ON A KOBAYASHI HYPERBOLIC MANIFOLD N MODULO A CLOSED SUBSET Δ_N AND ITS APPLICATIONS

YUKINOBU ADACHI

Abstract

We show that the degeneration locus of the Kobayashi pseudodistance on a complex manifold is always a pseudoconcave set of order 1. We give some results cocerning the degeneration locus of the Kobayashi pseudodistance. Next we prove a generalization of the little Picard theorem relevantly. Finally, we consider the case $N=\Delta_N$.

0. Introduction

We introduced the degeneration locus $S_M(X)$ of the Kobayashi pseudodistance on a complex manifold M in some complex manifold X in [3] and we proved that $S_M(X)$ is a pseudoconcave set of order 1 in X. By using this results, we generalized the big Picard theorem in [1] and Montel's theorem in [2] of a two dimensional case. In this paper, we study the degeneration locus of a complex manifold N and modify some results concerning it in [7, Chaper 3-2]. For example, Theorems 1.12, 1.13, 2.3, 2.5 and Corollary 2.6. Next we study an example of hyperbolic manifold modulo a closed subset Δ_N (Theorem 3.8) and prove Proposition 4.2 and Theorem 4.4 which are types of the little Picard theorem. In the last section, we study examples such that $\Delta_N = N$.

1. Degeneration locus of the Kobayashi pseudodistance on a manifold N

In what follows, we call a manifold if it is a connected complex one. Let N be a manifold of dimension n ($n \ge 2$) and d_N the Kobayashi pseudodistance on N. For its definition, see [7, p. 50].

Definition 1.1 (cf. [7]). We denote that $\Delta_N=\{p\in N; d_N(p,q)=0 \text{ for some } q\in N \text{ such as } q\neq p\}$ and for $p\in\Delta_N$

²⁰⁰⁰ Mathmatics Subject Classification. 32Q45, 32H25. Received March 28, 2006; revised October 27, 2006.

$$\Delta_N(p) = \{ q \in N; d_N(p, q) = 0 \}.$$

By the same reason in the proof of Lemma 1.2 in [1], the following two propositions are proved by the Schwarz lemma essentially.

PROPOSITION 1.2. If $p \in \Delta_N$ and every closed coordinate neighborhood $\overline{U}(p)$ of N which is biholomorphic to the closed unit ball in \mathbb{C}^n , then there is a point $q \in \partial \overline{U}$ such that $d_N(p,q) = 0$.

PROPOSITION 1.3. If $q \in \Delta_N(p)$ and every closed coordinate neighborhood $\overline{U}(q)$ of N which is biholomorphic to the closed unit ball in \mathbb{C}^n , then there is a point $r \in \partial \overline{U}$ such that $d_N(p,r) = 0$.

Since $d_N : N \times N \to \mathbf{R}$ is a continuous function (see Proposition (3.1.13) in [7]), we have the following propositions:

PROPOSITION 1.4. The set $\Delta_N(p)$ is a closed set of N.

PROPOSITION 1.5 (cf. Proposition 1.3 in [1]). The set Δ_N is a closed set of N.

DEFINITION 1.6 (cf. [10] and [4]). A closed subset E of N will be called a pseudoconcave set of order 1, if for any coordinate neighborhood

$$U: |z_1| < 1, \ldots, |z_n| < 1$$

of N and any positive number r, s with 0 < r, s < 1 such that $U^* \cap E = \emptyset$, one obtains $U \cap E = \emptyset$, where

$$U^* = \{ p \in U; |z_1(p)| \le r \} \cup \{ p \in U; s \le \max_{2 \le i \le n} |z_i(p)| \}.$$

Remark 1.7. In the case where dimension of N equals 2, every pseudoconcave set of order 1 is a pseudoconcave set, that is, the complement of a pseudoconvex set.

PROPOSITION 1.8 ([10], pp. 282–286). The set E of N is a pseudoconcave set order 1, if and only if, for every point $p \in E$, for every coordinate neighborhood $|z_1| < 1, \ldots, |z_n| < 1$ such that p corresponds to the origin $(0, \ldots, 0)$ and $\{z_1 = 0\} \cap E = \{(0, \ldots, 0)\}$, and for every ξ_1 with $|\xi_1| < \rho$, there are ξ_i with $|\xi_i| < r$ ($i = 2, \ldots, n$) such that $(\xi_1, \xi_2, \ldots, \xi_n) \in E$ for every 1 > r > 0 and for some sufficientry small $\rho > 0$.

By Einbettungszats in [9] and Proposition 1.8, it is easy to see the following:

PROPOSITION 1.9 ([10], p. 282). An analytic curve S of N, that is, an analytic subset of pure dimension 1 of N, is a pseudoconcave set of order 1.

By Theorem IV in [10] and Proposition 1.8, it is easy to see the following

PROPOSITION 1.10. If the nonempty set E is a pseudoconcave set of order 1 of N and is contained in an analytic curve S of N, then E consists of some irreducible components of S.

PROPOSITION 1.11 (Lenmma of T. Ueda in [5]). The subset E of N is a pseudoconcave set of order 1, if and only if, for every point $p \in E$ and every strictly plurisubharmonic function φ with $\varphi(p) = 0$, $E \cap \{q \in U; \varphi(q) > 0\} \neq \emptyset$, where U is a coordinate neighborhood of p.

Theorem 1.12. The set Δ_N is a pseudoconcave set of order 1 of N.

Proof. It is easy to see that for every point $p \in \Delta_N$, Theorem 1_U in [3] holds good. By Proposition 1.11, our theorem is proved by the same method in the proof of Theorem 2 in [3].

According to the same method of the proof of the above theorem, the following theorem is proved.

Theorem 1.13. The set $\Delta_N(p)$ is a pseudoconcave set of order 1 of N.

By the triangle inequality, the following proposition is proved easily.

Proposition 1.14. For every points $q, r \in \Delta_N(p)$, $d_N(q, r) = 0$.

Remark 1.15. In general, there is no nonconstant holomorphic map $\varphi : \mathbb{C} \to \Delta_N(p)$. For example, there is a manifold N (which is not Stein) such as an Example (3.6.6) in [7, p. 104] which is not hyperbolic, that is, $\Delta_N(p) \neq \emptyset$ and there is no nonconstant holomorphic map $\varphi : \mathbb{C} \to N$, that is, Brody hyperbolic.

Remark 1.16. The set Δ_N is not always an analytic curve. The following example N is such a manifold. Let $N = \{(x,y) \in \mathbb{C} \times \Delta(1); |x| < e^{-\varphi(y)}\}$ where $\Delta(1) = \{y \in \mathbb{C}; |y| < 1\}$, $\varphi(y)$ is a subharmonic function on $\Delta(1)$ such that $\{\varphi(y) = -\infty\} = \{y = a_i\}$ where $\{a_i\}_{i=1,2,\dots}$ are discrete points converging to $\{y = 0\}$ and $\varphi(y)$ is continuous elsewhere of $\{a_i\}$ (For constructing φ , see Example (3.1.26) in [7]). It is easy to see that $\{y = a_i\} \subset \Delta_N$. For $a \notin \{a_i\}$ there is a small neighborhood U(a) which does not contain the points $\{a_i\}$. Since $(\mathbb{C} \times U(a)) \cap N$ is a bounded domain in \mathbb{C}^2 , we can prove that $\bigcup_{i=1}^{\infty} \{y = a_i\} = \Delta_N$ by the same method of the proof of Theorem 3.6. It is easy to see that Δ_N is not analytic curve in N. Since $|x|e^{\varphi(y)}$ is plurisubharmonic in $\mathbb{C} \times \Delta(1)$, N is pseudoconvex, and, by Oka's theorem, N is a Stein manifold.

Remark 1.17. There is a case where the set Δ_N contains an open subset. Let $N = \{(x, y); |y| < e^{-|x|} + 1\}$. Then it is easy to see that N is a Stein manifold and $\Delta_N = \{(x, y) \in \mathbb{C}^2; |y| \le 1\}$ by the same reason of the discussion of Remark 1.16.

Remark 1.18. Let M be a relatively compact subdomain of a manifold of X. We extend d_M onto the closure of \overline{M} of M (extended d_M is not the pseudodistance (cf. [2, p. 386])) and we denote the set of the degeneracy points of d_M on \overline{M} by $S_M(X)$ in [1]. It is trivial by the definition that $S_M(X)|_M = \Delta_M$.

2. Theorems of a hyperbolic manifold modulo a closed set Δ

DEFINITION 2.1 ([7], p. 68). Let N be a manifold and Δ a closed subset of N. We say that N is hyperbolic modulo Δ if for every pair of distinct points p, q of N we have $d_N(p,q) > 0$ unless both are contained in Δ .

Remark 2.2. It is easy to see from Proposition 1.5 that if N is hyperbolic modulo Δ , we can take Δ_N as the smallest Δ .

Theorem 2.3. Let N be a manifold of dimension n $(n \ge 2)$ such that hyperbolic modulo proper subset Δ_N . Let M be a manifold of dimension n and suppose that is a holomorphic map $\Phi: M \to N$ with the Jacobian of $\Phi \not\equiv 0$. Then, M is hyperbolic modulo $T = \{\Phi^{-1}(\Delta_N)\} \cup \{J\Phi = 0\}$ where $J\Phi$ is the Jacobian of Φ , that is, $\Delta_M \subset T$.

Proof. Let $p,q\in M$ with $p\neq q$ and suppose that they are not both contained in T. If $\Phi(p)\neq\Phi(q),\,d_N(\Phi(p),\Phi(q))>0$ because $\Phi(p)$ and $\Phi(q)$ are not both contained in Δ_N . Hence we set $\Phi(p)=\Phi(q)=r$. By the assumption, both p,q are not contained in $\Phi^{-1}(\Delta_N),\,r\notin\Delta_N$. Unless both p,q are contained in $\{J\Phi=0\}$, we may assume that $p\notin\{J\Phi=0\}$. Then there are coordinate neighborhood U(r) of $N-\Delta_N$ and V(p) of M which are biholomorphic to each other. If we assume that $d_M(p,q)=0$, then $p\in\Delta_M$ and for every closed neighborhood $\overline{V}_1(p)$ which is biholomorphic to the closed unit ball in \mathbb{C}^n such as $V(p) \supseteq \overline{V}_1(p)$ there is a point $p'\in\partial\overline{V}_1$ with $d_M(p,p')=0$ by Proposition 1.2. This is a contradiction because $\Phi(p),\Phi(p')\notin\Delta_N$ and then $0=d_M(p,p')\geq d_N(\Phi(p),\Phi(p'))>0$. Thus $d_M(p,q)\neq 0$.

Remark 2.4. In the same situation of above theorem in the case n=2, Δ_M is contained in an analytic curve of M if Δ_N is an analytic curve. Therefore Δ_M is also an analytic curve of M or \emptyset by Proposition 1.10.

Let $\pi: \tilde{N} \to N$ be a covering manifold of a manifold N of dimension n $(n \ge 2)$.

Theorem 2.5 (cf. Theorem (3.2.32) in [7]). $\Delta_{\tilde{N}} = \pi^{-1}(\Delta_N)$.

Proof. (1) If $p \in \Delta_N$, there is a closed coordinate neighborhood $\overline{U}(p)$ which is biholomorphic to the closed unit ball in \mathbb{C}^n and every connected component of $\pi^{-1}(\overline{U}(p))$ is biholomorphic to $\overline{U}(p)$ by π . Then there is a point $q \in \partial \overline{U}(p)$ such that $d_N(p,q) = 0$ by Proposition 1.2. Let $\overline{V}(\tilde{p})$ be a connected component

of $\pi^{-1}(\overline{U}(p))$ which contains \tilde{p} where \tilde{p} is an arbitrary point of $\pi^{-1}(p)$. By Theorem (3.2.8) in [7], $0 = d_N(p,q) = \inf_{\tilde{q} \in \pi^{-1}(q)} d_{\tilde{N}}(\tilde{p},\tilde{q})$. If $\tilde{p} \notin \Delta_{\tilde{N}}$, that is, there is not a point $\tilde{r} \in \partial \overline{V}(\tilde{p})$ such that $d_{\tilde{N}}(\tilde{p},\tilde{r}) = 0$, then $d_{\tilde{N}}(\tilde{p},\tilde{q}) \ge \delta = d_{\tilde{N}}(\tilde{p},\tilde{\rho}) > 0$. This contradicts to above equation.

(2) If $\tilde{p} \in \Delta_{\tilde{N}}$, there is a point $\tilde{q} \neq \tilde{p}$ such as $d_{\tilde{N}}(\tilde{p}, \tilde{q}) = 0$. Then $0 = d_{\tilde{N}}(\tilde{p}, \tilde{q}) \geq d_{N}(\pi(\tilde{p}), \pi(\tilde{q})) = d_{N}(p, q)$. If $p \neq q$, then $p \in \Delta_{N}$. Hence we will say that there is a \tilde{q} such that $p \neq q$. We take a sufficient small closed coordinate neighborhood $V(\tilde{p})$ of \tilde{p} , where $V(\tilde{p}) \cap \{\pi^{-1}(p)\} = \{\tilde{p}\}$ and $V(\tilde{p})$ is biholomorphic to the closed unit ball in C^{n} . By Proposition 1.2, there is a point $\tilde{q} \in \partial V(\tilde{p})$ such that $d_{\tilde{N}}(\tilde{p}, \tilde{q}) = 0$ and $p \neq q$.

COROLLARY 2.6. Let $\pi: \tilde{N} \to N$ be a covering manifold of N of dimension 2. If $\Delta_{\tilde{N}}$ is an analytic curve, then Δ_{N} is an analytic curve.

Proof. If $\Delta_{\tilde{N}}$ is an analytic curve of \tilde{N} , $\pi(\Delta_{\tilde{N}})$ is a locally analytic curve in N. Since $\pi(\Delta_{\tilde{N}}) = \Delta_N$ by Theorem 2.5 and Δ_N is a closed set in N by Proposition 1.5, Δ_N is an analytic curve in N.

3. An example of hyperbolic manifold N modulo Δ_N

Let P(x, y) be a nonconstant polynomial. We say that an irreducible component of a level curve of P is of (g, n) type if its genus is g and its boundaries are n points (counting n by the normalization of such a level curve). It is well-known that every irreducible components of almost all level curves are same type and nonsingular except finite ones. We call that P is a polynomial of type (g, n) if irreducible components of general level curves are of (g, n) type. If an irreducible component of exceptional level curves is of (g', n') type, $g' \le g$ and $g' + n' \le g + n$ (cf. Theorem I in [8]).

DEFINITION 3.1. When P(x, y) is a plynomial of (g, n) type, we say that it is a general type if 2g - 2 + n > 0 and it is exceptional type if $2g - 2 + n \le 0$.

DEFINITION 3.2. We call that P(x, y) is a primitive polynomial if almost all level curves are irreducible except finite ones.

The following proposition is well-known.

PROPOSITION 3.3. For every polynomial P(x, y), there is a primitive polynomial $P_0(x, y)$ and a plynomial $\pi(z)$ such that $P = \pi \circ P_0$.

Theorem 3.4 (Griffiths [6]). Let $U_{\rho} = \{z \in \mathbb{C}; |z - \beta| < \rho, \beta \in \mathbb{C}, \rho > 0\}$ and for every $\alpha \in U_{\rho}$, $\{P(x,y) = \alpha\}$ is irreducible, nonsingular and of (g,n) type where 2g - 2 + n > 0. We set $N_0 = \{(x,y) \in \mathbb{C}^2; P(x,y) = \alpha, \alpha \in U_{\rho}\}$. Then universal covering manifold \tilde{N}_0 of N_0 is a bounded Bergman domain in \mathbb{C}^2 .

The following corollary follows from Theorem 2.5.

Corollary 3.5. The manifold N_0 is hyperbolic, that is, $\Delta_{N_0} = \emptyset$.

THEOREM 3.6. Let P(x, y) be a primitive general type polynomial and set $N_1 = \{(x, y) \in \mathbb{C}^2; P(x, y) \neq a, b\}$ where a and b are arbitrary different complex number. Then $\Delta_{N_1} \subset S$, where S is the exceptional level curves of P in N_1 .

Proof. We assume that $p,q \in N_1$ with $p \neq q$ and both p,q are not contained in S. We will prove that $d_{N_1}(p,q) > 0$. In case p,q are not both contained in a same level curve, it is easy to see that $d_{N_1}(p,q) \geq d_{\mathbb{C}^2-\{a,b\}}(P(p),P(q)) > 0$. We assume that p,q are both contained in a same level curve $\{P(x,y)=\beta\}$. Let $U_{2s}=\{z\in \mathbb{C}; d_{\mathbb{C}-\{a,b\}}(\beta,z)<2s,s>0\}$. We take a number s sufficientry small such that 2s=p where p satisfies the condition in Theorem 3.4. Then $N_0=\{(x,y)\in \mathbb{C}^2; P(x,y)=\alpha,\alpha\in U_{2s}\}$ is hyperbolic by Corollary 3.5. We take positive number r (r<1) sufficiently small such that $d_{\Delta(1)}(0,z)< s$ for every $z\in\Delta(r)$ where $\Delta(r)=\{z\in\mathbb{C}; |z|< r\}$. Thus if $f:\Delta(1)\to N_1$ is holomorphic and $P(f(0))\in U_s$, then $f(\Delta(r))\subset N_0$.

Let $f_i: \Delta(1) \to N_1$ be holomorphic mappings and a_i , b_i be points of $\Delta(1)$ such that $p = f_1(a_1), f_1(b_1) = f_2(a_2), \ldots, f_k(b_k) = q$. By homogenity of $\Delta(1)$ we may assume that $a_i = 0$ for all i. By inserting extra terms in this chain if necessary, we may assume also that $b_i \in \Delta(r/2)$ for all $i = 1, \ldots, k$. Choose c > 0 such that $d_{\Delta(1)}(0, a) \ge c \cdot d_{\Delta(r)}(0, a)$ for every $a \in \Delta(r/2)$. We set $p_0 = p, p_1 = f(b_1), \ldots, p_k = f_k(b_k) = q$.

We have two cases to consider. Consider the first case where at least one of the $P(p_i)$'s is not contained in U_s . Then it is easy to see

$$\sum_{i=1}^k d_{\Delta(1)}(0,b_i) \geq \sum_{i=1}^k d_{N_1}(f_i(0),f_i(b_i)) \geq \sum_{i=1}^k d_{\mathbf{C}-\{a,b\}}(P(f_i(0)),P(f_i(b_i))) \geq s.$$

Consider the next case where all $P(p_i)$'s are in U_s . Then

$$\sum_{i=1}^k d_{\Delta(1)}(0,b_i) \ge c \sum_{i=1}^k d_{\Delta(r)}(0,b_i) \ge c \sum_{i=1}^k d_{N_0}(p_{i-1},p_i) \ge c \cdot d_{N_0}(p,q) > 0.$$

This shows that $d_{N_1}(p,q) \ge \min\{s, c \cdot d_{N_0}(p,q)\} > 0$. Thus N_1 is hyperbolic modulo S, that is, $\Delta_{N_1} \subset S$.

Example 3.7. Set $N_1 = \{(x, y) \in \mathbb{C}^2; y^2 - x^3 \neq 0, 1\}$. Then N_1 is hyperbolic by Theorem 3.6.

THEOREM 3.8. Let P(x, y) be a general type polynomial. Then, for $N = \{(x, y) \in \mathbb{C}^2; P(x, y) \neq a, b\}$ $\Delta_N \subset S$, where S is a curve consists of the exceptional level curves of P(x, y) in N.

Proof. From Proposition 3.3, there is a primitive polynomial $P_0(x, y)$ and a polynomial $\pi(z)$ such that $P = \pi \circ P_0$. Hence there is an injection $i: N \to N_1$

where N_1 is the same in Theorem 3.6 and we take P_0 instead of P, a point of $\pi^{-1}(a)$ instead of a and a point of $\pi^{-1}(b)$ instead of b. From Theorem 2.3, $\Delta_N \subset S$.

Remark 3.9. In the same notation of Theorem 3.8, Δ_N is an algebraic curve or \emptyset by Proposition 1.10.

4. A generalization of the little Picard theorem

It is easy to see the following:

PROPOSITION 4.1. Let N_1 and N_2 be manifolds of dimension n $(n \ge 2)$. If a holomorphic map $F: N_1 \to N_2$ is nondegenerate, that is, $F(N_1)$ contains an open set in N_2 , if and only if $JF \not\equiv 0$.

PROPOSITION 4.2. Let N be a manifold of dimension 2 and $d_N \equiv 0$. Let $F: N \to \mathbb{C}^2$ be a holomorphic map such that $P \circ F \neq a, b$, where P(x, y) is a polynomial and a, b are different complex numbers. Then F is a degenerate map.

Proof. For every points $p,q \in N$ such as $p \neq q$, $0 = d_N(p,q) \geq d_{\mathbf{C}^2 - \{q,b\}}(P \circ F(p), P \circ F(q))$. Hence $P \circ F(p) = P \circ F(q)$. Therefore F(N) is contained in a same level curve.

PROPOSITION 4.3. Let N be a manifold of dimension 2 such that $\Delta_N \neq \emptyset$ and let $F: N \to \mathbb{C}^2$ is a holomorphic map such that $P \circ F \neq a, b$, where P(x, y) is a polynomial. Then $P \circ F(\Delta_N(p)) = \alpha$ (constant) and $\Delta_N(p)$ is an analytic curve in N.

Proof. Since for every $q, r \in \Delta_N(p)$, $d_N(q, r) = 0$ by Proposition 1.14, $F(\Delta_N(p))$ is contained in a same level curve by the same reason of Proposition 4.2. Since $\Delta_N(p)$ is contained an analytic curve of N, $\Delta_N(p)$ is an analytic curve of N by Proposition 1.10 and Theorem 1.13. \square

Theorem 4.4. Let N be a manifold of dimension 2 and let the nonempty set Δ_N be not an analytic curve of N. Let $F: N \to \mathbb{C}^2$ be a holomorphic map such that $P \circ F \neq a, b$, where P(x, y) be a general type polynomial. Then F is a degenerate map.

Proof. Since $M = \{(x, y) \in \mathbb{C}^2; P(x, y) \neq a, b\}$ is hyperbolic modulo algebraic curve or \emptyset by Theorem 3.8, Remark 3.9, Remark 2.4, Propositions 4.1 and 4.3, F is a degenerate map. \square

Remark 4.5. The condition that P(x, y) is a general type polynomial is indispensable for Theorem 4.4. For example, if $N = \mathbb{C} \times (\mathbb{C} - \{a, b\})$, F is an identity map and $p(x, y) \equiv y$, then $N = \{P \circ F \neq a, b\}$.

5. Examples of a manifold N such that $\Delta_N = N$

PROBLEM 5.1. Enumerate the Stein manifold N of dimension 2 such that $\Delta_N = N$ or $d_N \equiv 0$ specially.

We study the case where a manifold N is a quasi-projective Stein manifold.

Proposition 5.2. Let C be a curve of degree \leq 2. Then $N = \mathbf{P}^2 - C$ satisfies $\Delta_N = N$ and hence $d_N \equiv 0$.

Proof. In the case where degree of C equals 1, N is biholomorphic to \mathbb{C}^2 and the conclusion is trivial.

In the case where the degree of C equals 2, C consists of two lines or a conic. The former case, N is biholomorphic to $\mathbb{C} \times \mathbb{C}^*$ and the conclusion is trivial. The latter case, for every distinct points p and $q \in N$ the line L through p and q meets with C at most two points. Then $d_N(p,q)=0$ because L-C is biholomorphic to \mathbb{C} or \mathbb{C}^* . \square

PROPOSITION 5.3. Let C be a curve of degree equals to 3. Then $N = \mathbf{P}^2 - C$ satisfies $\Delta_N = N$.

Proof. In case C consists of three lines in general position, N is biholomorphic to $\mathbb{C}^* \times \mathbb{C}^*$ and it is easy to see that $\Delta_N = N$ and $d_N \equiv 0$.

In case C consists of three lines in particular position, N is biholomorphic to $\mathbb{C} \times (\mathbb{C} - \{a, b\})$ where $a \neq b$. It is easy to see that $\Delta_N = N$ and $d_N \not\equiv 0$.

In case C consists of a conic and a line L, $\Delta_N = N$ and $d_N \equiv 0$. Because for almost all distinct points p and $q \in N$, tangent line L_p of the conic through p meets with L at a point, $L_p - C$ is biholomorphic to C or C^* . The similar line L_q meets with L_p with a point r or $L_p = L_q$. Then in the former case $d_N(p,q) \leq d_N(p,r) + d_N(q,r) = 0$ and in the latter case it is easy to see that $d_N(p,q) = 0$. Since Δ_N is a closed set and d_N is continuous, $\Delta_N = N$ and $d_N \equiv 0$.

In case C is a cubic curve, $\Delta_N = N$ and $d_N \equiv 0$. Because for almost all distinct points p and $q \in N$, tangent line L_p of C through p meets with C at most two points, and then $L_p - C$ is biholomorphic to \mathbb{C}^* or \mathbb{C} . The similar line L_q meets with L_p with a point r or $L_p = L_q$. Then conclusion is easy to see similary to the above discussion.

In the case where the degree of C equals 4, we only raise examples.

Example 5.4. If C consists of four lines in general position, it is well-known that Δ_N is a diagonal line (cf. Theorem (3.10.27) in [7]).

If C consists of four lines in particular position, N is biholomorphic to $\mathbb{C} \times (\mathbb{C} - \{a, b, c\})$ or $\mathbb{C}^* \times (\mathbb{C} - \{a, b\})$. Then $\Delta_n = N$ and $d_N \not\equiv 0$.

Example 5.5 (J. Carson, F. Sakai and B. Shiffman). If $C = L_{\infty} \cup \{y = x^3\}$ where L_{∞} is the line at infinity, then $\Delta_N = N$ and $d_N \equiv 0$ where $N = \mathbf{C}(x,y) - \{y = x^3\}$. Because $F: x = z, y = z^3 + e^w$ is a holomorphic map of \mathbf{C}^2 onto N.

PROBLEM 5.6. Let N be a Stein manifold with $d_N \equiv 0$. Then, is there a nondegenerate holomorphic map of \mathbb{C}^2 to N?

REFERENCES

- [1] Y. Adachi, A generalization of the big Picard theorem, Kodai Math. J. 18 (1995), 408-424.
- [2] Y. Adachi, On the relation between tautly imbedded space modulo an analytic subset S and hyperbolically imbedded space modulo S, Publ. RIMS, Kyoto Univ. 33 (1997), 385–392.
- [3] Y. ADACHI AND M. SUZUKI, Degeneracy points of the Kobayashi pseudodistances on complex manifolds, Proc. sympos. pure math. 52, Amer. Math. Soc., Providence, RI, 1991, 41–51.
- [4] O. Fujita, Sur les familles d'ensemble analytiques, J. Math. Soc. Japan 16 (1964), 379-405.
- [5] О. FUJITA, Domaines pseudoconvexes d'ordre général et fonctions pseudoconvexes d'ordre général, J. Math. Kyoto Univ. 30 (1990), 637-649.
- [6] P. A. Griffiths, Complex-analytic properties of certain Zariski open sets on algebraic varieties, Ann. Math. 94 (1971), 21–51.
- [7] S. Kobayashi, Hyperbolic complex spaces, Die Grundlehren der mathematishen Wissenschaften 318, Springer-Verlag, Berlin-Heidelberg, 1998.
- [8] T. NISHINO, Nouvelles recherches sur les fonctions entières de plusieurs variables complexes IV, J. Math. Kyoto Univ. 13 (1973), 217–272.
- [9] R. REMMERT UND K. STEIN, Über die wesentlichen Singularitäten analytischer Mengen, Math. Annalen 126 (1953), 263–306.
- [10] M. Тароково, Sur les ensembles pseudononcaves généraux, J. Math. Soc. Japan 17 (1965), 281–290.

Yukinobu Adachi 12-29 Kurakuen 2ban-cho Nishinomiya Hyogo 662-0082 Japan

E-mail: fwjh5864@nifty.com