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ON A KOBAYASHI HYPERBOLIC MANIFOLD N MODULO A
CLOSED SUBSET Ay AND ITS APPLICATIONS

Y UKINOBU ADACHI

Abstract

We show that the degeneration locus of the Kobayashi pseudodistance on a
complex manifold is always a pseudoconcave set of order 1. We give some results
cocerning the degeneration locus of the Kobayashi pseudodistance. Next we prove a
generalization of the little Picard theorem relevantly. Finally, we consider the case
N = Ay.

0. Introduction

We introduced the degeneration locus Sy (X) of the Kobayashi pseudo-
distance on a complex manifold M in some complex manifold X in [3] and we
proved that Sy, (X) is a pseudoconcave set of order 1 in X. By using this results,
we generalized the big Picard theorem in [1] and Montel’s theorem in [2] of a two
dimensional case. In this paper, we study the degeneration locus of a complex
manifold N and modify some results concerning it in [7, Chaper 3-2]. For
example, Theorems 1.12, 1.13, 2.3, 2.5 and Corollary 2.6. Next we study an
example of hyperbolic manifold modulo a closed subset Ay (Theorem 3.8) and
prove Proposition 4.2 and Theorem 4.4 which are types of the little Picard
theorem. In the last section, we study examples such that Ay = N.

1. Degeneration locus of the Kobayashi pseudodistance on a manifold N

In what follows, we call a manifold if it is a connected complex one. Let N
be a manifold of dimension n (n > 2) and dy the Kobayashi pseudodistance on
N. For its definition, see [7, p. 50].

DeriNITION 1.1 (cf. [7]). We denote that
Ay ={pe N;dy(p,q) =0 for some ge N such as g # p}
and for pe Ay
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An(p) ={q € N;dn(p,q) = 0}.

By the same reason in the proof of Lemma 1.2 in [1], the following two
propositions are proved by the Schwarz lemma essentially.

ProPOSITION 1.2. If p e Ay and every closed coordinate neighborhood U p)
of N which is biholomorphic to the closed unit ball in C", then there is a point
qe€ U such that dy(p,q) = 0.

_ ProposiTioN 1.3. If qe An(p) and every closed coordinate neighborhood
U(q) of N_which is biholomorphic to the closed unit ball in C", then there is a
point r€ 0U such that dy(p,r) = 0.

Since dy : N x N — R is a continuous function (see Proposition (3.1.13) in
[7]), we have the following propositions:

PROPOSITION 1.4. The set An(p) is a closed set of N.
ProposITION 1.5 (cf. Proposition 1.3 in [1]). The set Ay is a closed set of N.
DeriNITION 1.6 (cf. [10] and [4]). A closed subset £ of N will be called a
pseudoconcave set of order 1, if for any coordinate neighborhood
U:lzil <1,...,|z.l <1

of N and any positive number r, s with 0 < r,s < 1 such that U*NE = (), one
obtains UNE = (), where
Ut ={peUila(pl < }U{pe Uis < max [5(p)]}.

<i<n

Remark 1.7. In the case where dimension of N equals 2, every pseudo-
concave set of order 1 is a pseudoconcave set, that is, the complement of a
pseudoconvex  set.

ProposiTioN 1.8 ([10], pp. 282-286). The set E of N is a pseudoconcave
set order 1, if and only if, for every point p € E, for every coordinate neigh-
borhood |z1| < 1,...,|z4| < 1 such that p corresponds to the origin (0,...,0) and
{z1 =0}NE={(0,...,0)}, and for every & with ||| <p, there are &; with
&l <r (i=2,...,n) such that (&1,&,...,E,) € E for every 1 >r>0 and for
some sufficientry small p > 0.

By Einbettungszats in [9] and Proposition 1.8, it is easy to see the following:

ProrosiTION 1.9 ([10], p. 282). An analytic curve S of N, that is, an analytic
subset of pure dimension 1 of N, is a pseudoconcave set of order 1.

By Theorem IV in [10] and Proposition 1.8, it is easy to see the following
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PrOPOSITION 1.10.  If the nonempty set E is a pseudoconcave set of order 1 of
N and is contained in an analytic curve S of N, then E consists of some irreducible
components of S.

ProposiTION 1.11 (Lenmma of T. Ueda in [5]). The subset E of N is a
pseudoconcave set of order 1, if and only if, for every point p € E and every strictly
plurisubharmonic function ¢ with ¢(p) =0, EN{qe U;p(q) > 0} # 0, where U is
a coordinate neighborhood of p.

THEOREM 1.12. The set Ay is a pseudoconcave set of order 1 of N.

Proof. 1t is easy to see that for every point p € Ay, Theorem 1y in [3] holds
good. By Proposition 1.11, our theorem is proved by the same method in the
proof of Theorem 2 in [3]. O

According to the same method of the proof of the above theorem, the
following theorem is proved.

THEOREM 1.13.  The set Ax(p) is a pseudoconcave set of order 1 of N.
By the triangle inequality, the following proposition is proved easily.
ProposITION 1.14.  For every points q,r € Ay(p), dy(q,r) = 0.

Remark 1.15. In general, there is no nonconstant holomorphic map
@:C — Ax(p). For example, there is a manifold N (which is not Stein) such as
an Example (3.6.6) in [7, p. 104] which is not hyperbolic, that is, Ay(p) # 0 and
there is no nonconstant holomorphic map ¢ : C — N, that is, Brody hyperbolic.

Remark 1.16. The set Ay is not always an analytic curve. The following
example N is such a manifold. Let N = {(x, y) € C x A(1); |x| < e ?)} where
A(l)={yeC;|y| <1}, o(y) is a subharmonic function on A(l) such that
{p(y) = —0} ={y=a} where {a;},_,, are discrete points converging to
{y=0} and ¢(y) is continuous elsewhere of {a;} (For constructing ¢, see
Example (3.1.26) in [7]). It is easy to see that {y =a;} = Ay. For a¢ {a}
there is a small neighborhood U(a) which does not contain the points
{a;}. Since (C x U(a))NN is a bounded domain in C? we can prove that
Uzl{y = a;} = Ay by the same method of the proof of Theorem 3.6. It is easy
to see that Ay is not analytic curve in N. Since |x|e??) is plurisubharmonic in
C x A(1), N is pseudoconvex, and, by Oka’s theorem, N is a Stein manifold.

Remark 1.17. There is a case where the set Ay contains an open sub-
set. Let N ={(x,»);|y] <e ™ 4 1}. Then it is easy to see that N is a Stein
manifold and Ay = {(x, y) € C*;|y| < 1} by the same reason of the discussion of
Remark 1.16.
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Remark 1.18. Let M be a relatively compact subdomain of a manifold
of X. We extend dy; onto the closure of M of M (extended dj; is not the
pseudodistance (cf. [2, p. 386])) and we denote the set of the degeneracy points of
dy on M by Sy (X) in [1]. It is trivial by the definition that Sy (X)|,, = Ay

2. Theorems of a hyperbolic manifold modulo a closed set A

DEerNITION 2.1 ([7], p. 68). Let N be a manifold and A a closed subset of
N. We say that N is hyperbolic modulo A if for every pair of distinct points p,
g of N we have dy(p,q) > 0 unless both are contained in A.

Remark 2.2. 1t is easy to see from Proposition 1.5 that if N is hyperbolic
modulo A, we can take Ay as the smallest A.

THEOREM 2.3. Let N be a manifold of dimension n (n > 2) such that hy-
perbolic modulo proper subset Ay. Let M be a manifold of dimension n and
suppose that is a holomorphic map ®: M — N with the Jacobian of ® # 0.
Then, M is hyperbolic modulo T = {® '(Ay)}U{J® =0} where J® is the
Jacobian of ©, that is, Ayy < T.

Proof. Let p,ge M with p # ¢ and suppose that they are not both
contained in 7. If ®(p) # D(q), dy(D(p), @(q)) > 0 because ®(p) and O(g) are
not both contained in Ay. Hence we set ®(p) = ®(¢) =r. By the assumption,
both p, ¢ are not contained in ®~!(Ay), r¢ Ay. Unless both p, ¢ are contained
in {JO® =0}, we may assume that p¢ {J® =0}. Then there are coordinate
neighborhood U(r) of N — Ay and V(p) of M which are biholomorphic to each
other. If we assume that dy(p,q) =0, then pe Ay and for every closed
neighborhood V(p) which is biholomorphic to the closed unit ball in C" such
as V(p) D Vi(p) there is a point p’ e 0V, with dy(p, p') =0 by Proposition
1.2. This is a contradiction because ®(p), ®(p’) ¢ Ay and then 0 = dy (p, p’) =
dy(®(p),®(p")) > 0. Thus dy(p,q) #0. O

Remark 2.4. 1In the same situation of above theorem in the case n =2, Ay
is contained in an analytic curve of M if Ay is an analytic curve. Therefore Ay,
is also an analytic curve of M or @ by Proposition 1.10.

Let 7: N — N be a covering manifold of a manifold N of dimension
n (n>2).

THEOREM 2.5 (cf. Theorem (3.2.32) in [7]). Axy =7n"'(Ay).

Proof. (1) If p € Ay, there is a closed coordinate neighborhood U(p) which
is biholomorphic to the closed unit ball in C" and every connected component
of z=1(U(p)) is biholomorphic to U(p) by n. Then there is a point ¢ € U(p)
such that dy(p, q) = 0 by Proposition 1.2. Let V(p) be a connected component
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of n~'(U(p)) which contains p where p is an arbitrary point of 7~ !'(p). By
Theorem (3.2.8) in [7], 0 =dy(p,q) =infgc ¢y dy(p,q). If p¢ Ay, that is,
there is not a point 7€ dV(p) such that dy(p,7) =0, then dy(p,q) ==
dy(p,0V) > 0. This contradicts to above equation.

(2) If peAy, there is a point ¢ # p such as dy(p,g) =0. Then 0=
dy(p,q) = dn(n(p),n(q)) = dn(p,q). If p # g, then pe Ay. Hence we will say
that there is a g such that p #¢g. We take a sufficient small closed coordinate
neighborhood V(p) of p, where V(p)N{n~'(p)} = {p} and V(p) is biholo-
morphic to the closed unit ball in C". By Proposition 1.2, there is a point
Gge dV(p) such that dy(p,qg) =0 and p #q. O

COROLLARY 2.6. Let m: N — N be a covering manifold of N of dimension
2. If Ay is an analytic curve, then Ay is an analytic curve.

Proof. If Ay is an analytic curve of N, n(Ay) is a locally analytic curve
in N. Since n(Ay)=Ay by Theorem 2.5 and Ay is a closed set in N by
Proposition 1.5, AN is an analytic curve in N. O

3. An example of hyperbolic manifold N modulo Ay

Let P(x,y) be a nonconstant polynomial. We say that an irreducible
component of a level curve of P is of (g,n) type if its genus is g and its
boundaries are n points (counting # by the normalization of such a level curve).
It is well-known that every irreducible components of almost all level curves are
same type and nonsingular except finite ones. We call that P is a polynomial of
type (g,n) if irreducible components of general level curves are of (g,n) type. If
an irreducible component of exceptional level curves is of (¢’,n’) type, g’ < ¢ and
g +n' <g+n (cf. Theorem I in [8]).

DEeriNITION 3.1. When P(x, y) is a plynomial of (g,n) type, we say that it is
a general type if 29 —2+n >0 and it is exceptional type if 2g —2+n <0.

DeriNITION 3.2. We call that P(x, y) is a primitive polynomial if almost all
level curves are irreducible except finite ones.

The following proposition is well-known.

PropoSITION 3.3.  For every polynomial P(x,y), there is a primitive poly-
nomial Py(x,y) and a plynomial n(z) such that P =mo P.

THEOREM 3.4 (Griffiths [6]). Let U, ={zeC;|z—f| <p,feC,p >0} and
for every ae U,, {P(x,y) =a} is lrreduable nonsmgular and of (g,n) type where
29-2+n>0. We set Ny={(x,y) e C?; P(x y) =a,a€ Uy}. Then universal
covering manifold Ny of Ny is a bounded Bergman domam in C2,

The following corollary follows from Theorem 2.5.



136 YUKINOBU ADACHI

COROLLARY 3.5. The manifold Ny is hyperbolic, that is, Ay, = 0.

THEOREM 3.6. Let P(x,y) be a primitive general type polynomial and set
Ny = {(x,y) € C*; P(x,y) # a,b} where a and b are arbitrary different complex
number. Then Ay, = S, where S is the exceptional level curves of P in Nj.

Proof. We assume that p,qe N; with p# ¢ and both p, ¢ are not
contained in S. We will prove that dy,(p,q) >0. In case p, ¢ are not
both contained in a same level curve, it is easy to see that dy, (p,q) >
de_g, p(P(p), P(q)) > 0. We assume that p, g are both contained in a same
level curve {P(x, y) = B}. Let Uy = {z€ Cidc_(45(f,2) <2s,5>0}. We take
a number s sufficientry small such that 2s = p where p satisfies the condition
in Theorem 3.4. Then Ny = {(x,y) € C* P(x, y) = a,0. € Us} is hyperbolic by
Corollary 3.5. We take positive number r (r < 1) sufficiently small such
that dy)(0,z) <s for every zeA(r) where A(r)={zeC;|z| <r}. Thus if
f :A(1) — N; is holomorphic and P(f(0)) € Us, then f(A(r)) = Np.

Let f;: A(1) — N; be holomorphic mappings and «;, b; be points of A(l)
such that p = fi(a1), fi(h1) = fo(a), ..., fi(bk) = q. By homogenity of A(1) we
may assume that ¢; =0 for all i. By inserting extra terms in this chain if
necessary, we may assume also that b; e A(r/2) for all i=1,...,k. Choose
¢ >0 such that dy)(0,a) = c-dp(0,a) for every aeA(r/2). We set py =
P, P1 :f(bl)avpk:fk(bk) =dq.

We have two cases to consider. Consider the first case where at least one of
the P(p;)’s is not contained in U;. Then it is easy to see

k k k
ZdA(l)(Ovbi) 2 Zle (/i(0), fi(bi)) = ZdC—{a.h}(P(.fi(O))aP(fi(bi))) =S
P i1 =1

Consider the next case where all P(p;)’s are in U;. Then
k k k
D da)(0,5;) = €Y da(0,5:) = ¢ dy, (i1, pi) = ¢ dy(p,q) > 0.

i=1 i=1 i=1

This shows that dy,(p,q) = min{s,c-dy,(p,q)} > 0. Thus N; is hyperbolic
modulo S, that is, Ay, = S. O

Example 3.7. Set Ny = {(x,y)eC? y*—x3#0,1}. Then N; is hyper-
bolic by Theorem 3.6.

THEOREM 3.8. Let P(x,y) be a general type polynomial. Then, for
N ={(x,y) e C%:P(x,y) #a,b} Ay c S, where S is a curve consists of the
exceptional level curves of P(x,y) in N.

Proof.  From Proposition 3.3, there is a primitive polynomial Py(x, y) and a
polynomial 7(z) such that P =no P;,. Hence there is an injection i: N — N



KOBAYASHI HYPERBOLIC MANIFOLD 137

where N; is the same in Theorem 3.6 and we take P, instead of P, a point of
n'(a) instead of @ and a point of n~!(b) instead of . From Theorem 2.3,
AN c S D

Remark 3.9. In the same notation of Theorem 3.8, Ay is an algebraic curve
or () by Proposition 1.10.

4. A generalization of the little Picard theorem

It is easy to see the following:

ProOPOSITION 4.1.  Let Ny and N, be manifolds of dimension n (n >2). Ifa
holomorphic map F : Ny — N, is nondegenerate, that is, F(N)) contains an open
set in Ny, if and only if JF # 0.

PropPoSITION 4.2. Let N be a manifold of dimension 2 and dy =0. Let
F:N — C? be a holomorphic map such that PoF # a,b, where P(x,y) is a
polynomial and a, b are different complex numbers. Then F is a degenerate map.

Proof. For every points p,gqeN such as p#gq, 0=dy(p,q) =
dez_y, m(PoF(p),PoF(q)). Hence PoF(p)=PoF(q). Therefore F(N) is
contained in a same level curve. O

PrOPOSITION 4.3. Let N be a manifold of dimension 2 such that Ay # O and
let F: N — C? is a holomorphic map such that Po F # a,b, where P(x,y) is a
polynomial.  Then Po F(An(p)) = a (constant) and Ay(p) is an analytic curve in
N.

Proof. Since for every g¢,reAx(p), dy(g,r) =0 by Proposition 1.14,
F(An(p)) is contained in a same level curve by the same reason of Proposition
4.2. Since Ay(p) is contained an analytic cuve of N, Ay(p) is an analytic curve
of N by Proposition 1.10 and Theorem 1.13. |

THEOREM 4.4. Let N be a manifold of dimension 2 and let the nonempty set
Ax be not an analytic curve of N. Let F : N — C? be a holomorphic map such
that PoF # a,b, where P(x,y) be a general type polynomial. Then F is a
degenerate map.

Proof. Since M = {(x,y) € C*;P(x, y) # a,b} is hyperbolic modulo alge-
braic curve or () by Theorem 3.8, Remark 3.9, Remark 2.4, Propositions 4.1 and
4.3, F is a degenerate map. OJ

Remark 4.5. The condition that P(x,y) is a general type polynomial is
indispensable for Theorem 4.4. For example, if N =C x (C — {a,b}), F is an
identity map and p(x,y) =y, then N = {Po F # a,b}.
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5. Examples of a manifold N such that Ay = N

ProBLEM 5.1. Enumurate the Stein manifold N of dimension 2 such that
Ay = N or dy =0 specially.

We study the case where a manifold N is a quasi-projective Stein manifold.

PROPOSITION 5.2. Let C be a curve of degree <2. Then N=P?*—C
satisfies Ay = N and hence dy = 0.

Proof. In the case where degree of C equals 1, N is biholomorphic to C?
and the conclusion is trivial.

In the case where the degree of C equals 2, C consists of two lines or a
conic. The former case, N is biholomorphic to C x C* and the conclusion is
trivial. The latter case, for every distinct points p and ¢ € N the line L through
p and ¢ meets with C at most two points. Then dy(p,q) =0 because L — C is
biholomorphic to C or C*. O

PROPOSITION 5.3.  Let C be a curve of degree equals to 3. Then N = P* — C
satisfies Ay = N.

Proof. In case C consists of three lines in general position, N is biholo-
morphic to C* x C* and it is easy to see that Ay = N and dy =0.

In case C consists of three lines in particular position, N is biholomorphic to
C x (C—{a,b}) where a#b. Tt is easy to see that Ay = N and dy # 0.

In case C consists of a conic and a line L, Ay = N and dy =0. Because
for almost all distinct points p and g € N, tangent line L, of the conic through
p meets with L at a point, L, — C is biholomorphic to C or C*. The similar
line L, meets with L, with a point r or L, =L, Then in the former case
dy(p,q) <dn(p,r) +dyn(q,r) =0 and in the latter case it is easy to see that
dy(p,q) =0. Since Ay is a closed set and dy is continuous, Ay = N and
dN =0.

In case C is a cubic curve, Ay =N and dy =0. Because for almost all
distinct points p and g € N, tangent line L, of C through p meets with C at most
two points, and then L, — C is biholomorphic to C* or C. The similar line L,
meets with L, with a point r or L, = L,. Then conclusion is easy to see similary
to the above discussion. ]

In the case where the degree of C equals 4, we only raise examples.

Example 5.4. 1If C consists of four lines in general position, it is well-known
that Ay is a diagonal line (cf. Theorem (3.10.27) in [7]).

If C consists of four lines in particular position, N is biholomorphic to
Cx (C—{a,b,c}) or C* x (C—{a,b}). Then A, =N and dy # 0.
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Example 5.5 (J. Carson, F. Sakai and B. Shiffman). If C =L, U{y = x*}

where L., is the line at infinity, then Ay =N and dy =0 where N =
C(x,y) —{y=x}. Because F:x =z, y=2z>+e¢" is a holomorphic map of C>
onto N.

PROBLEM 5.6. Let N be a Stein manifold with dy = 0. Then, is there a

nondegenerate holomorphic map of C? to N?

(10]
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