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ANALYTIC COMPUTATION OF SOME AUTOMORPHISM GROUPS

OF RIEMANN SURFACES

James S. Wolper

Abstract

Equations for the locus of Riemann Surfaces of genus three with a nonabelian

automorphism group generated by involutions are determined from vanishings of

Riemann’s theta function.

Torelli’s Theorem implies that all of the properties of a non-hyperelliptic
compact Riemann Surface (complex algebraic curve) X are determined by its
period matrix W. This paper shows how to compute the group Aut X of
conformal automorphisms of a surface X of genus three using W, in the case
when the group is nonabelian and generated by its involutions.

The connection between W and X is Riemann’s theta function yðz;WÞ.
Accola ([1], [2], [3]), building on classical results about hyperelliptic surfaces,
found relationships between the theta divisor Y ¼ fz A JacðX Þ : yðz;WÞ ¼ 0g and
Aut X . In the case of genus three, certain vanishings of y at quarter-periods of
JacðXÞ imply that X has an automorphism s of degree two (or involution) such
that X=hsi has genus one (making s an elliptic-hyperelliptic involution).

This work derives equations in the moduli space of surfaces of genus three
for many of the loci consisting of surfaces with a given automorphism group. It
is a two-step process. First, topological arguments determine the order of the
dihedral group generated by two non-commuting involutions. Then, combi-
natorial arguments about larger groups generated by involutions determine the
theta vanishings corresponding to each.

Much of the work here is based on the author’s 1981 PhD dissertation [7]
at Brown University. It appears now because of renewed interest in these
questions, some of which is inspired by questions in coding theory: See [3], [5].
The research was directed by R. D. M. Accola, and Joe Harris was also a
valuable resource. The author extends his (belated) thanks to them.

1. Preliminaries and notation

In all that follows, X is a compact Riemann Surface (or complex algebraic
curve) of genus three with automorphism group Aut X , period matrix W, jacobian
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JacðXÞ, and theta-divisor Y. Use H1ðX ;RÞ to denote singular homology with
coe‰cient ring R.

Choice of a symplectic basis hA1; . . . ;Ag;B1; . . . ;Bgi for H1ðX ;RÞ and a
normalized basis ho1; . . . ;ogi for H 1;0ðX Þ leads to a period matrix of the form
½I jW� and an Abel–Jacobi map m : X ! JacðXÞ. Every point of JacðX Þ is a
translate of the m-image of a divisor class on X . This approach, among others,
defines a map ~pp : JacðYÞ ! JacðXÞ, by lifting divisors using the holomorphic map
p : X ! Y .

The point Waþ b in JacðXÞ, where a and b are row vectors in ðR=ZÞg,

is written
a

b

� �
. A point

a

b

� �
of order n is called it a

1

n
-period, so a; b A

1

n
Z=Z

� �g
. Such a point corresponds to a cycle in H1ðX ;Z=nZÞ, using the

chosen basis. For half-periods, this identification makes the intersection product
� � � on H1ðx;Z=2ZÞ into a sign-valued symmetric bilinear pairing, called the
Weil pairing. Let e and h be half-periods, and use the same symbols for their
images in H1ðX ;Z=2ZÞ; then

je; hj ¼ ð�1Þe�h:

2. Theta vanishings and involutions

Let p : X ! X=hsi denote the quotient map.

Lemma 1 [1]. Let X be of genus three, let Y be the theta divisor on JacðXÞ,
and let s A Aut X be an elliptic-hyperelliptic involution. Then there is a half-
period e1 A JacðX Þ such that for any z A JacðX=hsiÞ, ~ppðzÞ þ e1 A Y.

Theorem 1. Suppose that there are two quarter-periods f1; f2 A Y such that:
(i) f1 0Gf2;
(ii) 2f1 ¼ 2f2 0 0;
(iii) j2f1; f1 þ f2j ¼ 1; and
(iv) yð f1;WÞ ¼ 0 ¼ yð f2;WÞ.

Then Aut X contains an elliptic-hyperelliptic involution, and the theta-vanishings f1
and f2 arise as in Lemma 1.

Definition 1. The conditions (i)–(iii) are the admissibility conditions.

Definition 2. The half-periods 2f1, f1 þ f2, and f1 � f2 are the derived half-
periods due to the involution.

3. Topology of surfaces with dihedral groups of automorphisms

When X has two non-commuting involutions, Aut X contains a dihedral
group. This group acts on the homology of X in the usual way. Each involu-
tion’s action has an invariant subspace, and this section shows how the relative
position of these subspaces with respect to the Weil pairing depends on whether
the dihedral group has a non-trivial center. In the case of genus three, the only
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dihedral groups that appear on non-hyperelliptic surfaces are D3 and D4, where
only the latter has a nontrivial center, so the dihedral group generated by two
non-commuting involutions is determined.

The first step is to determine the homomorphism on homology induced by
an involution.

Definition 3. A branched cover p : X1 ! X0 of Riemann surfaces of
respective genera g1 and g0 is completely ramified if the maximal unbranched
cover X 0 ! X0 through which p factors as X1 ! X 0 ! X0 is X 0 GX0.

The key to understanding the topological e¤ects of automorphisms is:

Lemma 2 (Accola). Let p : X1 ! X0 be a completely ramified abelian cover
of degree n. There there is a disk D0 HX0 such that

(a) all of the ramification of p occurs over D0; and
(b) X1 � p�1ðD0Þ has n connected components homeomorphic to X0 � D0.

If s is an involution on X , then p : X ! X=hsi is completely ramified.
Figure One illustrates the situation when s is an elliptic-hyperelliptic involu-
tion. The figure shows a symplectic homology basis for X that was chosen as

Figure 1. s-basis
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follows: since p branches at four points, the covering p�1ðD0Þ ! D0 corresponds
to the finite part of the classical situation of an elliptic curve with a two-to-one
mapping to P1, and the cycles A1 and B1 were picked in the classical manner
(see, e.g., [4, Chapter 10]). The homeomorphisms between X=hsi� D0 and each
component of X � p�1ðD0Þ are then used to lift a basis for H1ðX=hsi� D0;
Z=2ZÞ to X .

Definition 4. A s-basis for X is a homology basis picked as above.

4. Dihedral groups determined by theta vanishings

The two main theorems are below.

Theorem A. Let f f1; f2g and f f3; f4g be two admissible sets of quarter-
period vanishings with 2f1 ¼ 2f2 0 2f3 ¼ 2f4. Then if h2f1; f1 þ f2; 2f3; f3 þ f4i
has type ð0; 2Þ the two corresponding involutions generate D3. Conversely, if two
involutions generate a D3, the corresponding quarter-period vanishings generate a
group of type ð0; 2Þ.

Theorem B. Let f f1; f2g and f f3; f4g be two admissible sets of quarter-
period vanishings with 2f1 ¼ 2f2 0 2f3 ¼ 2f4. Then if h2f1; f1 þ f2; 2f3; f3 þ f4i
has type ð2; 1Þ the two corresponding involutions generate D4. Conversely, if two
involutions generate a D4, the corresponding quarter-period vanishings generate a
group of type ð2; 1Þ.

The type of a subgroup is defined by the following purely algebraic lemma,
taken from [4], p. 294.

Lemma 3. Let G be the subgroup of JacðX Þ generated by the distinct half-
periods e1; . . . ; er. Then G has a basis fa1; . . . ; am; b1; . . . ; b2ng with mþ 2n ¼ r,
mþ na g, and, for all i and j, jai; aj j ¼ 1 ¼ jai; bjj and jbi; bj j ¼ �1.

Such a subgroup has rank r and type ðm; nÞ.

Lemma 4. Let fA1;A2;A3;B1;B2;B3g be a s-basis for H1ðX ;ZÞ. Then the
action of s on H1ðX ;ZÞ is given by the matrix

s� ¼

�1 0 0

0 0 1 0

0 1 0

�1 0 0

0 0 0 1

0 1 0

0BBBBBBBB@

1CCCCCCCCA
:
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Proof. This is a routine computation.

Notice that the action of s� on H1ðX ;ZÞ has two isotypic components, one
corresponding to þ1 and the other corresponding to �1. By abuse of language,
call the former ‘‘the’’ invariant subspace.

Lemma 5. The invariant subspace of H1ðX ;QÞ has integral generators A, B
such that A � B is even.

Proof. The subspace generated by A2 þ A3 and B2 þ B3 is one such, and it
is trivial to check that any integral change of basis preserves the parity of the
intersection product.

Lemma 6. Let p : X ! X=hsi be the quotient map. Let A, B be a sym-
plectic basis for H1ðX=hsi;ZÞ and let fA1; . . . ;B3g be the corresponding s-basis
for X. Then p̂pðAÞ ¼ A2 þ A3 and p̂pðBÞ ¼ B2 þ B3.

Proof. This is clear from the picture, or see [1, p. 44].

Lemma 7. The derived half-periods due to s correspond to the image in
H1ðX ;Z=2ZÞ of the invariant subspace of H1ðX ;ZÞ.

Proof. Choose a s-basis for X . By Lemma 5, ~pp : JacððX=hsiÞÞ ! JacðX Þ
is given by

~ppð a

b

� �
Þ ¼ 0 a a

0 b b

� �
:

By the remark following Definition 2, the derived half-periods are f~ppðeÞ : 2e ¼ 0g,
i.e., they are

0 1
2

1
2

0 0 0

 !
;

0 0 0

0 1
2

1
2

 !
; and

0 1
2

1
2

0 1
2

1
2

 !
:

These correspond to the invariant cycles B2 þ B3, A2 þ A3, and B2 þ B3 þ
A2 þ A3, respectively.

For the rest of this section, suppose X is compact and non-hyperelliptic of
genus three, and that the common hypotheses of Theorems A and B are true; in
other words, let f f1; f2g and f f3; f4g be two admissible sets of quarter-period
vanishings with 2f1 ¼ 2f2 0 2f3 ¼ 2f4. Theorem 1 implies that Aut X contains
two distinct elliptic-hyperelliptic involutions s and t. Suppose that hs; ti is a
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dihedral group of order 6 or 8 (the other possibilities are order 4 and 12; the
former is discussed in a later section, and the latter only occurs on hyperelliptic
surfaces).

Let hV ;R : V 2 ¼ Rn ¼ 1;VRV ¼ R�1i be a presentation of the group Dn

generated by s and t. Each involution is elliptic-hyperelliptic [2]. The strategy
is to explicitly compute the V - and VR-invariant subspaces of H1ðX ;ZÞ and use
the results from section two to distinguish the two cases.

4 (a). Case D3

Suppose that the dihedral group is D3. Then E ¼ X=hRi has genus one,
while X=D3 GP1.

The branched covering X ! E is completely ramified with two branch points
p and q. Following Lemma 2, let ~pp ¼ pðpÞ and let ~qq ¼ pðqÞ. Take three copies
of E on which an oriented path ~tt has been constructed from ~pp to ~qq, and join the
three copies of E along ~tt by observing the convention that the lift to X of any
oriented arc on E meeting ~tt with positive orientation will jump from sheet i to
sheet i þ 1 (modulo 3) above the intersection. This is illustrated in Figure Two,
in which n is a closed loop. The automorphism R permutes the three sheets
cyclically.

Figure 2. Three-sheeted cover
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Pick an R-basis for H1ðX ;ZÞ by letting A and B be generators for H1ðE;ZÞ
and letting Ai and Bi denote the copy of A and B on sheet i. With respect to
this basis R has the matrix

0 1 0

0 0 1 0

1 0 0

0 1 0

0 0 0 1

1 0 0

0BBBBBBBB@

1CCCCCCCCA
:

The complete linear system g12 ¼ j~ppþ ~qqj defines a map E ! P1 of degree 2,
and thus an involution ~VV : E ! E that can be lifted to X . Notice that if V
is an involution in the D3 on X , then VðpÞ is also a branch point of p,
because RVðpÞ ¼ VR2ðpÞ ¼ VðpÞ; R2ðpÞ ¼ p because p is a branch point. Thus

VðpÞ ¼ q. Therefore, ~VV lifts to an involution in D3 which is denoted by V .
Now, compute the action of V on homology by lifting ~VV . Pick a base-

point p0 for the fundamental group of E 0 ¼ E � f~pp; ~qqg, and label the points
fp1; p2; p3g in p�1ðp0Þ so that Rðp1Þ ¼ p2, Rðp2Þ ¼ p3, and Rðp3Þ ¼ p1; use p1
for the basepoint of the fundamental group of X 0 ¼ X � fp; qg. Notice that
p : X 0 ! E 0 is a covering.

Choose an arc s on E 0 joining p0 and ~VVðp0Þ; di¤erent choices of s will lift ~VV
to di¤erent involutions in D3. Let x A X 0; to compute VðxÞ, draw an arc n on X
from p1 to x, and let ~nn be the pointwise image of n under p. Then VðxÞ is the

endpoint of the lift of the arc on E 0 obtained by tracing s and then ~VVð~nnÞ.
When x is on the same p-sheet as p1, the number of times that ~nn crosses ~tt is a

multiple of 3, and ~VVð~nnÞ crosses ~tt ¼ ~VVð~nnÞ the same number of times. Thus, ~VV lifts
directly to this sheet.

However, if x is on the same sheet as p2, the number of times that n crosses
t is congruent to 1 ðmod 3Þ, and ~VVð~nnÞ crosses ~tt with the opposite orientation.
This is because ~VV can be written ~VVðzÞ ¼ �zþ b in the group law of E, reversing
the sense of ~nn when ~VV is applied. From this it follows that VðxÞ is on the same
sheet as p3, that is, V first acts like ~VV on sheet 2, then exchanges sheets 2 and 3.

The action V� : H1ðX ;ZÞ ! H1ðX ;ZÞ is

A1 7! �A1 B1 7! �B1

A2 7! �A3 B1 7! �B3

A3 7! �A2 B1 7! �B2

and the invariant subspace is spanned by A2 � A3 and B2 � B3.
One computes ðVRÞ� and ðVR2Þ� by functoriality, and finds that the ðVRÞ�

invariant subspace is hA1 � A3;B1 � B3i, and that the ðVR2Þ�-invariant subspace
is hA1 � A2;B1 � B2i. Compute the images of these subspaces in H1ðX ;Z=2ZÞ
to find the following table of derived half-periods:
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V
0 0 0

0 1 1

� �
0 1 1

0 0 0

� �
0 1 1

0 1 1

� �
VR

0 0 0

1 0 1

� �
1 0 1

0 0 0

� �
1 0 1

1 0 1

� �
VR2 0 0 0

1 1 0

� �
1 1 0

0 0 0

� �
1 1 0

1 1 0

� �
Now, pick any two involutive generators, e.g. V and VR, and look at

the group generated by their derived half-periods, which has rank four. In

each case, this group has type ð0; 2Þ. For example, the subgroup h
0 0 0

0 1 1

� �
;

0 1 1

0 0 0

� �
;

1 0 1

0 0 0

� �
;

0 0 0

1 0 1

� �
i has the basis

b1 ¼
0 0 0

0 1 1

� �
; b2 ¼

1 1 0

0 1 1

� �
;

b3 ¼
1 0 1

0 0 0

� �
; and b4 ¼

1 0 1

1 1 0

� �
:

Thus, condition (iv) of Theorem A is satisfied whenever D3 HAut X .

4 (b). Case D4

Suppose that D4 ¼ hV ;R : V 2 ¼ R4 ¼ 1;VRV ¼ R3iHAut X . It follows
from [2 (7)] that every involution in this group has quotient genus 1, and that R
is fixed-point free, since X=hRi has genus 1. Since R2 is in the center of D4, all

other elements descend to automorphisms of E ¼ X=hR2i; let ~RR, ~VV , and fVRVR be
the involutions in Aut E that correspond respectively to R, V , and VR. The
strategy is to examine their behavior on E and then lift them back to X to
compute their action on homology.

It is clear that ~VV ~RR ¼ fVRVR, and that R is fixed-point free. Thus,

~RRðzÞ ¼ zþ bR;

where the addition is in E and 2bR ¼ 0. The other involutions have the form

~VVðzÞ ¼ �zþ b 0
VfVRVRðzÞ ¼ �zþ b 0
VR;

one has b 0
V þ bR ¼ b 0

VR.
Choose the origin of E so that 2b 0

V ¼ 0 ¼ 2bV . Let bV be any half-
period on E, and pick O A E such that b 0

V ¼ 2Oþ bV ; then ~VVðzÞ ¼ zþ b 0
V ¼

ð2O� zÞ þ b 0
V . By making O the origin, this becomes
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~VVðzÞ ¼ �zþ bV

with respect to the new group law; similarly,fVRVRðzÞ ¼ �zþ bV þ bR;

and 2bVR ¼ 2ðbV þ bRÞ ¼ 0.
We may further assume, by proper choice of the generators for the period

lattice for E, that bV , bR, and bVR are as shown in figure three:

Figure 3. Half-periods on E

Figure 4. Constructing X from E
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The map p : X ! E branches at four points p1; . . . ; p4; let ~ppi ¼ pðpiÞ. One
can check (renumbering if necessary) that p2 ¼ Vðp1Þ, p3 ¼ VRðp1Þ, and p4 ¼
R�1ðp1Þ, so ~pp2 ¼ ~VVð~pp1Þ, ~pp3 ¼ fVRVRð~pp1Þ, and ~pp4 ¼ ~RRð~pp1Þ. To reconstruct X from
E, take two copies of E on which linear cuts have been made joining ~pp1 to ~pp2
and ~pp3 to ~pp4, and join the sheets along the corresponding edges. (Any other
choice of cuts would do, due to the rigid configuration of ~pp1; . . . ; ~pp4.) See Figure
Four, which is isomorphic with Figure One.

Let O be the basepoint for the fundamental group of E 0 ¼ E � f~ppig, and
choose a point p0 over O to be the basepoint on X 0 ¼ X � fpig. To lift ~VV ,
draw an arc s on E 0 from O to ~VVðOÞ ¼ bV ; s can be taken to be the base of the
rectangle representing E in figure four. For x A X 0, draw an arc n on X 0 from p0
to x, and let ~nn be the pointwise image of n under p. Then VðxÞ is the endpoint
of the lift of s followed by ~VVð~nnÞ.

The ~VV -image of a cut is another cut, so ~VVð~nnÞ crosses the same number of
cuts as ~nn, and VðxÞ is on the same p-sheet as x, i.e., ~VV lifts directly to each
sheet. The computation of V� : H1ðX ;ZÞ ! H1ðX ;ZÞ is done using diagrams.
Figure 5 shows that VðA1Þ is homologous to A1 � A2 þ A3:

Similar figures show:

V�ðA2Þ ¼ �A2

V�ðA3Þ ¼ �A3

V�ðB1Þ ¼ B1

V�ðB2Þ ¼ �B1 � B2

V�ðB3Þ ¼ B1 � B3:

Figure 5. V -image of A1
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The action of fVRVR is very di¤erent, because the image of a cut is no longer a
cut. The unions of the cuts and their fVRVR-images partitions E into two regions.
Points in the region containing the origin of the group law of E stay in that
region, so arcs in that region lift directly to an arc on one sheet or the other of X .
Arcs from the origin into the other region lift into arcs that jump sheets. Thus
we find that

VR�ðA1Þ ¼ A1

VR�ðA2Þ ¼ A1 � A2

VR�ðA3Þ ¼ �A1 � A3

VR�ðB1Þ ¼ B1 þ B2 � B3

VR�ðB2Þ ¼ �B2

VR�ðB3Þ ¼ �B3:

Functoriality shows that

R�ðA1Þ ¼ �A1 þ A2 � A3

R�ðA2Þ ¼ �A1 þ A2

R�ðA3Þ ¼ A1 þ A3

R�ðB1Þ ¼ B1 � B2 þ B3

R�ðB2Þ ¼ B1 þ B3

R�ðB3Þ ¼ �B1 þ B2:

Lemma 6 leads to the following table of derived half-periods for the
involutions:

V
1 0 0

0 0 0

� �
0 0 0

0 1 1

� �
1 0 0

0 1 1

� �
VR

0 1 1

0 0 0

� �
0 0 0

1 0 0

� �
0 1 1

1 0 0

� �
VR2 1 1 1

0 0 0

� �
0 0 0

0 1 1

� �
1 1 1

0 1 1

� �
R2 0 1 1

0 0 0

� �
0 0 0

0 1 1

� �
0 1 1

0 1 1

� �
VR3 0 1 1

0 0 0

� �
0 0 0

1 1 1

� �
0 1 1

1 1 1

� �
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A routine calculation shows that the derived half-periods due to any two
generators of D4 generate a group of rank 4 and type ð2; 1Þ. For example, in the

line for R2, let a1 ¼
0 0 0

0 1 1

� �
, and let a2 ¼

0 1 1

0 0 0

� �
.

It is important to notice that commuting involutions always share a derived
half-period. To see this, let M2 ¼ fX : Z=2Z� Z=2ZHAut Xg. This follows
from the results of Wiman [7], who derived normal forms for the canonical curves
of surfaces of genus three with involutions. The normal form for a surface in
M2 is X 4 þ Y 4 � Z4 þ aX 2Y 2 þ bY 2Z2 þ cZ2X 2 ¼ 0, with the involutions given
by sign change of one homogeneous coordinate. The normal form for curves
in M4 is the same, with the condition that a ¼ c, so these involutions become
commuting involutions on the surface on M4. Since the derived half-periods
vary continuously with X , the commuting involutions in D4 share a half-period.

Thus, is a surface X has quarter-period vanishings satisfying the admissibility
conditions (i), (ii), and (iii), there are two non-commuting involutions in Aut X ; if
the group of derived half-periods has type ð2; 1Þ, then the involutions generate a
D4; if not, they generate a D3.

This concludes the proof of Theorems A and B.
Also note the following:

Corollary 1. Each locus M3 and M4 is the image in M of a subvariety of
A3 which is a set-theoretic complete intersection.

The following will be useful in the next section:

Corollary 2. Two elliptic-hyperelliptic involutions commute if and only if
they have a common derived half-period.

5. Larger automorphism groups

Now consider a non-hyperelliptic Riemann surface of genus 3 with a non-
abelian automorphism group generated by involutions. Following [6], there are
four such groups in addition to the dihedral groups from the previous section.
They are:

T ¼ hS;T ;U : S2 ¼ T 2 ¼ U 2 ¼ ðSTUÞ4 ¼ 1;STU ¼ TUS ¼ USTi;

S4 ¼ hS;T : S2 ¼ T 4 ¼ ðSTÞ3 ¼ 1i;

the symmetric group on 4 letters;

F ¼ hS;T : S2 ¼ T 3 ¼ ðSTÞ8 ¼ ðST�1STÞ3 ¼ 1i;

which has order 96; and

KGAutðZ=2Z3Þ ¼ PSLð2;Z=2ZÞ ¼ hS;T : S2 ¼ T 3 ¼ ðSTÞ7 ¼ ðST�1STÞ4 ¼ 1i;

the famous simple group of order 168.
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A fifth non-abelian group of order 48 appears on a non-hyperelliptic surface,
but it is not generated by its involutions. It contains T as a subgroup.

All of these groups contain subgroups isomorphic to D4, and the basic
strategy to understand the locus of surfaces with one of these automorphism
groups is to analyze how involutions not in D4 interact with those in D4.

Begin with the group T. Its 7 involutions are S, T , U , USU , STS, TUT ,
and ðSUÞ2, and its center is generated by STU . There are three subgroups
isomorphic to D4: hS;Ti, hT ;Ui, and hS;Ui. If H is one of these subgroups
and i is an involution not in H, one easily checks that i commutes with the
central involution of H. In contrast, S4 also has 3 subgroups isomorphic to D4,
given in cycle notation as hð13Þ; ð12Þð34Þi, hð12Þ; ð14Þð23Þi, and hð14Þ; ð13Þð24Þi.
Each of these contains the abelian subgroup of order four generated by ð12Þð34Þ
and ð13Þð24Þ, which is a normal subgroup of S4; and all three are conjugate
2-Sylow subgroups. This, if H is one of these dihedral subgroups and s is an
involution not in H, s does not commute with the central involution in H.

These di¤erences enable one to distinguish the two groups from the derived
half-periods. Recall that each elliptic-hyperelliptic involution causes y to vanish
at 12 quarter-periods fGf1; . . . ;Gf6g; for each D4 HAut X , then there is a
paradigm of vanishings:

V f1, f2

VR2 f5, f2

R2 f5, f1 f6, f3 g1, g2

VR f4, f6

VR3 h1, h2 f3, f4

The table is derived using Corollary 2: since, e.g., V commutes with VR2,
they share a quarter-period vanishing. Each entry in the paradigm contains a
pair x, y of quarter-periods that satisfy 2x ¼ 2y and j2x; xþ yj ¼ 1. The entries
f1; . . . ; f4 satisfy the hypotheses of Theorem B, so D4 HAut X when yð fiÞ ¼ 0,
i ¼ 1; . . . ; 4.

If TJAut X , then D4 HAut X , so y vanishes at all entries in the
paradigm. Each involution of T not in this D4 commutes with R2, so it
shares a derived half-period with R2; thus, y vanishes at a quarter-period g3 with
2g1 ¼ 2g2 ¼ 2g3. On the other hand, if y vanishes at f1, f2, f3, f4, and g3, then,
by Theorem B, Aut X contains a D4, and there is an involution s A Aut X that
shares a derived half-period with R2, and thus commutes with R2. By Lemma 8,
the group hD4; si cannot be S4. This proves

Theorem 2. The group THAut X if an d only if there is a set of five
quarter-periods f1, f2, f3, f4, and g3, as indicated in the paradigm, where y
vanishes.
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Now, suppose that S4 HAut X ; then Aut X contains a D4 and some
involution s not in the D4. One may assume that D4 ¼ hð13Þ; ð12Þð34Þi,
that s ¼ ð12Þ, and that V ¼ ð13;VRÞ ¼ ð12Þð34Þ. Each entry in the paradigm
is a y-vanishing, so a fortiori, y vanishes at h1 and h2. Furthermore, because of
s, there is a y-vanishing at some h3 not in the paradigm, and 2h1 ¼ 2h2 ¼ 2h3,
since s commutes with VR.

Notice that h1, h2, f1, and f2 satisfy the hypotheses of Theorem B, so the
vanishing of y at these four quarter-periods implies the existence of an involu-
tion not in D4 that commutes with VR; by Lemma 7, then, TU hD4; si, so
hD4; siGS4 JAut X .

It is also possible to derive information about the type of the subgroups
generated by the half-periods, using the dihedral subgroups of order 6 in S4.
Either fh1; h3g or fh2; h3g is a vanishing set due to (12); renumber (if necessary)
so that fh1; h3g is this set. Then since hð12Þ; ð13Þi ¼ hs;ViGD3, h2h1; h1 þ h3;
2f1; f1 þ f2i has type ð0; 2Þ. Thus, if S4 JAut X , then y vanishes at five
quarter-periods f1, f2, h1, h2, and h3 that satisfy:

(i) 2f1 ¼ 2f2, 2h1 ¼ 2h2;
(ii) j2f1; f1 þ f2j ¼ 1 ¼ j2h1; h1 þ h2j;
(iii) h2f1; f1 þ f þ 2; 2h1; h1 þ h2i has type ð2; 1Þ;
(iv) 2h1 ¼ 2h3;
(v) j2h1; h1 þ h3j ¼ 1; and
(vi) h2f1; f1 þ f2; 2h1; h1 þ h3i has type ð0; 2Þ.

Theorem 3. The symmetric group S4 JAut X if and only if y vanishes at
quarter-periods f1, f2, h1, h2, and h3 satisfying (i)–(vi) above.

Remark. In fact, it is possible to construct a presentation of S4 using the
information in (i)–(vi) and Theorems A and B.

Let MT be the locus of surfaces X with TJAut X , and let M24 denote the
locus of surfaces X with S4 JAut X . Then an argument analagous to that of
Corollary 1 gives:

Corollary 3. M24 is the image in M of a subvariety of A3 that is a (set-
theoretic) complete intersection.

This argument requires some modification in the case of MT: moving
through M24 HM4 can change the central involution in the D4, and since the
choice of the fifth vanishing g3 depends on the central involution, the vanishing
of y at f1; . . . ; f4, g3 does not guarantee that TJAut X near M24. Thus, the
equations yð fi;WÞ ¼ 0 ¼ yðg3;WÞ only define the inverse image of MT locally.

Corollary 4. The locus MT is the image in M of a subvariety of A3 that is
a (set-theoretic) locally complete intersection.

Similar though tedious analysis of the groups F and K yields
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Theorem 4. The group FJAut X if and only if y vanishes at quarter
periods f1; . . . ; f6 such that:

(i) 2f1 ¼ 2f2, 2f3 ¼ 2f4;
(ii) j2f1; f1 þ f2j ¼ 1 ¼ j2f3; f3 þ f4j;
(iii) h2f1; f1 þ f2; 2f3; f3 þ f4i has type ð2; 1Þ;
(iv) 2f5 ¼ 2f6;
(v) j2f5; f5 þ f6j ¼ 1;
(vi) h2f ; f1 þ f2; 2f3; f3 þ f4; 2f5; f5 þ f6i has rank 6;
(vii) if a; d A h2f1; f1 þ f2; 2f3; f3 þ f4i satisfy ja; xj ¼ 1 ¼ jd; xj for all x A

h2f1; f1 þ f2; 2f3; f3 þ f4i, then ha; d; 2f5; f5 þ f6i has type ð2; 1Þ,

Note. a and d in condition (vii) are the derived half-periods due to
f1; . . . ; f4.

Theorem 5. Consider the conditions (i)–(vi) above and
(vii 0) if a; d A h2f1; f1 þ f2; 2f3; f3 þ f4i satisfy ja; xj ¼ 1 ¼ jd; xj for all x A

h2f1; f1 þ f2; 2f3; f3 þ f4i, then ha; d; 2f5; f5 þ f6i has type ð0; 2Þ.

Then KJAut X if and only if y vanishes at quarter periods f1; . . . ; f6 such that
satisfy (i) through (vi) and (vii 0).
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[ 7 ] A. Wiman, Über dir Hyperelliptischen Curven und Diejenigen vom Geschlecte p ¼ 3, Bihang

Till Kongl. Svenska Vetenskaps—Acadiems Handligar 21 (1895), Afd. I, No. k, 23.

[ 8 ] J. Wolper, Theta functions and automorphisms of Riemann surfaces, Thesis, Brown Uni-

versity, 1981.

James S. Wolper

Department of Mathematics

Idaho State University

921 S. 8th Ave., Stop 8085

Pocatello, ID 83209

USA

E-mail: wolpjame@isu.edu

408 james s. wolper


