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ON A RESULT OF UEDA CONCERNING UNICITY

OF MEROMORPHIC FUNCTIONS

Thamir C. Alzahary

Abstract

This paper studies the problem of the uniqueness of meromorphic functions sharing

three values. The results in this paper improve some theorems given by H. Ueda, H. X.

Yi and other authors.

1. Introduction and the main results

Let f and g be two nonconstant meromorphic functions on the open
complex plane C, and let a be a finite value in the complex plane. We say that
f and g share the value a CM (IM) provided that f � a and g� a have the same
zeros counting multiplicities (ignoring multiplicities), and f , g share y CM (IM)
provided that 1= f , 1=g share 0 CM (IM). We also denote by NpÞðr; f Þ (or
NpÞðr; f Þ) the counting function of the poles of f with multiplicities less than
or equal to p (ignoring multiplicities), and Nðpðr; f Þ (or Nðpðr; f Þ) the counting
function of the poles of f with multiplicities greater than or equal to p (ignoring
multiplicities). The symbol Sðr; f Þ is quantity satisfying Sðr; f Þ ¼ oðTðr; f ÞÞ as
r ! þy possibly outside a set E of finite Lebesgue measure. It is assumed that
the reader is familiar with the notations of the Nevanlinna theory that can be
found in [3 or 7].

Throughout in this paper we denote by f , g two nonconstant meromorphic
functions defined on the open complex plane.

In 1983, H. Ueda [6] proved the following two theorems:

Theorem A. Let f and g be two distinct nonconstant meromorphic functions
sharing 0, 1, y CM. If a ð0 0; 1Þ is a finite complex number, then

Nð3 r;
1

f � a

� �
¼ Sðr; f Þ and Nð3 r;

1

g� a

� �
¼ Sðr; gÞ:
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Theorem B. If, in addition to the assumptions of Theorem A, EkÞða; f Þ ¼
EkÞða; gÞ, where kb 2 is a positive integer or y, then f and g share a CM.

In 1989, Brosch [2] showed that the conclusion of Theorem B is still valid if
the condition ‘‘EkÞða; f Þ ¼ EkÞða; gÞ’’ in Theorem B is replaced by ‘‘E2Þða; f ÞJ
Eða; gÞ’’. Li and Yi [5] proved the following:

Theorem C (see [5, Theorem 1.1]). Let f and g be two distinct nonconstant
meromorphic functions sharing 0, 1, y CM. If there exists a finite complex
number a ð0 0; 1Þ such that a is not a Picard value of f and N1Þðr; 1=ð f � aÞÞ0
Tðr; f Þ þ Sðr; f Þ, then N1Þðr; 1=ð f � aÞÞ ¼ ððk � 2Þ=kÞTðr; f Þ þ Sðr; f Þ and one of
the following cases will hold:

(i) f ¼ eðkþ1Þg � 1

esg � 1
, g ¼ e�ðkþ1Þg � 1

e�sg � 1
, with

ða� 1Þkþ1�s

akþ1
¼ ssðk þ 1� sÞkþ1�s

ðk þ 1Þkþ1

and a0
k þ 1

s
;

(ii) f ¼ esg � 1

eðkþ1Þg � 1
, g ¼ e�sg � 1

e�ðkþ1Þg � 1
, with asða� 1Þkþ1�s ¼ ssðk þ 1� sÞkþ1�s

ðk þ 1Þkþ1

and a0
k þ 1

s
;

(iii) f ¼ esg � 1

e�ðkþ1�sÞg � 1
, g ¼ e�sg � 1

eðkþ1�sÞg � 1
, with

ð�aÞs

ð1� aÞkþ1
¼

ssðk þ 1� sÞkþ1�s

ðk þ 1Þkþ1
and a0� s

k þ 1� s
;

(iv) f ¼ ekg � 1

lesg � 1
, g ¼ e�kg � 1

ð1=lÞe�sg � 1
, with lk 0 0; 1 and

ða� 1Þk�s

lkak
¼

ssðk � sÞk�s

kk
;

(v) f ¼ esg � 1

lekg � 1
, g ¼ e�sg � 1

ð1=lÞe�kg � 1
, with l s 0 0; 1 and lsasð1� aÞk�s ¼

ssðk � sÞk�s

kk
;

(vi) f ¼ esg � 1

le�ðk�sÞg � 1
, g ¼ e�sg � 1

ð1=lÞeðk�sÞg � 1
, with l s 0 0; 1 and

ð�laÞs

ð1� aÞk
¼

ssðk � sÞk�s

kk
;

where g is a nonconstant entire function, s and k ðb 2Þ are positive integers such
that s and k þ 1 are mutually prime and 1a sa k in (i), (ii) and (iii), s and k are
mutually prime and 1a sa k � 1 in (iv), (v) and (vi).

Recently the author has proved the following result which is an improvement
of some theorems given by S. Ye [8], H. Yi [9] and other authors.
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Theorem D (see [1, Theorems 2 and 3]). Let f and g be two distinct
nonconstant meromorphic functions sharing 0, 1, y CM, and let a ð0 0; 1Þ be a
small meromorphic function of f and g. Then

Nð3 r;
1

f � a

� �
¼ Sðr; f Þ and Nð3 r;

1

g� a

� �
¼ Sðr; gÞ:

Furthermore, if N r;
1

f � a

� �
0Tðr; f Þ þ Sðr; f Þ, then N r;

1

f � a

� �
¼ Sðr; f Þ, and

f and g satisfy one of the following three relations:
(i) ð f � aÞðgþ a� 1Þ1 að1� aÞ;
(ii) f þ ða� 1Þg1 a;
(iii) f 1 ag.

Can one replace a in Theorems A–C by a small function of f and g?
In this paper, we give a positive answer for this question by the following

two theorems:

Theorem 1. Let f and g be two distinct nonconstant meromorphic functions
sharing 0, 1, y CM. If að2yÞ is a nonconstant small meromorphic function of
f and g, then Nð2ðr; 1=ð f � aÞÞ ¼ Sðr; f Þ and Nð2ðr; 1=ðg� aÞÞ ¼ Sðr; gÞ.

Theorem 2. Let f and g be two distinct nonconstant meromorphic functions
sharing 0, 1, y CM. If að2yÞ is a nonconstant small meromorphic function of f
and g such that E1Þða; f ÞJEða; gÞ, then f and g satisfy one of the relations (i)–
(iii) in Theorem D.

We indicate in here that Theorem 2 is not valid when a is a constant. For
example, f ðzÞ ¼ e2z þ ez þ 1, f ðzÞ ¼ e�2z þ e�z þ 1 and a ¼ 3=4. It is easy to
verify that f and g share 0, 1, y CM and E1Þða; f Þ ¼ E1Þða; gÞ.

2. Some lemmas

In this section we present some lemmas which will be needed in the sequel.

Lemma 1 (see [7, Theorem 5.1]). Let f and g be two distinct nonconstant
meromorphic functions sharing 0, 1, y CM. Then

f 1
ea � 1

eb � 1
; g1

e�a � 1

e�b � 1
;ð2:1Þ

where ea 2 1, eb 2 1 and ea�b 2 1, and

Tðr; gÞ þ Tðr; eaÞ þ Tðr; ebÞ ¼ OðTðr; f ÞÞ ðr B EÞ:
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This shows that Sðr; f Þ ¼ Sðr; gÞ and we denote them by SðrÞ, unless
otherwise stated.

Lemma 2 (see [4, Lemma 7]). Let f1 and f2 be distinct nonconstant

meromorphic functions satisfying Nðr; fiÞ þN r;
1

fi

� �
¼ Sðr; f1; f2Þ, i ¼ 1; 2. If

f s
1 f t

2 � 1 is not identically zero for all integers s, t ðjsj þ jtj > 0Þ, then for any
positive number e, we have

N0ðr; 1; f1; f2Þa eTðrÞ þ Sðr; f1; f2Þ;

where N0ðr; 1; f1; f2Þ denotes the reduced counting function of f1 and f2
related to the common 1-points, TðrÞ ¼ Tðr; f1Þ þ Tðr; f2Þ and Sðr; f1; f2Þ ¼
maxfSðr; f1Þ;Sðr; f2Þg.

Lemma 3 (see [10, Theorem 1]). Let f and g be two distinct nonconstant
meromorphic functions sharing 0, 1, y CM. If

lim
r!y
r BE

N0ðrÞ
Tðr; f Þ > 1=2;

then f is a fractional linear transformation of g. Here, N0ðrÞ denotes the counting
function of the zeros of f � g that are not zeros of f ð f � 1Þ, 1=f .

3. Proofs of Theorems 1 and 2

1. Proof of Theorem 1. If f is a fractional linear transformation of g, then
f has two distinct Picard values, say a1, a2. On the other hand, since a is a not
constant then a2 a1; a2; we can apply the second fundamental theorem to get

Tðr; f Þ ¼ N1Þ r;
1

f � a

� �
þ Sðr; f Þ;

which gives Nð2 r;
1

f � a

� �
¼ Sðr; f Þ.

Let us now consider that f is not a fractional linear transformation of
g. From (2.1), we have

f � a ¼ ea � aeb þ ða� 1Þ
eb � 1

:ð3:1Þ

Assume that Tðr; eaÞ ¼ SðrÞ, where SðrÞ is defined as in Lemma 1. If
ea þ a� 11 0, then the conclusion of Theorem 1 follows from ð3:1Þ; if
ea þ a� 12 0, by the second fundamental theorem we see that
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Tðr; f Þ ¼ Tðr; ebÞ þ SðrÞ ¼ N r;
1

ea þ a� 1� aeb

� �
þ SðrÞ

¼ N r;
1

f � a

� �
þ SðrÞ;

which implies Nð2 r;
1

f � a

� �
¼ SðrÞ, and the conclusion of Theorem 1 is clear in

this case. Similarly, we can prove that the theorem 1 is true when Tðr; ebÞ ¼
SðrÞ or Tðr; ea�bÞ ¼ SðrÞ. Consequently, we may suppose that Tðr; eaÞ, Tðr; ebÞ
and Tðr; ea�bÞ are not equal to SðrÞ. Set

a1 ¼ b 0 þ a 0

1� a
þ a 0

a
; a2 ¼ a 0 þ a 0

1� a
:ð3:2Þ

Since a is a small of f and so g, then we have Tðr; aiÞ ¼ SðrÞ, i ¼ 1; 2.
Let z0 be a multiple zero of f � a, which is neither any zero of a 0, b 0,

a 0 � b 0, a, a� 1, a1, a2, a1 � a2, nor the pole of a. From ð3:1Þ we obtain

eaðz0Þ � aðz0Þebðz0Þ þ aðz0Þ � 1 ¼ 0;

a 0ðz0Þeaðz0Þ � ebðz0Þða 0ðz0Þ þ aðz0Þb 0Þ þ a 0ðz0Þ ¼ 0:

These two equations give us

ea ¼ ða� 1Þ
b 0 � a 0

aða� 1Þ

a 0 � a 0

a
� b 0

; eb ¼ a� 1

a

� � a 0 � a 0

a� 1

a 0 � a 0

a
� b 0

:ð3:3Þ

Let us now define the following two functions:

f1 ¼
1

1� a

a1 � a2

a1
ea; f2 ¼

a

1� a

a1 � a2

a2
eb;ð3:4Þ

and consider

T0ðrÞ ¼ Tðr; f1Þ þ Tðr; f2Þ; S0ðrÞ ¼ oðT0ðrÞÞ ðr ! y; r B EÞ;
where E is a set of r of finite linear measure. From this and ð3; 4Þ, we get
S0ðrÞ ¼ SðrÞ and

Nðr; fjÞ þN r;
1

fj

 !
¼ SðrÞ ð j ¼ 1; 2Þ:ð3:5Þ

In view of (3.3) and ð3; 4Þ, it is obvious that z0 is a zero of f1 � 1 and f2 � 1.
By this and Theorem D, one deduces that

Nð2 r;
1

f � a

� �
aN0ðr; 1; f1; f2Þ þ SðrÞ;ð3:6Þ

where N0ðr; 1; f1; f2Þ is defined as in Lemma 3.
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Suppose that N0ðr; 1; f1; f2Þ0SðrÞ. Then from (3.5), (3.6) and by using
Lemma 2, there exist two integers p and q ðjpj þ jqj > 0Þ such that

f
p
1 f

q
2 1 1:ð3:7Þ

From (3.4) and (3.7) we have pq0 0 and

1

1� a

� �p
a

1� a

� �q

epaþqb ¼ a1

a1 � a2

� �p
a2

a1 � a2

� �q

;ð3:8Þ

by logarithmic di¤erentiation and by using (3.2), we can easily obtain that

pa2 þ qa1 ¼
qa1 þ pa2

a1 � a2

a2

a1

� �0
a2

a1

:

If qa1 þ pa2 2 0 then from the last equation and (3.2), we get

a 0

a
þ b 0 � a 0 ¼

a2

a1

� �0
a2

a1

, which implies that eb�a ¼ cð1=aÞða2=a1Þ, where c is a

constant. This equation gives us Tðr; eb�aÞ ¼ SðrÞ, which is impossible. Thus
qa1 þ pa2 1 0; this relation and (3.2) yield

p a 0 þ a 0

1� a

� �
þ q b 0 þ a 0

1� a
þ a 0

a

� �
1 0:

Taking integration on the above equation to conclude

1

1� a

� �p
a

1� a

� �q

eqb ¼ Ae�pa;ð3:9Þ

where A0 0 is a constant.
If pþ q ¼ 0 then from (3.4) and (3.7), we get Tðr; ea�bÞ ¼ SðrÞ, which is

a contradiction. Therefore, pþ q0 0; from this, (3.9) and because a is not
a constant, it is obvious that 0, 1 and y are Picard values of a, which is
impossible. This contradiction comes from the assumption N0ðr; 1; f1; f2Þ0SðrÞ.
Therefore, the conclusion of Theorem 1 follows from (3.6) and Theorem D. The
proof of Theorem 1 is completed.

2. Proof of Theorem 2. Assume that f is a linear transformation of g.
Then f and g have two distinct Picard values, and hence

Tðr; f Þ ¼ Nðr; 1=ð f � aÞÞ þ SðrÞ;

because a is not a constant. If z0 is a simple zero of f � a, then z0 is a zero of
g� a, which means that z0 is zero of a� A, where A is a constant. Hence,
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Tðr; f ÞaNðr; 1=ða� AÞÞ þ SðrÞ;
which is impossible. This shows that f is not any linear transformation of g.

Suppose that f and g do not satisfy one of the forms (i)–(iii) in Theorem D.
Consequently, from Theorem D and Theorem 1, we get

Tðr; f Þ ¼ N1Þ r;
1

f � a

� �
þ SðrÞ:ð3:10Þ

If z0 is a simple zero of f � a, then z0 is a zero of g� a, and hence, z0 is a zero
of f � g. Therefor, it follows from (3.10) that

Tðr; f Þ ¼ N1Þ r;
1

f � a

� �
þ SðrÞaN0ðrÞ þ SðrÞ;

which is a contradiction with Lemma 3. This proves Theorem 2.
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