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DIVERGENCE THEOREM FOR SYMMETRIC ð0; 2Þ-TENSOR FIELDS

ON A SEMI-RIEMANNIAN MANIFOLD WITH BOUNDARY

Jean-Pierre Ezin, Mouhamadou Hassirou and Joel Tossa

Abstract

We prove in this paper a divergence theorem for symmetric ð0; 2Þ-tensors on a semi-

Riemannian manifold with boundary. We obtain a generalization of results obtained

by Ünal in [9, Acta Appl. Math. 40(1995)] and E. Garcı́a-Rı́o and D. N. Kupeli in [4,

Proceeding of the Third World Congress of Nonlinear Analysts, Part 5 (Catania, 2000).

Nonlinear Anal. 47 (5) 2995–3004, 2001].

As a tool, we use an induced volume form on the degenerate boundary by

introducing a star like operator.

A vanishing theorem for gradient timelike Killing vector fields on Einstein semi-

Riemannian manifolds is obtained.

1. Introduction and preliminaries

Our aim in this paper is to establish a divergence theorem for symmetric
ð0; 2Þ-tensor fields on a semi-Riemannian manifold with smooth boundary
(theorem 1). More specifically, we use an induced volume form on the dege-
narate boundary to solve the problem of divergence theorem on a semi-
Riemannian manifold with smooth degenerate boundary (theorem 2, corollary 1).

There have been several attempts to extend the divergence theorem. To
the best of our knowledge, K. L. Duggal is the first to have attempted in [1,
section 3] to extend this theorem. However, in order to use the divergence
theorem, he had to restric is study to the so-called regular semi-Riemannian
manifold.

In [7], S. E. Stepanov considers the intrinsic geometry defined by the
second fundamental form on the boundary without distinguishing the causal
character (timelike, spacelike or null) of the tangent vectors at the boundary
points.
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The main problem to face is that the outward (or the inward) unit normal
vector field which is needed to integrate on the degenerate boundary is not well
defined at degenerate points.

1.1. A quick review of the geometry of the degenerate boundary. Let’s
consider a semi-Riemannian manifold ðM; gÞ with boundary qM, possibly empty.
A normal vector to qM at a point may have one of the three causal characters
with respect to gqM , called the induced metric on qM. One denotes qMþ, qM�,
qM0, the sets of the points where normal vectors are spacelike, timelike, lightlike
respectively. The subsets qMþ and qM� are open in qM and the subset qM0 is
closed in qM.

Clearly

qM ¼ qMþ U qM� U qM0ð1Þ

and those subsets are pairwise disjoint. Consequently, qM 0 ¼ qMþ U qM� is an
open submanifold of qM and may be considered as the nondegenerate boundary
of M and qM0 is referred to as the degenerate boundary of M. Let’s suppose
that ðM; gÞ is oriented and let vg denote its volume element. Then qM is also
oriented and its area element is h ¼ iNvg where N is the outward unit normal
vector field. According to (1) we have the following splitting of N into normal
vector fields

N ¼
Nþ to qMþ
N� to qM�
N0 to qM0

8<
:ð2Þ

where N0 is the null transverse vector field. The induced volume element on
nondegenerate boundary is well known. The one on the degenerate boundary is
constructed by using a Hodge star like operator defined as follows.

Let’s recall that the Hodge star, ?H defined on an oriented ðnþ 2Þ-semi-
Riemannian manifold M, is a linear operator on W�ðMÞ mapping a p-form into
an ðnþ 2� pÞ-form. It may be locally defined, but it does not depend on a
particular coordinate system. Its square is given by

?H?H ¼ ð�1Þpðnþ1Þþs
IW pðMÞ

where s is the number of minus signs in the metric.
Denoting gjqM0

the induced degenerate metric on qM0, there exists locally a
vector field x A GðTqM0Þ such that gðX ; xÞ ¼ 0 EX A GðTqM0Þ. Locally, one has

TMjqM0
¼ TqM0 l trðTqM0Þ;ð3Þ

TqM0 ¼ SðTqM0Þ ? RadðTqM0Þð4Þ
where

RadðTqM0Þ :¼ TqM0 VTqM?
0

42 jean-pierre ezin, mouhamadou hassirou and joel tossa



is the radical vector bundle, trðTqM0Þ is the transverse vector bundle and
SðTqM0Þ is a screen distribution on qM0. For any screen distribution SðTqM0Þ,
trðTqM0Þ exists and is unique. Using relation (4), one defines locally on qM0

a smooth 1-form y0 by setting y0ðXÞ ¼ gðN0;X Þ such that

y0ðxÞ ¼ 1; y0ðXÞ ¼ 0; for any other X A GðTqM0Þ

and moreover y0 is a section of RadðT �qM0Þ.
Let h ¼ ðgjqM0

ÞSðTqM0Þ be the restriction of gjqM0
, as a ð0; 2Þ-tensor, on the

screen distribution SðTqM0Þ.
We also denote the extension of g by g to the space of smooth forms on

ðM; gÞ. Then, one generalizes h, on the di¤erential forms of the screen dis-
tribution as

hða; bÞ ¼ gða; bÞ a; b A WkðSðTqM0ÞÞð5Þ

where WkðSðTqM0ÞÞ is the space of smooth k-forms of SðTqM0Þ. It is
characterized by

WkðSðTqM0ÞÞ ¼ fa A WkðqM0Þ; ixa ¼ 0g:

We denote W�SðTqM0Þ the graded algebra of forms of SðTqM0Þ on qM0.
The graded algebra W�qM0 splits as

W�qM0 :¼ W�SðTqM0ÞlW�Zð6Þ
with

W�Z ¼ fy05b; b A W�SðTqM0Þg ¼ fa A W�ðqM0Þ; y05a ¼ 0g

1.2. Hodge star like operator on the boundary. Because h is nondegenerate
and that the degenerate boundary qM0 inherits the orientation of ðM; gÞ, we can
define a star like operator, denoted ?s, on the screen distribution.

According to decompositions (3) and (4) we can choose the field of frames
fx;V1; . . . ;Vn�2g on qM0 and fN0; x;V1; . . . ;Vn�2g on M taking into account the
orientation of M, where n ¼ dim M and fV1; . . . ;Vn�2g is an orthonormal basis
of GðSðTqM0ÞÞ [2, p. 9]. Thus, if vM is a volume element of M and ~yy ¼ gðN0; Þ,
then we have

vM ¼ ~yy5y05y15� � �5yn�2

where y iðVjÞ ¼ dij.
Then a Hodge star like operator is defined on qM0 as follows

?a :¼ ð�1Þky05?sa Ea A WkðqM0Þ and ixa ¼ 0

?a :¼ ?sixa Ea A WkðqM0Þ and y05a ¼ 0:

(
ð7Þ

Thus for each a A WkðSðTqM0ÞÞ defined on qM0, we have

y05a5?sa ¼ hða; aÞvqM0
ð8Þ
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where vqM0
is the volume element on ðqM0; gqM0

Þ. It can easily be shown that
for each a A WkðqM0Þ there exists a function L on qM0 such that

a5?a ¼ LvqM0
ð9Þ
and

?? ¼ ð�1ÞknIWkðqM0Þ:ð10Þ

Consequently we define the coderivative on ðqM0; g=qM0
Þ by

d ¼ ð�1Þðkþ1Þðnþ1Þþ1 ? d?ð11Þ

for any k-form on qM0.
For a A Wk�1ðqM0Þ and b A WkðqM0Þ, let’s define

ðda; bÞ :¼
ð
qM0

da5?b:

Then clearly

ðda; bÞ ¼ ða; dbÞ:

The determination of the coderivative d on qM0 allows one to define the
Laplace Beltrami operator, D ¼ ddþ dd on a lightlike hypersurface. Then we
may obtain harmonic forms and de Rham decomposition on qM0 if M is
Lorentzian manifolds.

As an example, let M be a Monge hypersuface of R4
1 given by an equation

x0 ¼ F ðx1; x2; x3Þ with immersion:

ðu1; u2; u3Þ 7! ðF ðu1; u2; u3Þ; u1; u2; u3Þ
such that

ðF 0
1Þ

2 þ ðF 0
2Þ

2 þ ðF 0
3Þ

2 ¼ 1

Then TM? ¼ RadðTMÞ is spanned by

x ¼ q

qx0
þ
X3

a¼1

F 0
a

q

qxa
where F 0

a ¼
qF

qxa
:

Let’s assume that 1� ðF 0
2Þ

2 0 0 then SðTMÞ is spanned by the orthonormal
system fV1;V2g with

V1 ¼
1

ð1� ðF 0
2Þ

2Þ1=2
F 0
3

q

qx1
� F 0

1

q

qx3

� �

V2 ¼
1

ð1� ðF 0
2Þ

2Þ1=2
�F 0

1F
0
2

q

qx1
þ ð1� ðF 0

2Þ
2Þ q

qx2
� F 0

3F
0
2

q

qx3

� �
:
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If we set

y0 ¼ F 0
1 du

1 þ F 0
2 du

2 þ F 0
3 du

3;

y1 ¼ 1

ð1� ðF 0
2Þ

2Þ1=2
fF 0

3 du
1 � F 0

1 du
3g;

and

y2 ¼ 1

ð1� ðF 0
2Þ

2Þ1=2
f�F 0

1F
0
2 du

1 þ ð1� ðF 0
2Þ

2Þ du2 � F 0
3F

0
2 du

3g;

then the volume element of qM0 is

y05y15y2 ¼ du15du25du3

and

?y0 ¼ ? s1 ¼ y15y2; ?y1 ¼ �y05?sy1 ¼ �y05y2;

?y2 ¼ �y05?sy2 ¼ y05y1

So, this volume element is intrinsic (see also [6], p. 148).
Thus if X is a smooth vector field on ðM; gÞ with compact support, we prove

in section 2, corollary 1 thatð
M

divðX Þvg ¼
ð
qM0

gðX ; xÞhð12Þ

whenever the boundary qM ¼ qM0 is degenerate. Note that here h is the area
element on the boundary and x is an isotropic vector field.

Formula (12) is a new result on divergence theorem for vector fields.
For instance, consider the cylinder M ¼ S1 � ½�1; 1� with Lorentzian metric

g ¼ 1

2
½dyn dtþ dtn dy� þ ð1� tÞ dyn dy

where t A ½�1; 1� and y is the polar coordinate of S1.
The boundary qM ¼ ðS1 � f1gÞU ðS1 � f�1gÞ is degenerate, i.e qM ¼ qM0

Let X ¼ t
q

qt
and vg ¼ � 1

2
dy5dt, then

Ð
M
div Xvg ¼ 2p.

We have h0 ¼
1

2
dy and x ¼ q

qy
so that

ð
qM0

gðX ; xÞh0 ¼
ð
S 1�f1g

gðX ; xÞh0 �
ð
S 1�f�1g

gðX ; xÞh0 ¼ 2p

Thus our formula (12) still remains valid (compare to the counterexample
in [9]).
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2. Divergence theorem on manifolds with degenerate boundary

Consider a symmetric ð0; 2Þ-tensor field T on a n-dimensional semi-
Riemannian manifold ðM; gÞ. The divergence of T is defined as the 1-form
divðTÞ given by

div TðXÞ ¼ gkj‘ekTðX ; ejÞ; EX A GðTMÞ

where B ¼ fei; i ¼ 1; . . . ; ng is an orthonormal frame of parallel vector fields and
‘ is the Levi-Civita connection on ðM; gÞ.

Let’s denotea the index uppering operator for g and let TðeiÞa be the vector
field associated, by duality, to the 1-form TðeiÞ defined by TðeiÞðX Þ ¼ Tðei;X Þ

Lemma 1. Let T be a symmetric ð0; 2Þ-tensor on ðM; gÞ. Then

div TðXÞ ¼ div½ðTX Þa� � 1

2
gðLXg;TÞð13Þ

Proof. Let B ¼ fej; j ¼ 1; . . . ; ng be an orthonormal frame of parallel vector
fields and g the metric on M.

div TðXÞ ¼ gkjð‘ekTÞðX ; ejÞ

¼ gkj ½‘ek ðTðX ; ejÞÞ � Tð‘ekX ; ejÞ � TðX ;‘ek ejÞ

¼ gkj‘ek ðTðX ; ejÞÞ � gkjglmgð‘ekX ; elÞTðej; emÞ
i; j; k ¼ 1; . . . ; n

div TðXÞ ¼ gkj‘ek ðTðX ; ejÞÞ �
1

2
gðT ;LXgÞ

¼ gkj‘ekgððTX Þa; ejÞ �
1

2
gðT ;LXgÞ

so div½ðTX Þa� ¼ gkj‘ekgððTXÞa; ejÞ. r

Theorem 1. Let ðM; gÞ be an oriented n-dimensional semi-Riemannian
manifold with boundary qM, and T be a symmetric ð0; 2Þ-tensor field. Thenð

M

div TðXÞvg ¼ � 1

2

ð
M

gðT ;LXgÞvg þ
ð
qMþ

TðX ;NþÞhþð14Þ

�
ð
qM�

TðX ;N�Þh� þ
ð
qM0

TðX ; xÞh0

where hG¼ iNGvg, h0 ¼ iN0
vg and x is such that gðx;N0Þ ¼ 1 and gðx; xÞ ¼ 0 and X

is a smooth vector field with compact support on M.

Two intermediary results are necessary before we can prove Theorem 1.
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Lemma 2. Let ðM; gÞ be an oriented n-dimensional semi-Riemannian man-
ifold with boundary qM. If X is a smooth vector field with compact support on
M, then ð

M

divðXÞvg ¼
ð
M

dðtraceðX n vgÞÞ ¼
ð
qM

traceðX n vgÞð15Þ

Proof. Let B ¼ fei; i ¼ 1; . . . ; ng be an orthonormal frame which can
possibly have isotropic vector field on M [2]. Then we have

divðXÞvg ¼ LXvg

¼ diXvg

¼ dðgkjgðX ; ekÞiej vgÞ

where k; j ¼ 1; . . . ; n, X ¼ gkjgðX ; ekÞej and gk; j is the ðk; jÞ-entry of the inverse
g�1 of g. Thus

divðX Þvg ¼ dðtraceðX n vgÞÞ:

Using Stokes’ theorem yields the proof. r

Lemma 3. Let ðM; gÞ be an n-dimensional oriented semi-Riemannian man-
ifold with degenerate boundary qM0. Let vM be the volume element of ðM; gÞ,
Then iN0

vM is the area element of qM0 at each point of qM0.

Proof. Let’s consider the pseudo-orthonormal coordinate system fN0; x;

V1; . . . ;Vn�2g on M and its dual f ~yy; y0; y1; . . . ; yn�2g, where ~yyðN0Þ ¼ 1 and
ykðVjÞ ¼ dkj. We choose fV1; . . . ;Vn�2g as an orthonormal coordinate system of
SðTqM0Þ. We have the volume element on ðM; gÞ:

v0M ¼ ~yy5y05y15� � �5yn�2

since

?sy1 ¼ y25� � �5yn�2:

Thus

iN0
v0M ¼ y05y15� � �5yn�2 ¼ y05y15? sy1:

This equality is independent of the choice of SðTqM0Þ. r

Proof of Theorem 1. When integrating relation (13), we have

ð
M

divðTÞXvg ¼ � 1

2

ð
M

gðT ;LXgÞvg þ
ð
qM

trace½ðTX Þan vg�:
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traceððTXÞan vgÞjqM ¼ traceððTX Þan vgÞjqMþ
þ traceððTX Þan vgÞjqM�

þ traceððTX Þan vgÞjqM0

¼ gððTX Þa;NþÞhþ � gððTX Þa;NþÞhþ þ gððTX Þa; xÞh0
¼ TðX ;NþÞhþ � TðX ;N�Þh� þ TðX ; xÞh0:

We can then use the relation (15), to conclude the proof. r

The trace operator is independent of the choice of coordinates. Therefore in
the case of degenerate boundary, the divergence theorem is independent of the
choice of screen distribution.

Theorem 1 can be used to generalize Ünal’s results in [9] as follows

Theorem 2. Let ðM; gÞ be an oriented semi-Riemannian manifold with the
boundary qM. If X is a smooth vector field with compact support on M, thenð

M

div Xvg ¼
ð
qMþ

gðX ;NþÞhþ �
ð
qM�

gðX ;N�Þh� þ
ð
qM0

gðX ; xÞh0

Moreover, if one of the following conditions holds.
1. qM0 is a set of null measure in qM
2. X is tangent to qM at any point of qM0,

then ð
M

ðdiv X Þvg ¼
ð
qMþ

gðX ;NþÞhþ �
ð
qM�

gðX ;N�Þh�ð16Þ

Proof. Let’s T ¼ g, then divðTÞ ¼ 0 and gðg;LXgÞ ¼ 2 divðXÞ.
One can then use theorem 1 to conclude the proof. r

Corollary 1. Let ðM; gÞ be an oriented semi-Riemannian manifold, qM its
boundary and X a smooth vector field with compact support on M. If one of the
following conditions holds,

� X is tangent to qM at the points of qMþ and qM�,
� qMþ ¼ qM� ¼ j,

then ð
M

ðdiv XÞvg ¼
ð
qM0

gðX ; xÞh0ð17Þ

Example 1. Let ðM; gÞ be an Euclidean 3-dimensional Lorentzian manifold
such that the boundary qM is defined by x ¼ Fðy; zÞ where F is a smooth
function such that

ðF 0
yÞ

2 þ ðF 0
z Þ

2 ¼ 1; F 0
a ¼

qF

qa
:
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Then there exists a submersion f such that f �1ð0Þ ¼ qM, where f is given by

ðx; y; zÞ 7! f ðx; y; zÞ ¼ x� F ðy; zÞ;
and we have

df ¼ �dxþ F 0
y dyþ F 0

z dz0 0:

Clearly qM is degenerate ðqM ¼ qM0Þ and we can construct a Duggal-
Bejancu basis by

N0 ¼
1

2
� q

qx
þ F 0

y

q

qy
þ F 0

z

q

qz

� �
; x ¼ q

qx
þ F 0

y

q

qy
þ F 0

z

q

qz

The area element on the boundary is given by

h ¼ i� � 1

2
ðdy5dzþ F 0

y dx5dz� F 0
z dx5dyÞ

� �
¼ du15du2

where i is the immersion

iðu1; u2Þ ¼ ðFðu1; u2Þ; u1; u2Þ:
If X is a smooth vector field, X ¼ ðX 1;X 2;X 3Þ with compact support on M, we
have ð

M

divðXÞvg ¼
ð
M

dðX 1 dy5dzÞ þ
ð
M

dðX 2 dz5dxÞ
ð
M

dðX 3 dx5dyÞ

¼
ð
qM0

i�ðX 1 dy5dzþ X 2 dz5dxþ X 3 dx5dyÞ

¼
ð
qM0

ðX 1 � X 2Fy � X 3FzÞ � i du1du2

¼
ð
qM0

gðX ; xÞh

By theorem 2 we can extend a Stepanov result 8 to degenerate boundary
case.

Let X be a smooth vector field on M and we put AX ¼ �‘X . Then X is
said to be special concircular vector field with compact support, if

AXY ¼ �‘YX ¼ � 1

n
div X

� �
Y ; EY A GðTMÞ:

Theorem 3. Let ðM; gÞ be an n-dimensional oriented Lorentzian manifold
with degenerate boundary. If x is a conformal isotropic vector field with compact
support such that Ricðx; xÞa 0 then x is parallel.

Moreover there is no conformal isotropic vector field with compact support,
which satisfies the condition Ricðx; xÞ < 0.
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The following lemma is necessary for the proof of Theorem 3

Lemma 4. Let M and qM be as in theorem 3. For X A GðTMÞ with
compact support and tangent to qM, we haveð

M

fRicðX ;X Þ þ traceðAX Þ2 � ðtrace AX Þ2gvg ¼
ð
qM

BðX ;XÞh

where B is the second fundamental form of qM.

Proof. The proof comes from the following classic relation

divðWÞ ¼ RicðX ;XÞ þ traceðAX Þ2 � ðtrace AX Þ2ð18Þ
where W ¼ traceðAX Þ � AXX .

Applying divergence theorem 2 leads toð
M

div W ¼
ð
M

RicðX ;XÞ þ traceðAX Þ2 � ðtrace AX Þ2vg

¼
ð
qM

traceðW n vgÞ:

But we also have

gðW ;NÞ ¼ gðtraceðAX Þ � AXXÞ;NÞ ¼ BðX ;XÞ;
so the proof is completed. r

Proof of theorem 3. Let X ¼ x be an isotropic vector field, then Bðx; xÞ ¼ 0.
Since x is a conformal vector field

traceðAxÞ2 � ðtrace AxÞ2 a 0:

By lemma 4 we have a contradiction to the condition Ricðx; xÞ < 0. r

Theorem 4. Let ðM; gÞ be an n-dimensional oriented semi-Riemannian
manifold with boundary. If X is special concircular smooth vector field of constant
norm on M and transverse to qM at every point of qM, thenð

M

RicðX ;X Þvg b 0

Proof. Let X A GðTMÞ be a special concircular vector field with compact
support and transverse to qM. Using relation (18), we haveð

M

RicðX ;XÞ � n� 1

n
ðdiv XÞ2

� �
vg ¼ � n� 1

n

ð
qM

f ðdiv XÞhð19Þ

where X ¼ Z 0 þ f N, Z 0 A GðqMÞ and f is a constant function on qM. As
f ¼ constant, then
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ð
qM

f ðdiv X Þh ¼ 0

concluding the proof. r

We end this part by proving the following theorem:

Theorem 5. There is no gradient non degenerate Killing vector field in a
semi-Riemannian, Einstein Ricci non flat compact manifold without boundary.

Proof. For the Hessian of a function f, we have [3]ð
M

div H fðXÞ ¼
ð
M

ð�dðDfÞðXÞ þRicð‘f;XÞÞvg

¼ 1

2

ð
M

gðH f;LXgÞvg þ
ð
qMþ

H fðX ;NþÞhþ

�
ð
qM�

H fðX ;N�Þh� þ
ð
qM0

H fðX ; xÞh0

and in particular if X is a Killing vector field and qM ¼ j, thenð
M

div H fðXÞ ¼ 0

so ð
M

ð�dðDfÞðXÞ þRicð‘f;XÞÞvg ¼ 0

moreover ð
M

ð�dðDfÞðXÞÞ ¼ 0:

Thus ð
M

Ricð‘f;X Þvg ¼ 0: r

As an immediate consequence, we have

Corollary 2. On a connected semi-Riemannian Einstein Ricci non flat
compact manifold M without boundary, harmonic functions are constant or have
degenerate gradient vector fields.

Proof. Let f be a harmonic function and X ¼ ‘f. Theorem 5 givesð
M

Ricð‘f;‘fÞ ¼ 0
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so ð
M

j‘fj2 ¼ 0:

Since M is Ricci non flat, we conclude ‘f ¼ 0 and f is constant by the con-
nectedness of M or j‘fj2 ¼ 0 and ‘f is degenerate. r

3. Electromagnetic tensor fields on lightlike hypersurface

In this part, we apply the Hodge star operator to a class of induced elec-
tromagnetic tensor fields to obtain Maxwell equations which will extend the result
earlier obtained by Duggal-Bejancu [2, chapter 8].

Let ðM; g;FÞ be a time oriented 4-dimensional electromagnetic spacetime
manifold with Lorentz metric g of signature ð�;þ;þ;þÞ and an electromagnetic
tensor field F . We define a tensor field F ¼ ðF b

a Þ, of type ð1; 1Þ,
F 0b

a ¼ gbcFca

where a; b; c A f0; . . . ; 3g

K ¼ 1

2
ðFabF

ab þ iF abF
�abÞ

There are two classes of electromagnetic tensor fields by the Ruse-Synge clas-
sification. Whether F is non-singular or singular depending on K0 0 or K ¼ 0.
It is known that K can be expressed in terms of Maxwell scalars [2, p. 238] and

K ¼ 2ðf2
1 � f0f2Þ

Let ðM; g;SðTMÞÞ be a lightlike hypersurface of ðM; g;F 0Þ. Hence relation (3)
becomes

TM jM ¼ TMl trðTMÞ:ð20Þ
We say that ðM; g;SðTMÞÞ is electromagnetic invariant if

F 0ðX Þ A GðTMÞ EX A GðTMÞ:

Now let f be the restriction of F 0 on M as an ð1; 1Þ-tensor field on M.
Then f is a skew symmetric ð1; 1Þ-tensor field with respect to the induced

degenerate metric g (see [2, p. 241] theorem 21). If

FðX ;YÞ ¼ gð f ðX Þ;Y Þ EX ;Y A GðTMÞ;ð21Þ

F is an induced electromagnetic tensor field on ðM; g;SðTMÞÞ and we call
ðM; g;SðTMÞ;F Þ an electromagnetic invariant lightlike hypersurface.

The tensor field F is singular (resp. non singular) if F is singular (resp. non
singular). In terms of Maxwell scalars, one has K ¼ 2f2

1 , (see [2, p. 242]).
In this text we only deal with the class of induced non-singular electro-

magnetic tensor fields. However, the result is similar to that of singular ones.
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Let fx;V1;V2g be a pseudo-orthonormal coordinate system of M with its
dual fy0; y1; y2g. Then a non-singular induced electromagnetic tensor field is
expressed as follows

F ¼ Imðf1Þy15y2ð22Þ
where ðImðf1ÞÞ is the imaginary part of f1.

Theorem 6. Let ðM; g;SðTMÞ;FÞ be an electromagnetic invariant lightlike
hypersurface of 4-dimensional spacetime manifold ðM; g;FÞ, where F is a non-
singular electromagnetic tensor field on M and F is an induced electromagnetic
tensor field on M. Assume that the screen distribution SðTMÞ is integrable and
that an induced connection ‘ on M is a metric connection. Then

d ? F ¼ 0 ðdMF ¼ 0Þ if and only if V1:ðImðf1ÞÞ ¼ 0 and V2:ðImðf1ÞÞ ¼ 0:

where Hodge star like operator ? is defined by (7)

Proof. By theorem 3.1 [2, p. 248], for any X A GðTMÞ, there exists a
smooth function kðX Þ such that

(1) ‘Xy
1 ¼ kðX Þy2

(2) ‘Xy
2 ¼ �kðXÞy1

(3) ‘Xy
0 ¼ 0

Using (22) we have

?F ¼ Imðf1Þy0

and
d ? F ¼ dðImðf1ÞÞy0:

Therefore

d ? F ¼ 0 , V1:ðImðf1ÞÞ ¼ 0 and V2:ðImðf1ÞÞ ¼ 0: r

Corollary 3. For Imðf1Þ ¼ constant, the Maxwell equations obtained in M
for the corresponding induced electromagnetic tensor field are

dF ¼ 0

d ? F ¼ 0 ðdF ¼ 0Þ
ð23Þ

The condition f1 ¼ constant is satisfied in the class of homogeneous non
singular electromagnetic spacetime.
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Institut de Mathématiques et de Sciences Physiques (IMSP)

The Abdus Salam International Centre for Theoretical Physics (ICTP)

B.P. 613

Porto-Novo

Bénin

E-mail: hassirou@imsp-uac.org

Joel Tossa
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