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ON A RESULT OF UEDA CONCERNING UNICITY
OF MEROMORPHIC FUNCTIONS

THAMIR C. ALZAHARY

Abstract

This paper studies the problem of the uniqueness of meromorphic functions sharing
three values. The results in this paper improve some theorems given by H. Ueda, H. X.
Yi and other authors.

1. Introduction and the main results

Let f and g be two nonconstant meromorphic functions on the open
complex plane C, and let ¢ be a finite value in the complex plane. We say that
f and g share the value « CM (IM) provided that ' — a and g — a have the same
zeros counting multiplicities (ignoring multiplicities), and f, g share co CM (IM)
provided that 1/f, 1/g share 0 CM (IM). We also denote by N,(r,f) (or
N, (r, f)) the counting function of the poles of f* with multiplicities less than
or equal to p (ignoring multiplicities), and N(,(r, f) (or N(,(r, f)) the counting
function of the poles of f with multiplicities greater than or equal to p (ignoring
multiplicities). The symbol S(r, f) is quantity satisfying S(r, /) = o(T(r, f)) as
r — +oo possibly outside a set E of finite Lebesgue measure. It is assumed that
the reader is familiar with the notations of the Nevanlinna theory that can be
found in [3 or 7].

Throughout in this paper we denote by f, g two nonconstant meromorphic
functions defined on the open complex plane.

In 1983, H. Ueda [6] proved the following two theorems:

THEOREM A. Let f and g be two distinct nonconstant meromorphic functions
sharing 0, 1, oo CM. If a (#0,1) is a finite complex number, then

N ( ﬁ) —S(f) and Np (q ! a) = S(r,9).
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THEOREM B. [If, in addition to the assumptions of Theorem A, Ek (a,f) =
E i (a,g), where k =2 is a positive integer or oo, then f and g share a CM.

In 1989, Brosch [2] showed that the conclusion of Theorem B is still valid if
the COIldlthIl “Ek (a,f) = Ep(a,g)” in Theorem B is replaced by “Ey(a, f) =
E(a,g)”. Li and Yi [5] proved the following:

THEOREM C (see [5, Theorem 1.1]). Let f and g be two distinct nonconstant
meromorphic functions sharing 0, 1, co CM. If there exists a finite complex
number a (# 0, 1) such that a is not a Picard value of [ and Ny (r,1/(f —a)) #

T(r, f) +S(r, f), then Nyy(r,1/(f —a)) = ((k = 2)/k)T(r, f) + S(r, ) and one of
the following cases will hold.
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where y is a nonconstant entire function, s and k (= 2) are positive integers such
that s and k + 1 are mutually prime and 1 <s <k in (1), (i) and (iii), s and k are
mutually prime and 1 <s<k—1 in (iv), (V) and (vi).

Recently the author has proved the following result which is an improvement
of some theorems given by S. Ye [8], H. Yi [9] and other authors.



142 THAMIR C. ALZAHARY

THEOREM D (see [1, Theorems 2 and 3]). Let f and g be two distinct
nonconstant meromorphic functions sharing 0, 1, co CM, and let a (#0,1) be a
small meromorphic function of f and g. Then

N (r, J%a) =S8(r,f) and Ng (r,g

Furthermore, if N (r,

*)= st

o) # T4 S0 ). then N (1) = SC.p), and

f and g satisfy one of the following three relations:
(i) (f—a)g+a—1)=a(l —a);
i) f+@—lg=a
(ili) f = ag.

Can one replace a in Theorems A-C by a small function of f and ¢?
In this paper, we give a positive answer for this question by the following
two theorems:

THEOREM 1. Let [ and g be two distinct nonconstant meromorphic functions
sharing 0, 1, oo CM. If a(# o) is a nonconstant small meromorphic function of

J and g, then Ni(r,1/(f —a)) = S(r, f) and Ni(r,1/(g — a)) = S(r,9).

THEOREM 2. Let f and g be two distinct nonconstant meromorphic functions
sharing 0, 1, co CM. If a(# o0) is a nonconstant small meromorphic function of f
and g such that Eyy(a, f) < E(a,g), then f and g satisfy one of the relations (i)—
(iii) in Theorem D.

We indicate in here that Theorem 2 is not valid when a is a constant. For
example, f(z) =e* +e 41, f(z) =e* +e“+1 and a =3/4. It is easy to
verify that /" and g share 0, 1, co CM and E)(a, ) = Ey)(a,g).

2. Some lemmas

In this section we present some lemmas which will be needed in the sequel.

Lemma 1 (see [7, Theorem 5.1]). Let f and g be two distinct nonconstant
meromorphic functions sharing 0, 1, oo CM. Then

e’ —1 et —1
d-1 IS

(2.1) f

where e* # 1, e £ 1 and e** £ 1, and

T(r,g) + T(r,e*) + T(r,e’) = O(T(r, f)) (r¢E).
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This shows that S(r,f) =S(r,g) and we denote them by S(r), unless
otherwise stated.
Lemma 2 (see [4, Lemma 7|). Let fi and f, be distinct nonconstant
— —( 1
meromorphic functions satisfying N(r, f3) —&-N(nf) =S(r,fi,fr), i=12 If
i

S —1 is not identically zero for all integers s, t (|s|+ |t| > 0), then for any
positive number &, we have

NO(r717f1;f2) S(‘JT(V)—FS(V,fl,fz),

where Ny(r, 1, fi, f2) denotes the reduced counting function of fi and f
related to the common l-points, T(r)=T(r, 1)+ T(r,f2) and S(r, f1, /) =

max{S(r, f1),S(r, f2)}.

Lemma 3 (see [10, Theorem 1]). Let f and g be two distinct nonconstant
meromorphic functions sharing 0, 1, co CM. If

E N()(r)
er T f)

> 1/2,

then f is a fractional linear transformation of g. Here, Ny(r) denotes the counting
Sfunction of the zeros of f —g that are not zeros of f(f —1), 1/f.

3. Proofs of Theorems 1 and 2

1. Proof of Theorem 1. If f is a fractional linear transformation of g, then
f has two distinct Picard values, say a;, a. On the other hand, since a is a not
constant then a # aj,a>; we can apply the second fundamental theorem to get

T(r,f) =N1)<V,f;a) +S(r, f),

1
which gives N <r7m> =S(r, f).
Let us now consider that f is not a fractional linear transformation of
g. From (2.1), we have
e* —ael +(a—1)
ef —1 '

(3.1) f—a=

Assume that T(r,e*) = S(r), where S(r) is defined as in Lemma 1. If
e*4+a—1=0, then the conclusion of Theorem 1 follows from (3.1); if
e*+a—1%£0, by the second fundamental theorem we see that
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T(r.f) = T(r,ef)+S(r) = ]V(r + S(r)

ety e

which implies N <r, ﬁ) = S(r), and the conclusion of Theorem 1 is clear in

7e"‘—f—a—l—aeﬂ>

this case. Similarly, we can prove that the theorem 1 is true when T'(r,ef) =
S(r) or T(r,e*#) = S(r). Consequently, we may suppose that T(r,e*), T(r,e”)
and T(r,e* ) are not equal to S(r). Set
a/ al !/
+—, m=do+
—a a l—a

(3.2) o =p+ i

Since a is a small of f and so g, then we have T(r,o;) = S(r), i =1,2.
Let zo be a multiple zero of f —a, which is neither any zero of o, f8,
o —pB', a, a—1, a1, o, o) — o, nor the pole of . From (3.1) we obtain

e“(zo) _ a(ZO)eﬁ(ZO) _|_ a(ZO) — 1 = 0,
o (20)e" — P20 (d (20) + a(z0)B") + a'(20) = 0.

These two equations give us

ﬁ/_ a , a
_ —1\ % —
(3.3) e“:(a—l)$, eﬁz(a ) a‘f—l .
O(/—_—ﬁ, a /x,___ﬁ/
a a

Let us now define the following two functions:

1 _ _
(34) ﬁ — ue“’ f2 — L ueﬁ’
l—a o l—a o

and consider
To(r) =T(r, i) + T(r, f2),  So(r) = o(To(r)) (r— oo,r¢E),

where E is a set of r of finite linear measure. From this and (3,4), we get
So(r) = S(r) and

(3.5) N(r,f,)+N<r,}_> =S(r) (j=12).
j

In view of (3.3) and (3,4), it is obvious that zy is a zero of f; — 1 and f; — 1.
By this and Theorem D, one deduces that

(36) N(2<ryj[1_61>SNO(ralaf]7f2)+S(r)7

where No(r,1, fi, f2) is defined as in Lemma 3.
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Suppose that Ny(r, 1, fi, f2) # S(r). Then from (3.5), (3.6) and by using
Lemma 2, there exist two integers p and ¢ (|p| + |¢| > 0) such that

(3.7) =1
From (3.4) and (3.7) we have pg # 0 and

(3.8) L@ Y v — (0 Y (2 Y
l1-—a l1—a oy — o o — o)

by logarithmic differentiation and by using (3.2), we can easily obtain that

)
_qon +pon \oyg

o0+ qoy = ——
P 1 a—op 22

23]
If qoy+ poy#£0 then from the last equation and (3.2), we get
0(2/
— il

/
%+ o =~ which implies that e/~ = c(1/a)(m/o), where ¢ is a

a
constant. This elquation gives us T(r,ef~*) = S(r), which is impossible. Thus
qoq + pap = 0; this relation and (3.2) yield

P VA =)
1—a l—a a

Taking integration on the above equation to conclude

1 Y/ a !
af — fe—P*
(3.9) (1—a> <l—a>e e

where 4 # 0 is a constant.

If p+¢q=0 then from (3.4) and (3.7), we get T(r,e* ) = S(r), which is
a contradiction. Therefore, p + ¢ #0; from this, (3.9) and because « is not
a constant, it is obvious that 0, 1 and oo are Picard values of «, which is
impossible. This contradiction comes from the assumption Ny(r, 1, f1, f2) # S(r).
Therefore, the conclusion of Theorem 1 follows from (3.6) and Theorem D. The
proof of Theorem 1 is completed.

2. Proof of Theorem 2. Assume that f is a linear transformation of g.
Then f and g have two distinct Picard values, and hence

T(r,f) =N, 1/(f = a)) + S(r),

because « is not a constant. If zy is a simple zero of f — a, then z, is a zero of
g — a, which means that zy is zero of ¢ — A, where A is a constant. Hence,
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T(r,f)<N(@r,1/(a—A))+ S(r),

which is impossible. This shows that f is not any linear transformation of g¢.
Suppose that f and g do not satisfy one of the forms (i)—(iii) in Theorem D.
Consequently, from Theorem D and Theorem 1, we get

. — 1
(310) T(V,f):N1)<V,JTa)+S(V)
If zy is a simple zero of f — a, then z; is a zero of g — a, and hence, z is a zero
of f—g. Therefor, it follows from (3.10) that

T(r,f)= Ny (r, J%a) + S(r) < No(r) + S(r),

which is a contradiction with Lemma 3. This proves Theorem 2.
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