Y) - 24(¢X, Y)u(Z)}.

THEOREM 3.5. Let M be a lightlike hypersurface of an indefinite Sasakian
space form M (c) of constant curvature ¢, with £ € TM. Then, the Lie derivative
of the second fundamental form B with respect to & is given by

(3.27) (L:B)(X, Y) = —1(¢)B(X,Y), VX,Y eT[(TM).

Moreover, £ is a Killing vector field with respect to the second fundamental form B
if and only if ©(&) =0 or M is totally geodesic.

Proof. Using (2.14) and (3.18), we obtain
(3.28) (VeB)(X,Y) = (LeB)(X,Y) + B(¢X,Y) + B(X,¢Y).
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Likewise, Using (2.14), (3.18) and (3.19), we have
(3.29) (VxB)(&,Y)=—-Xu(Y)+B(¢X,Y) +u(VxY).

Subtracting (3.28) and (3.29), and using (3.22) we obtain

(3.30) (VeB)(X, Y) — (VxB)(S, Y) = (L:B)(X, Y) —u(Y)r(X).
From (3.26) and after calculations, the left hand side of (3.30) becomes
(331) (VeB)(X, Y) — (V¥ B)(&, Y) = —u(Y)r(X) — (&) B(X, Y).

(¢

The expressions (3.30) and (3.31) implies (L:B)(X,Y) = —t(&)B(X, Y). The last
assertion is obvious by definitions of Killing distribution and totally geodesic
submanifold. O

The second fundamental form 4 of M is said to be parallel if (Vyh)(Y,Z) =0,
VX,Y,ZeT'(TM). That is, (VxB)(Y,Z)=—7(X)B(Y,Z). This means that,
in general, the parallelism of 2 does not imply the parallelism of B and vice
versa. We note that (Vyh)(Y,E) = (VxB)(Y,E)N.

LeMMA 3.6.  There exist no lightlike hypersufaces of indefinite Sasakian space
Sforms M(c) (¢ # 1) with &€ TM and parallel second fundamental form.

Proof. Suppose ¢ # 1 and second fundamental form is parallel. Then, if
we take Y =F and Z = U in (3.26), we obtain ((c¢ —1)/4)u(X)=0. Taking
X = U, we have ¢ =1, which is a contradiction. O

Lemma 3.7.  Let M be a lightlike hypersurface of an indefinite Sasakian space
form M(c) of constant curvature ¢, with &e TM, such that its local second
Sfundamental form B is parallel. If ©1(E) #0, then ¢=1 if and only if M is
D’-totally geodesic.

Proof. Suppose B is parallel. Then, taking Y =FE in (3.26), we ob-
tain  3((c — 1)/4)u(X)u(Z) =*(E)B(X,Z). Taking X =Z=U, we have
3((c—=1)/4) =1(E)B(U,U) and if 7(E) # 0, the equivalence follows. O

THEOREM 3.8.  Let M be a lightlike hypersurface of an indefinite Sasakian
space form M(c) of constant curvature c¢ with e TM. If the local second
Sfundamental form B of M is parallel, then,

(3.32) (Lyg)(X,Y) =(&)B(X,Y), VX,YeD(TM).

Moreover, if ©(¢) # 0, then M is totally geodesic if and only if $(TM™*) is a Killing
distribution on M.
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Proof. Using (2.14), (3.18), (3.19), (3.22) and (3.27), after calculations, we
have, for any X, Y e ['(TM),

(3.33) 0= (V:B)(X,Y)=L:B(X,Y)+ B(¢X,Y)+ B(X,$Y)
=—t(O)BX,Y) — (Lyg)(X,Y) —u(X)r(Y) — u(Y)7(X).

Likewise, we obtain

(3.34) 0= (VyB)(&X) = —Y.u(X)+ B(X,9Y) + u(VyX)

— —(Lyg)(X, ¥) — u(¥)z(X),
(335) and 0= (VyB)(Y.&) = X.B( Y) — B(VxY,&) - B(Y,Vx&)
~(Lyg)(X, ¥) — u(X)2(¥).

So substituting (3.34) and (3.35) in (3.33), we obtain (3.32). If (&) #0, the
equivalence follows. O

THEOREM 3.9. Let M be a lightlike hypersurface of an indefinite Sasakian
space form M (c) of constant curvature c, with £ € TM. If the second fundamental
form h of M is parallel, then,

(i) @(TM* ) is a D L {&Y-Killing distribution.

(ii) For any, X,Y eT(TM), B(4;X,Y)=0.

(iif) For any X,Y eT'(TM), (LgB)(X,Y) = —t(E)B(X,Y).

Proof. Taking Z=¢ in (Vzh)(X,Y)=0, we have (Lyg)(X,Y)=
—u(X)t(Y) —u(Y)r(X) and for any X,Y eD(D L&), (Lyg)(X,Y)=0.
This proves (i). (ii) is complete by wusing the following equation 0=
g((Vxh)(Y,E),E) = B(A};X,Y). The last assertion (iii) is obtained as follows.
Taking Z=F in (Vzh)(X,Y)=0, we have (LgB)(X,Y)=—1(E)B(X,Y)—
2B(A;X,Y). So, by using the assertion (i), we have (LgB)(X,Y)=
—7(E)B(X,Y). O

A submanifold M is said to be totally umbilical lightlike hypersurface of a
semi-Riemannian manifold M if the local second fundamental form B of M
satisfies

(3.36) B(X,Y)=pg(X,Y), VX,YeT(TM)

where p is a smooth function on % = M. The Gauss formula implies that
¢X = —Vyé = -Vyé - B(X, é)N Since @& =0, we have B(&, &) = 0.
If we assume that M is totally umbilical lightlike hypersurface of the a

semi-Riemannian manifold M, then we have B(X,Y)=pg(X,Y), for any
X,Y e '(TM), which implies that 0 = B(¢,¢) = p. Hence M is totally geodesic.

Also, ¢X = ¢X — pn(X)N = ¢X, that is M is invariant in M. Therefore we
have
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ProPOSITION 3.10.  Let (M,g) be a lightlike hypersurface of an indefinite
Sasakian manifold (M,g) with ¢ TM. If M is totally umbilical, then M is
totally geodesic and invariant.

It follows from the Proposition 3.10 that a Sasakian M(c) does not admit any
non-totally geodesic, totally umbilical lightlike hypersurface. From this point
of view, Bejancu [1] considered the concept of totally contact umbilical semi-
invariant submanifolds. The notion of totally contact umbilical submanifolds
was first defined by Kon [6].

4. Totally contact umbilical lightlike hypersurfaces of indefinite Sasakian
manifolds

In this section, we follow Bejancu [1] definition of totally contact umbilical
submanifolds and state the following definition for totally contact umbilical
lightlike hypersurfaces.

A submanifold M is said to be totally contact umbilical lightlike hyper-
surface of the a semi-Riemannian manifold M if the second fundemental form /
of M satisfies:

1) AX,Y) ={g(X,Y) = n(X)n(Y)}H + n(X)h(Y, &) + n(Y)h(X, <)

for any X, Y e I'(TM), where H is a normal vector field on M (that is H = AN,
/A is a smooth function on % = M). The notion of totally contact umbilical
submanifolds of Sasakian manifolds corresponds to that of totally umbilical
submanifolds of Kéhlerian manifolds (see [6] for more details). The totally
contact umbilical condition (4.1) can be rewritten as,

(4.2) h(X,Y)=B(X,Y)N = {Bi(X,Y) + B:(X, Y)}N,

where Bi(X,Y)={g(X,Y)—n(X)n(Y)} and By(X,Y)=-n(X)u(Y)-
n(Y)u(X), since h(X,&) = —u(X)N. The covariant derivative of the local sec-
ond fundamental form B of M is given by

(43)  (VyB)(Y,Z) = (VyB)(Y,Z)+ (VyB:)(Y,Z), VX,Y,ZeT(TM).

If the =0 (that is B; =0), then the lightlike hypersurface M is said to be
totally contact geodesic. The notion of totally contact geodesic submanifolds of
Sasakian manifolds corresponds to that of totally geodesic submanifolds of
Kaehlerian manifolds.

In the sequel, we need the following lemmas.

Lemma 4.1, Let (M,g) be a lightlike hypersurface of an indefinite Sasakian
manifold (M,g) with £ TM. For any X,Y e T(TM)

4.4) g(VxV,Y)+u(d;X)0(Y) = —B(X,9Y) — t(X)u(Y),
4.5) g(VxU,Y)4+u(AnX)0(Y) = —-C(X,9Y) — 0(X)n(Y) + t(X)v(Y).
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Proof. By straightforward calculation and also by using (2.8) and (2.10)
g(VxV,Y) = —g((Vx$)E, Y) — g(4VxE, Y)
= —g(#VxE, Y) + u(VxE)O(Y)
= —G(AX,9Y) — 1(X)g(E,$Y) — u(ApX)0(Y)
= —B(X,9Y) —t(X)u(Y) —u(4xX)0(Y),
and g(VxU,Y) +u(AvX)0(Y) = —g(AnX,9Y) = 0(X)n(Y) + (X )o(Y)
which completes the proof. O

Lemma 4.2, Let (M,g) be a totally contact umbilical lightlike hypersur-
face of an indefinite Sasakian manifold (M,g) with &€ TM. Then, for any
X,Y,ZeT(TM)

(4.6) (VxB)(Y,Z)=MB(X,Y)0(Z)+ B(X,Z)0(Y)}
+(Z2){u(X)0(Y) +g(9X, Y)}
+ (Y {u(X)0(Z) + 9(4X, Z)}
+{9(Y,2) —=n(Y)n(2)}(X.4),
(4.7) (VxB2)(Y, Z) = {u(X)0(Y) + g(¢X, Y)}u(Z)
+{u(X)0(2) + 9(¢X, Z)}u(Y)
+ {2 (X)u(Y) + B(X,¢Y)}n(Z)
+{z(X)u(Z) + B(X, $Z)}n(Y).

(
+9(

Proof. The proof follows from straightforward computing and by using the
identities (2.11), (3.19) and (4.4). O

THEOREM 4.3. Let M(c) be an indefinite Sasakian space form and M be
a totally contact umbilical lightlike hypersurface of M(c) with ¢ € TM. Then
c= =3 (M(c) is of constant curvature —3) and ). satisfies the partial differential
equations

(4.8) E- A+ J1(E)—* =0,
(4.9) and PX -4+ At(PX) =0, VX el(TM).
Proof. Let M be a totally contact umbilical lightlike hypersurface of an

indefinite Sasakian space form M(c) of constant curvature ¢. From (4.6) and
(4.7), using (3.17) and the identity B(X,¢Y) = Ag(X,¢Y), (3.26) becomes

(4.10)  M{B(X,Z)0(Y) - B(Y,Z)0(X)} + 22{u(X)0(Y) + g(¢X, ¥)}n(Z)
+4{n(Y)u(X) = n(X)u(Y)}0(Z) + 4{n(Y)g($X, Z) —n(X)g(¢Y . Z)}
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+{9(Y, 2) =n(Y)n(Z2)} X .2 —{g(X, Z) =n(X)n(Z)} Y .4
+ 2{u(X)0(Y) + g(¢X, Y)}u(Z) + {u(Y)g(¢X, Z) —u(X)g(4Y, Z)}
+{z(X)u(Y) + 29(X, ¢Y) — «(Y)u(X) — 2g(Y, ¢ X)}n(Z)
+i{n(Y)g(X,9Z) —=n(X)g(Y,4Z)} + {z(X)n(Y) — 2(Y)n(X)}u(Z)

G(9Y, Z)u(X) — G(¢X, Z)u(Y) — 25(pX, Y)u(Z)}
+7(Y)B(X,Z) —t(X)B(Y,Z).

Putting X = E in (4.10), we find

(411)  —=2AB(Y,Z) = 2u(Y)n(Z) — in(Y)u(Z) +{g(Y, Z) —n(Y)n(Z)}(E.2)

= 3u(Y)u(Z) + <(E{u(Y)n(Z) +n(Y)u(Z)}

= %(c — Du(Y)u(Z) —=(E)B(Y,Z).
Take Y =Z = U in (4.11) we obtain —3u(U)u(U) =3 (c — l)u(U)u(U), that is,
¢=—3. On the other hand, by taking Y=V and Z= U in (4.11), we have
(B(V,U) = 4)
(4.12) E )+ Jt(E)—2*=0.

Finally, substituting X = PX, Y = PY and Z = PZ into (4.10) with ¢ = —3 and
taking into account that S(7M) is nondegenerate, we obtain

(4.13)  {PX -2+ M(PX)}(PY —n(PY)E) ={PY - A+ At(PY)H(PX —n(PX)&).
Putting PX = ¢ in (4.13), we have

(4.14) {E- A+ (O} PY —y(PY)E) =0
and by taking Y =V, we obtain
(4.15) EA+71(8) =0.

Writing PX e I'(S(TM)) as PX = PX' +y(PX)¢ (PX' =50, Fi +u(PX)U +
v(PX)V, {Fi}, <i<2,_4 an orthogonal basis of Dy) and using (4.15), we have

(4.16) PX - )+ it(PX) = (PX'+n(PX)E) - A+ it(PX' +n(PX)E)
=PX" A+ 2(PX') +n(PX) (& A+ A1(&))
=PX' A+ At(PX')

which leads to get from (4.13)

(4.17) {PX" - J+ x(PX)}PY' = {PY'- .+ Ix(PY')}PX".

Now suppose that there exists a vector field Xy on some neighborhood of M
such that PXj -4+ At(PX]) #0 at some point p in the neighborhood. Then,
from (4.17) it follows that all vectors of the fibre (S(TM)—<&)),:=
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(p(TM*Y) @ (N(TM)) L Dy), = S(TM), are collinear with (PXy),. This con-

P

tradicts dim(S(7M) —<¢&»), > 1. This implies (4.9). O
From Theorem 4.3 we obtain

CorOLLARY 4.4. There exist no totally contact umbilical lightlike real
hypersurfaces of indefinite Sasakian space forms M(c) (¢ # =3) with £ € TM.

A part of the Theorem 4.3 is similar to that of the generic submanifold case given
in [12]. Since the normal bundle TM* is a distribution of rank 1 on M, that is,
M is a hypersurface of indefinite Sasakian manifolds M, M is also a generic
submanifold. On the other hand, in the last part of the Theorem 4.3, namely,
the equations (4.8) and (4.9), the geometry of the mean curvature vector H of M
is discussed. These equations are similar to those of the indefinite Kéhlerian case
(see [4] for details). However, there are non trivial differences arising in the
details of the proof of our Theorem.

We also note that the partial differential equations (4.8) and the modified
(4.9), PX - A+ At(PX) =0 with PX e I'(S(TM) — {&)) (that is, we exclude the
partial differential equation in terms of &) arise when the submanifold M is
a D @ D’-totally umbilical lightlike hypersurface, B(X,Y)=pg(X,Y), VX, Y €
I'(D® D’). Because, in the direction of D@ D', the function p is nowhere
vanishing. In general, such a concept is called proper totally umbilical [4].

From (4.8) and (4.9), we have

(4.18) ViH = §(H,E)’N and V5, H =0, VX eIl (TM).

LemmA 4.5.  Let M be a totally contact umbilical lightlike hypersurface of an
indefinite Sasakian space form M(c = —=3) with £ € TM. Then, the mean cur-
vature vector H of M is S(TM)-parallel, that is,

(4.19) ViyH =0, VX el(TM).

Note that, if we choose, at each point p € M, a connected open set G on M such
that 7,G = S(T,M), then V3, H = 0 leads to H is a constant vector field in the
direction of the screen distribution S(TM).

A submanifold M is said to be an z-totally umbilical lightlike hypersurface
of a semi-Riemannian manifold M if the second fundemental form /s of M
satisfies

(420)  h(X,Y)=i{g(X,Y) - n(X)n(Y)}N, VX,Y eT(TM),

From this definition, we can deduce that the totally contact umbilical lightlike
hypersurface M of M is also #-totally umbilical in the direction of D L (&), since
the 1-form u vanishes in that direction.

If M is an p-totally umbilical lightlike hypersurface of an indefinite Sasakian
manifold (M,g) with &e TM, we have

421)  g((Vxh)(Y,Z),E) = (VxBi)(Y,Z) + ix(X){9(Y, Z) = n(Y)n(Z)}.
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Putting Z = ¢ in (4.21) and using (4.6), we obtain
(422)  g((Vxh)(Y, &), E) = (VxB1)(Y, &) + 2t(X){g(Y, &) = n(Y)n($)}
=Ag(¢X,Y).

If the second fundamental form /4 of the lightlike hypersurface M is parallel, then,
we have

(4.23) 0=g((Vxh)(Y,&),E) = 2§(¢X, Y)

which leads, by taking X =E and Y = U, to A§(¢E,U) =0, that is A =0.
Hence, for any X, Y eI['(TM), B(X,Y)=0. Therefore we have

THEOREM 4.6. Let (M,g) be an n-totally umbilical lightlike hypersurface of
an indefinite Sasakian manifold (M,g) with ¢ € TM. If the second fundamental
form h of M is parallel, then M is totally geodesic.

This means that any #-totally umbilical parallel lightlike hypersurface M of an
indefinite Sasakian manifold M admits a metric connection.

THEOREM 4.7. Let (M,g) be a totally contact geodesic lightlike hypersurface
of an indefinite Sasakian manifold (M,g), with Ee€ TM. If the local second
fundamental form B of M is parallel, then,

(i) The 1-form t vanishes identically on M.

(i) ¢(TM™ ) is a Killing distribution.

(iii) For any X,Y e I'(TM), B(4;X,Y)=0.

(iv) & and E are Killing vector fields with respect to the local second
fundamental form B of M.

Proof. Using (4.7), we have, for any X e ['(TM), 0 = (VxB)(&, U) = 7(X).
The others assertions follow from the latter and the Theorems 3.5, 3.8 and 3.9.
]

Next, we deal with the geometry of the screen distribution of the lightlike hyper-
surfaces of indefinite Sasakian manifolds. From (2.2) and (2.13), a direct calcu-
lation shows that

(4.24) (VxO)(Y,PZ)— (VyO)(X,PZ)+(Y)C(X,PZ) —1(X)C(Y,PZ)
_c+3

{g(Y, PZ)0(X) — g(X, PZ)0(Y)}

+ S ONPLIY) — n(VN(PZ)IX) + 5@Y, PZ)u(X)

— (X, PZ)o(Y) - 24(¢X, Y)o(PZ)}.

From the differential geometry of lightlike hypersurfaces, we recall the following
desirable property for lightlike geometry. The screen distribution S(TM) of M
is integrable if and only if the second fundamental form of S(7M) is symmetric
on I'(S(TM)) (Theorem 2.3 in [4]).
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PrOPOSITION 4.8.  Let (M,g,S(TM)) be a lightlike hypersurface of indefinite
Sasakian space form M(c), with £ € TM. If the screen distribution S(TM) is
integrable, then, for any X,Y e T(TM),

(4.25) (L:CO)(X,PY) =1(&)C(X, PY).
Moreover, & is a Killing vector field with respect to the second fundamental form C
if and only if ©(&) =0 or the screen distribution S(TM) is totally geodesic.
Proof. 1If the screen distribution S(TM) of a lightlike hypersurface M is
integrable, then, from (4.24) and using (3.20), we have, for any X, Y e I'(TM),
(4.26) (VeO)(X,PY) — (VxC)(&,PY) = —(PY)0(X) + t(X)v(PY)
+17(&)C(X, PY).
On the other hand, using (3.20) and (4.5), we have
(427) (V:C)(X,PY) = E.C(X,PY) — C(V:X,PY) — C(X,V:(PY))
= (L:C)(X,PY) + C(¢X,PY) + C(X,$PY)
(4.28) (VxC)(&,PY) = —X.0(PY)+ C(¢X,PY) + v(VxPY)
= —X.u(PY) +v(VyPY) + C(¢X,PY)
= C(X,¢PY) + 0(X)n(PY) — 1(X)o(PY) + C(4X, PY).

Putting (4.27) and (4.28) together in (4.26), we obtain, (L:C)(X,PY) =
7(&)C(X,PY), for any X, Y e I'(TM). The equivalence is obvious by definition.
O

Lemma 4.9. Let (M,g,S(TM)) be a lightlike hypersurface of an indefinite
Sasakian manifold (M, g), with £ € TM. Then, the covariant derivative of v and
the Lie derivative of g with respect to the vector field U are given, respectively, by

(4.29) (Vx0)Y = —C(X,¢Y) — 0(X)n(Y) + z(X)v(Y),
(4.30) (Lyg)(X,Y)=Xu(Y)+ Yuo(X)+o([X, Y]) —2v(VxY),
for any X, Y e T(TM).

Proof. The proof of (4.29) follows from (4.5) and (4.30) follows from direct
calculations. O

Now, we say that the screen distribution S(7M) is totally contact umbilical if we
have

@31)  CX,Y) =o{g(X,Y) = n(X)n(Y)} +n(X)C(Y, &) +n(Y)C(X, <)
= o{g(X, ¥) = n(X)n(Y)} = n(X)o(Y) = n(Y)o(X),

where o is a smooth function on % < M.
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If we assume that the screen distribution of the lightlike hypersurface M of
an indefinite Sasakian manifold, with £ € TM, is totally contact umbilical, then it
follows that C is symmetric on I'(S(TM)) and hence, according to what
mentioned above, the distribution S(7TM) integrable.

THeOREM 4.10.  Let (M, g, S(TM)) be a lightlike hypersurface of an indefinite
Sasakian space form M(c), with &€ TM, such that S(TM) is totally contact
umbilical. Then S(TM) is totally contact geodesic and ¢ = —3.

Proof. By a direct calculation of the right hand side in (4.24) and using
(4.31), we get

(4.32) (VxO)(Y,PZ)— (VyCO)X,PZ)+1(Y)C(X,PZ) —t(X)C(Y,PZ)
={9(Y, PZ) —n(Y)n(PZ)}(X .2) = {9(X, Z) — n(X)n(PZ)}(Y .2)
+a{B(X,PZ)0(Y)— B(Y,PZ)0(X)} + a{u(X)O(Y) + g(¢X,Y)
—u(Y)0(X) —g($Y,X)}n(PZ)
+ofg(¢X, PZ)n(Y) — g(¢Y, PZ)n(X)}
+{u(X)0(Y) +g(¢X, Y) —u(Y)0(X) —
+{9(Vy U, PZ)y(X) — g(Vx U, PZ)y(Y)}
+{9(¢X, PZ)o(Y) — g(¢Y,PZ)v(X)}
+{B(Y,U)0(X) +¢(VyU,X) — B(X,U)0(Y) —g(Vx U, Y)}n(PZ)
+17(Y)C(X,PZ)—(X)C(Y,PZ).
Putting X = F in (4.32) and in the right hand side of (4.24), we obtain
(4.33) {g(Y,PZ)—n(Y)n(PZ)}E.0)— oB(Y,PZ) — 20u(Y)n(PZ)
—au(PZ)n(Y) —2u(Y)w(PZ) — g(VEU,PZ)n(Y) — u(PZ)v(Y)
+{B(Y,U)+g(VyU,E) —g(VeU, Y)}y(PZ) —7(E)C(Y,PZ)

—cz3g(Y,PZ)+C

9(¢Y, X)}o(PZ)

—9(Y)(PZ) + u(PZ)u(Y) + 2u(Y)o(PZ)}.

Replacing ¥ = PZ=U in (4.33), we have §(R(E,U)U,N)= —aB(U,U) =
—aC(U,V) = —a?>=0. The last assertion is obtained by taking Y =V and
PZ=U in (4.33). O

CorOLLARY 4.11.  There exist no lightlike hypersurfaces M of indefinite
Sasakian space forms M(c) (¢ # —3) with £ € TM and totally contact umbilical
screen distribution.

It is easy to check that, when the screen distribution S(TM) of a lightlike
hypersurface M, with & e TM, is y-totally umbilical, its second fundamental form
C vanishes identically, that is, S(7TM) is totally geodesic.
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THEOREM 4.12. Let (M,g,S(TM)) be a lightlike hypersurface of Indefinite
Sasakian space form M(c) with &e TM, such that S(TM) is totally contact
geodesic. If S(TM) is parallel.  Then,

(i) The 1-form t vanishes identically on M.

(i) D' is a Killing distribution.

Proof. 1If S(TM) is parallel, then C=0 [4]. (i) follows from 0=
(VxC)(&, V) = —1(X). (ii) is obvious. O

THEOREM 4.13. Let (M,g,S(TM)) be a lightlike hypersurface of Indefinite
Sasakian space form M(c), with &e TM, such that S(TM) is totally contact
geodesic. If the local second fundamental form B is parallel, then, the following
assertions are equivalent

(i) M is D-totally geodesic.

(ii) 45X =0, VX eT(D).
(i) TM* is a D-parallel on M.
(iv) ¢(TM™") is a D-Killing distribution on M.

Proof. The equivalence of (i) and (iv) follows from (3.32), since B
is parallel. By using the second equation of (2.9), we obtain the equivalence
of (ii) and (iii). Next, we prove the equivalence of (i) and (ii). Suppose M is
D-totally geodesic. Then, for any X,Y eI'(D), B(X,Y)=g(h(X,Y),E) =0.
In particular, for any X e I'(D) and Y =V, B(X,V)=0. We have u(4}X) =
g(A;X, V) =0, 1e. A X eI'(D L&), Since g(A;X,N) =0 and g(4;X,¢) =
—u(X) =0, that is, 43X has no component in I'(TM=*) and in (&), so
ALX e T(H(TM*) L Dy). If ApX = BV + Z, Z e T(Dy), we have, g(4:X,Z) =
Pag(V,Z)+g(Z,Z)=g(Z,Z). On the other hand, we have

9(ApX,Z) = —G(VxE, Z) = =X g(E, Z) 4+ §(E,VxZ)
— g(E,VxZ) + B(X,Z)G(E,N) = 0.

Thus, for any Z e I'(Dy), g(Z,Z) =0. Since Dy is non-degenerate, then Z = 0.
Finally A;X = BV e [($(TM*')). Conversely, suppose that, for any X e I'(D),
A;X eT(§(TM*Y)). Let Bp = {E,¢E,F;,i=1,2,...,2n—4} be a local ortho-
normal field of frames of D such that Dy = Span{F;,i =1,2,...,2n —4}. Now,
we want to show that B(X,.) vanishes in each element of #p. For any
X e[(D) (X = RX), u(4;X)=0, ie. BX,V)=0. B(X,&)=g(Vx& E) =
~§(pX ,E) = —G(pRX,E) =0, since D is invariant under 4. B(X,F;) =
—g(VyF,, E) = g(F;,VxE) = g(F,,AEX) =0, since Dy L §(TM*). Let Y be an
element of I'(D). Locally, we have

- 2”_49()’7 F;)
Y =0(E+u(Y)V + ; 9(F,, F)

F,eT(D),
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with g(F;, F;) # 0 because of the non-degeneracy of Dy. Consequently,

B(X,Y)=0(Y)B(X,E)+0o(Y)B(X,V) +2§:4

1) =0.
Ftan )

Hence, M is D-totally geodesic. It is easy to check that A;X = u(4AxX)V. So,
we have

AL X = u(AyX)V = C(X, V)V = —p(X)V =0,

since S(TM) is totally contact geodesic. O

5. Concluding remarks

It is well known that the second fundamental form and the shape operator
of a non-degenerate hypersurface (in general, submanifold) are related by means
of the metric tensor field. Contrary to this, we see from (2.5)—(2.10) that in
the case of lightlike hypersurfaces, there are interrelations between these geo-
metric objects and those of its screen distributions. So, the geometry of lightlike
hypersurfaces depends on the vector bundles (S(TM),S(TM*) and N(TM)).
However, it is important to investigate the relationship between some geometrical
objects induced, studied above, with the change of the screen distributions. In
this case, it is known that the local second fundamental form of M on % is
independent of the choice of the above vector bundles. This means that all
results of this paper which depend only on B are stable with respect to any
change of those vector bundles.

Next, we study the effect of the change of the screen distribution on the
results which also depend on other geometric objects. Recall the following four
local transformation equations (see [4] page 87) of a change in S(TM) to another
screen S(TM)':

(5.1) W) =" W/ (W, - g¢E),

1 2n—1 2n—1
(5.2) N’:N—E Zsl ) E+ch i)
=1

(5.3) T(X) = 1(X) + B(X,N' — N),

1 2n—1 2n—
(5.4) V;(YVXY+B(X,Y){§<;,3, ¢) ) Zc, }

where {W;} and {W/} are the local orthonormal basis of S(TM) and S(TM)’
with respective transversal sections N and N’ for the same null section E. Here
¢; and W/ are smooth functions on % and {ei,...,&,_1} is the signature of the
base {Wl, ey WZn—l}-
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Denote by o the dual 1-form of W:Z?ﬁfl ¢;W; (characteristic vector
field of the screen change) with respect to the induced metric g of M, that is
o(X)=gX, W), VX eI'(TM).

Let P and P’ be projections of TM on S(TM) and S(TM)', respectively
with respect to the orthogonal decomposition of TM. So, any vector field X on
M can be written as X = PX + 0(X)E = P'X + 0'(X)E, where 0(X) = g(X,N)
and 0'(X) =g(X,N’). Then, using (5.2) we have

(55) P'X=PX—-wX)E and C'(X,P'Y)=C'(X,PY), VX,YeT(TM).

The relationship between the second fundamental forms C and C’ of the screen
distribution S(TM) and S(TM)’, respectively, is given by (using (5.2) and (5.4))

(56)  C'(X,PY)=C(X,PY)— %g(W, W)B(X, ¥) + g(VxPY, W)
— C(X,PY) - %g(VXPY Y BX, Y)W, W)

1
= C(X,PY) = 50(VxPY + B(X, V)W),

Note that if the lightlike hypersurface M is totally geodesic, by (5.4), the linear
connection V is unique.

ProposiTioN 5.1. Let (M,g,S(TM)) be a lightlike hypersurface of an
indefinite Sasakian manifold (M,g) with ¢ € TM. The covariant derivatives V
of h=B®N and V' of " =B® N’ in the screen distributions S(TM) and
S(TM)', respectively, are related as follows: for any X,Y,Z eT'(TM),

(5'7) g((Vth/)(Y, Z)7 E) = g_((VXh)(Y7 Z)’ E) + E(X> YaZ>7

where & is given by L (X,Y,Z)=B(X,Y)B(Z,W)+ B(X,Z)B(Y,W)+
B(Y,Z)B(X,W).

We note that ¥ (X, Y,Z) is symmetric with respect to X, ¥ and Z. Moreover
g('aWE) =0 and gf(X7 Y) = g(X7 Y:f) = —M(W)B(X, Y) - u(X)B(Yv W) -
u(Y)B(X,W). Also, it is easy to check that the parallelism of / is independent
of the screen distribution S(TM) (V'h' = Vh) if and only the second fundamental
form B of M vanishes identically on M.

Also, we have the following lemmas.

LEMMA 5.2. The forms v and v’ of the screen distributions S(TM) and
S(TM)', respectively, are related as follows: v'(X) = v(X) —Lw(=2¢X +u(X)W).

LemmA 5.3. Let (M,g,S(TM)) be a lightlike hypersurface of an indefinite
Sasakian manifold (M ,g) with ¢ e TM such that its screen distribution is totally
contact umbilical. Then, the second fundamental forms C and C' of the screen
distributions S(TM) and S(TM)', respectively, are related as follows: C'(X,Y)
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= C(X,Y)+3K(X,Y), where K is a symmetric bilinear form defined by K(X,Y)
=n(X)o(¢Y +u(Y)W) +n(Y)o(pX +u(X)W).

Therefore, the results expressed in terms of C and these two last Lemmas are
independent of the screen distribution S(7M) if and only if w(VxPY +
B(X,PY)W) =0, VX,Y e [(TM).
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