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DIVERGENCE THEOREM FOR SYMMETRIC (0,2)-TENSOR FIELDS
ON A SEMI-RIEMANNIAN MANIFOLD WITH BOUNDARY

JEAN-PIERRE EzIN, MOUHAMADOU HASSIROU AND JOEL ToOssA

Abstract

We prove in this paper a divergence theorem for symmetric (0,2)-tensors on a semi-
Riemannian manifold with boundary. We obtain a generalization of results obtained
by Unal in [9, Acta Appl. Math. 40(1995)] and E. Garcia-Rio and D. N. Kupeli in [4,
Proceeding of the Third World Congress of Nonlinear Analysts, Part 5 (Catania, 2000).
Nonlinear Anal. 47 (5) 2995-3004, 2001].

As a tool, we use an induced volume form on the degenerate boundary by
introducing a star like operator.

A vanishing theorem for gradient timelike Killing vector fields on Einstein semi-
Riemannian manifolds is obtained.

1. Introduction and preliminaries

Our aim in this paper is to establish a divergence theorem for symmetric
(0,2)-tensor fields on a semi-Riemannian manifold with smooth boundary
(theorem 1). More specifically, we use an induced volume form on the dege-
narate boundary to solve the problem of divergence theorem on a semi-
Riemannian manifold with smooth degenerate boundary (theorem 2, corollary 1).

There have been several attempts to extend the divergence theorem. To
the best of our knowledge, K. L. Duggal is the first to have attempted in [1,
section 3] to extend this theorem. However, in order to use the divergence
theorem, he had to restric is study to the so-called regular semi-Riemannian
manifold.

In [7], S. E. Stepanov considers the intrinsic geometry defined by the
second fundamental form on the boundary without distinguishing the causal
character (timelike, spacelike or null) of the tangent vectors at the boundary
points.
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The main problem to face is that the outward (or the inward) unit normal
vector field which is needed to integrate on the degenerate boundary is not well
defined at degenerate points.

1.1. A quick review of the geometry of the degenerate boundary. Let’s
consider a semi-Riemannian manifold (M, g) with boundary M, possibly empty.
A normal vector to dM at a point may have one of the three causal characters
with respect to ggys, called the induced metric on M. One denotes OM,, OM_,
0M,, the sets of the points where normal vectors are spacelike, timelike, lightlike
respectively. The subsets 0M, and 0M_ are open in 0M and the subset dM, is
closed in 0M.

Clearly

(1) oM = oM, UdoM_ UM,

and those subsets are pairwise disjoint. Consequently, 0M’ = oM, UJOM_ is an
open submanifold of 0M and may be considered as the nondegenerate boundary
of M and 0M, is referred to as the degenerate boundary of M. Let’s suppose
that (M,g) is oriented and let v, denote its volume element. Then 0M is also
oriented and its area element is # = iyv, where N is the outward unit normal
vector field. According to (1) we have the following splitting of N into normal
vector fields

N, todM,
2) N={ N_ todM_
Ny to (?M()

where N, is the null transverse vector field. The induced volume element on
nondegenerate boundary is well known. The one on the degenerate boundary is
constructed by using a Hodge star like operator defined as follows.

Let’s recall that the Hodge star, x/ defined on an oriented (n + 2)-semi-
Riemannian manifold M, is a linear operator on Q*(M) mapping a p-form into
an (n+2— p)-form. It may be locally defined, but it does not depend on a
particular coordinate system. Its square is given by

*H*H _ (_l)p(n+1)+slgp(M)

where s is the number of minus signs in the metric.
Denoting gjay, the induced degenerate metric on dM, there exists locally a
vector field & € ['(T0M,) such that g(X,&) =0 VX e [(ToM,). Locally, one has

(3) TM|€,M0 = ToMy @ tr(ToMy),
(4) TaMo = S(T(?M()) 1 Rad(TaMo)
where

Rad(ToMy) := ToMyN ToMy
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is the radical vector bundle, tr(70M,) is the transverse vector bundle and
S(T2M,) is a screen distribution on dMj. For any screen distribution S(70My),
tr(T0Mpy) exists and is unique. Using relation (4), one defines locally on 0M
a smooth 1-form #° by setting 0°(X) = g(No, X) such that

0°(&) =1, 0°(X)=0, for any other X e ['(TdM,)

and moreover 0° is a section of Rad(7*dM).

Let 7t = (9jom,)s(rom,) be the restriction of gpan,, as a (0,2)-tensor, on the
screen distribution S(T0M,).

We also denote the extension of g by g to the space of smooth forms on
(M,g). Then, one generalizes h, on the differential forms of the screen dis-
tribution as

(5) (o f) = g(a.f) o fp e QX(S(TOMy))

where QF(S(T0M,)) is the space of smooth k-forms of S(ToM,). It is
characterized by

QK (S(ToMy)) = {o e QF(0My), ize = 0}

We denote Q*S(T0M,) the graded algebra of forms of S(TJ0M,) on M.
The graded algebra Q*dM, splits as

(6) Q*0My = Q*S(ToM,) ® Q*Z
with
QZ={0"AB,BeQ*S(TOM,)} = {0 € Q" (0My),0° Ao = 0}

1.2. Hodge star like operator on the boundary. Because / is nondegenerate
and that the degenerate boundary dM, inherits the orientation of (M, g), we can
define a star like operator, denoted x°, on the screen distribution.

According to decompositions (3) and (4) we can choose the field of frames
{&Vi,..., Vya} on My and {Ny, &, Vi, ..., Vy2} on M taking into account the
orientation of M, where n = dim M and {V1,...,V,_»} is an orthonormal basis

of I'(S(ToMy)) [2, p. 9]. Thus, if vy is a volume element of M and 6 = g(Ny, ),
then we have

o =0A0° A0 A A0

where 0'(V;) = 6.
Then a Hodge star like operator is defined on dM, as follows

*00 1= &l Vo e Q¥ (0Mp) and 0° Ao = 0.
Thus for each o e Q¥(S(TOM,)) defined on dMy, we have

) {*oc = (=1)*0° Ax'o Vo e QF(0My) and iza =0

(8) 0% Ao A Ko = h(o, o) van,
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where vy, is the volume element on (0My,gan,). It can easily be shown that
for each o e Q¥(0My) there exists a function L on dM, such that

9) o A*o = Lvgy,
and
(10) s = (=1) " g o

Consequently we define the coderivative on (0Mo,g,ar,) by
(11) 5 — (_1)(k+1)(n+1)+1 *d*

for any k-form on 0M,.
For ae Q" 1(0My) and f e QX (0M,), let’s define

(do, ) == J do Axf.

oM,

Then clearly
(do, ) = (2,0f).

The determination of the coderivative 6 on dM, allows one to define the
Laplace Beltrami operator, A = dd +dd on a lightlike hypersurface. Then we
may obtain harmonic forms and de Rham decomposition on oM, if M is
Lorentzian manifolds.

As an example, let M be a Monge hypersuface of Rf given by an equation
x* = F(x!,x%,x%) with immersion:

(', u? ) — (F(u!,u?, u®), ut u? u?)
such that
(F)? + (F))* + (F)* =1
Then TM* = Rad(TM) is spanned by

oF
ox*’

0 N O /
fzw-F;Fa% where F, =

Let’s assume that 1 — (F2’)2 # 0 then S(TM) is spanned by the orthonormal
system {V7, V2} with

1 0 0
= =  (F - _F_—_
" <1—<F5>2>‘/2{ Tt IW}
1 !l 0 n2 0 1! 0
Vs = TTEE {—F1F2 St (= (B)) 55— FF M}.
2
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If we set
0" = F{ du' + F} du® + F{ du®,
1
r_ - / 1 _ 3
0 = - (le)z)l/z {F; du’ — F| du’},
and
1
0" = 2 1/2 {—F/F] du' + (1 — (F})?) du® — F{F} du’},

then the volume element of M, is
0° A O" AO* = du A du® A du?
and
x00 =x1=0"A0%, x0' = —0° A x*0" = —0° A O,
x0? = —0° Ax*0% = 0° A 0"
So, this volume element is intrinsic (see also [6], p. 148).

Thus if X is a smooth vector field on (M, g) with compact support, we prove
in section 2, corollary 1 that

(12) JM&WXMW—L%meM

whenever the boundary 0M = dM, is degenerate. Note that here # is the area
element on the boundary and ¢ is an isotropic vector field.
Formula (12) is a new result on divergence theorem for vector fields.
For instance, consider the cylinder M = S' x [~1,1] with Lorentzian metric

1
g =31d0@di+di @ do] + (1~ 1) dO @ dO
where ¢ € [—1,1] and 0 is the polar coordinate of S'.
The boundary oM = (S' x {1})U(S! x {—1}) is degenerate, i.e dM = dM,
0 1
Let X = = and v, = -3 dO ndt, then [, div Xv, = 27.

0
We have 7, =5 df and ¢ =75 S° that

j MK®%=J guxm—j 9(X, o = 21
M STx{1} Stx{-1}

Thus our formula (12) still remains valid (compare to the counterexample
in [9]).
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2. Divergence theorem on manifolds with degenerate boundary

Consider a symmetric (0,2)-tensor field 7 on a n-dimensional semi-
Riemannian manifold (M,g). The divergence of T is defined as the 1-form
div(T) given by

div T(X) = ¢"V,, T(X,¢), VX eT(TM)

where B = {e;,;i =1,...,n} is an orthonormal frame of parallel vector fields and
V is the Levi-Civita connection on (M,g).

Let’s denote # the index uppering operator for ¢ and let T'(e;)* be the vector
field associated, by duality, to the 1-form T'(e;) defined by T'(e;)(X) = T(e;, X)

Lemma 1. Let T be a symmetric (0,2)-tensor on (M,g). Then

(13) div T(X) = div[(TX)"] - %g(LXg, T)

Proof. Let B={e;, j=1,...,n} be an orthonormal frame of parallel vector
fields and ¢ the metric on M.

div T(X) = g"(V,, T)(X,¢)
= g [ ( ( j)) (Vé’/X e/) - T(Xa Vé’kej)
=gV (T(X,¢)) — 9" g(Ve, X, )T (e}, )

Ljk=1,....n

. ; 1
div T(X) = gkjvé’k(T(Xa e/)) - Eg(T»LXg)

. 1
= gkjvekg((TX)#,e_/) - Eg(T Lxg)
so div[(TX)*] = g"V.g((TX)?,¢;). O

THEOREM 1. Let (M,g) be an oriented n-dimensional semi-Riemannian
manifold with boundary 0M, and T be a symmetric (0,2)-tensor field. —Then

(14) JM div T(X)v, = —%JM 9(T,Lxg)vy + J T(X,N)n,

oM,

- LM, T(X,N_)n_ +J T(X,&)n,

oMy

where 1, = in, vy, 1y = inyvy and & is such that g(&,No) =1 and g(&,&) =0 and X
is a smooth vector field with compact support on M.

Two intermediary results are necessary before we can prove Theorem 1.
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LemmA 2. Let (M,g) be an oriented n-dimensional semi-Riemannian man-
ifold with boundary oM. If X is a smooth vector field with compact support on
M, then

(15) JM div(X)y, = JM d(trace(X ® v,)) = J trace(X ® v,)

oM

Proof. Let B={e;,i=1,...,n} be an orthonormal frame which can
possibly have isotropic vector field on M [2]. Then we have

div(X)v, = Lyv,
= diyv,
= d(gkjg(Xa ek)iefvg)
where k,j=1,...,n, X = g¥g(X,ex)e; and g/ is the (k, j)-entry of the inverse
g ! of g. Thus
div(X)v, = d(trace(X ® vy)).
Using Stokes’ theorem yields the proof. O

LemMa 3. Let (M,g) be an n-dimensional oriented semi-Riemannian man-
ifold with degenerate boundary OMy. Let vy be the volume element of (M,g),
Then iy,vy is the area element of 0My at each point of 0M,.

Proof. Let’s consider the pseudo-orthonormal coordinate system {Np,¢,
Vi,o..,Vaa} on M and its dual {5,90,01,...,9”72}, where é(No)zl and
0% (V;) =9y We choose {V1,..., V, 2} as an orthonormal coordinate system of
S(ToMy). We have the volume element on (M,g):

Uy =0n0" A0 A A 0"
since
0" =0* A A 0"
Thus
ingthy = 0O AO A A0 =0 A0 AX40".
This equality is independent of the choice of S(7T0M,). O

Proof of Theorem 1. When integrating relation (13), we have

g(T,Lxg)v, + J trace[(TX)” ® v,).
oM

JM div(T)Xv, = —%J

M
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trace((TX)" ® Vg)jom = trace((TX)” ® Vg)jom, + trace((TX)" ® Vg)jom
+ trace((TX)” ® Ug)‘éMO

= g((TX)*, Nojn, — g(TX)", N, + g((TX)7, Eng
=T(X,No)n, —T(X,N_)n_+ T (X, ).

We can then use the relation (15), to conclude the proof. O

The trace operator is independent of the choice of coordinates. Therefore in
the case of degenerate boundary, the divergence theorem is independent of the
choice of screen distribution.

Theorem 1 can be used to generalize Unal’s results in [9] as follows

THEOREM 2. Let (M,g) be an oriented semi-Riemannian manifold with the
boundary oM. If X is a smooth vector field with compact support on M, then

g(X,N_)n_ +J g(X, E)ny

J divag:J g(X,N+)17+7J
M oM, oMy

Moreover, if one of the following conditions holds.
1. My is a set of null measure in OM
2. X is tangent to OM at any point of 0M,,
then

oM_

(16) jM<dhzxvvg::J;M4g<xzﬁu>n+-—J;Mg(szf>n

Proof. Let’s T =g, then div(7T) =0 and ¢(g, Lxg) = 2 div(X).
One can then use theorem 1 to conclude the proof. O

COROLLARY 1. Let (M,g) be an oriented semi-Riemannian manifold, OM its
boundary and X a smooth vector field with compact support on M. If one of the
following conditions holds,

* X is tangent to OM at the points of OM, and 0M _,

* 6M+ =0M_ = @,
then

(17) .mem%=Lme®%

Example 1. Let (M,g) be an Euclidean 3-dimensional Lorentzian manifold
such that the boundary dM is defined by x = F(y,z) where F is a smooth
function such that

oF

F/2 F/2:1 F/:_.
(F)Y +(F) =1, F=%
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Then there exists a submersion f such that f~'(0) = 0M, where f is given by
(va,z) = f(x7y72) =X F(y7Z)’
and we have
df = —dx+F, dy + F/ dz #0.

Clearly 0M is degenerate (0M = 0My) and we can construct a Duggal-
Bejancu basis by

The area element on the boundary is given by
n=i" {%(dy/\derFyf dx ndz — F] dx/\dy)] = du' A du®

where i is the immersion
i(u',u?) = (F(u',u?),u',u?).

If X is a smooth vector field, X = (X', X2, X3) with compact support on M, we
have

JM div(X)v, = | d(X'dynadz)+ J

d(X? dz A dx) J d(X3 dx A dy)
JM M

M

= (X' dy Adz + X? dz Adx + X3 dx Ady)
oMy

=| (X'—X*F, - X’F.)oidu'di?
oM,

= g(X,&n
oM,

By theorem 2 we can extend a Stepanov result 8 to degenerate boundary
case.

Let X be a smooth vector field on M and we put Ay = —VX. Then X is
said to be special concircular vector field with compact support, if

1
AyY = —VyX = —<— div X) Y, VYeDl(TM).
n

THEOREM 3. Let (M,g) be an n-dimensional oriented Lorentzian manifold
with degenerate boundary. If & is a conformal isotropic vector field with compact
support such that Ric(&, &) <0 then & is parallel.

Moreover there is no conformal isotropic vector field with compact support,
which satisfies the condition Ric(¢,¢) < 0.
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The following lemma is necessary for the proof of Theorem 3

LemMmA 4. Let M and 0M be as in theorem 3. For X e ['(TM) with
compact support and tangent to 0M, we have

J {Ric(X,X) + trace(4y)* — (trace Ay)*}v, = J B(X,X)n
M oM
where B is the second fundamental form of OM.

Proof. The proof comes from the following classic relation
(18) div(W) = Ric(X, X) + trace(Ay)* — (trace Ay)*
where W = trace(dy) — AxX.

Applying divergence theorem 2 leads to

J div W = J Ric(X, X) + trace(Ay)” — (trace Ax)’v,
M M

= J trace( W ® vy).
oM

But we also have
g(W7N) = g(trace(AX) —A)(X)7N) = B(XaX)a

so the proof is completed. O

Proof of theorem 3. Let X = £ be an isotropic vector field, then B(¢, &) = 0.
Since ¢ is a conformal vector field

trace(4:)* — (trace 4:)* < 0.

By lemma 4 we have a contradiction to the condition Ric(¢, &) < 0. O

THEOREM 4. Let (M,g) be an n-dimensional oriented semi-Riemannian

manifold with boundary. If X is special concircular smooth vector field of constant
norm on M and transverse to 0M at every point of 0M, then

J Ric(X, X)v, =0
M

Proof. Let X e I'(TM) be a special concircular vector field with compact
support and transverse to dM. Using relation (18), we have

(19) JM{Ric(X, X) - % (div X)z}vg =" - ! J f(div X)y

oM

where X =Z'+ fN, Z'eT'(0M) and f is a constant function on 0M. As
f = constant, then
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J fdivX)y=0
oM
concluding the proof. O
We end this part by proving the following theorem:

THEOREM 5. There is no gradient non degenerate Killing vector field in a
semi-Riemannian, Einstein Ricci non flat compact manifold without boundary.

Proof. For the Hessian of a function ¢, we have [3]

J div HY(X) = J (—d(Ad)(X) + Ric(V4, X))u,

M

1
:—J Q(H¢7LXQ)U9+J H¢(X7N+)’7+
2 ) oM,

- J HYX,N )y +j HYX,Eno
oM oMo

and in particular if X is a Killing vector field and 0M = §, then

J div H*(X) =0
M

SO
|| (a0 + Rictvg, 3, =0
moreover
| cawpo =o
M
Thus

J Ric(V¢, X)v, = 0. O
M

As an immediate consequence, we have
COROLLARY 2. On a connected semi-Riemannian Einstein Ricci non flat
compact manifold M without boundary, harmonic functions are constant or have

degenerate gradient vector fields.

Proof. Let ¢ be a harmonic function and X = V¢. Theorem 5 gives

J Ric(V¢, V) = 0
M
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SO

| 1vor o

Since M is Ricci non flat, we conclude V¢ =0 and ¢ is constant by the con-
nectedness of M or |V¢\2 =0 and V¢ is degenerate. O

3. Electromagnetic tensor fields on lightlike hypersurface

In this part, we apply the Hodge star operator to a class of induced elec-
tromagnetic tensor fields to obtain Maxwell equations which will extend the result
earlier obtained by Duggal-Bejancu [2, chapter §].

Let (M,g,F) be a time oriented 4-dimensional electromagnetic spacetime
manifold with Lorentz metric g of signature (—,+,+,+) and an electromagnetic
tensor field F. We define a tensor field F = (F?), of type (1,1),

b ~bc 7
F; = (Fca

a

where a,b,c e {0,...,3}
_ 1 _
K= 3 (FpF® 4 iF  F*)

There are two classes of electromagnetic tensor fields by the Ruse-Synge clas-
sification. Whether F is non-singular or singular depending on K # 0 or K = 0.
It is known that K can be expressed in terms of Maxwell scalars [2, p. 238] and

K =2(¢7 ~ dot2)

Let (M,g,S(TM)) be a lightlike hypersurface of (M,g,F’). Hence relation (3)
becomes

(20) TM|, = TM @ te(TM).
We say that (M,g,S(TM)) is electromagnetic invariant if
F'(X)eI(TM) VX eDl(TM).

Now let f be the restriction of F’ on M as an (1,1)-tensor field on M.
Then f is a skew symmetric (1, 1)-tensor field with respect to the induced
degenerate metric g (see [2, p. 241] theorem 21). If

(21) F(X,Y)=g(/(X),¥) VX,YeT(TM),

F is an induced electromagnetic tensor field on (M, g,S(TM)) and we call
(M,g,S(TM),F) an electromagnetic invariant lightlike hypersurface.
The tensor field F is singular (resp. non singular) if F is singular (resp. non
singular). In terms of Maxwell scalars, one has K = 2¢7, (see [2, p. 242]).
In this text we only deal with the class of induced non-singular electro-
magnetic tensor fields. However, the result is similar to that of singular ones.
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Let {& V1, V>2} be a pseudo-orthonormal coordinate system of M with its
dual {0°,0',0°}. Then a non-singular induced electromagnetic tensor field is
expressed as follows

(22) F =1Im(¢,)0" A 0*
where (Im(¢,)) is the imaginary part of ¢;.

THEOREM 6. Let (M,g,S(TM),F) be an electromagnetic invariant lightlike
hypersurface of 4-dimensional spacetime manifold (M,g,F), where F is a non-
singular electromagnetic tensor field on M and F is an induced electromagnetic
tensor field on M. Assume that the screen distribution S(TM) is integrable and

that an induced connection V on M is a metric connection. Then
d*F=0 (©uF=0)if and only if V1.(Im(¢;)) =0 and V,.(Im(¢,)) = 0.
where Hodge star like operator x is defined by (7)

Proof. By theorem 3.1 [2, p. 248], for any X € ['(TM), there exists a
smooth function x(X) such that
(1) Vy0' = x(X)0?
(2) Vx0? = —k(X)0"
(3) Vx0° =0
Using (22) we have
*F = Im(¢,)0°

and
d+F = d(Im(¢,))0°.
Therefore

dxF =04 V,.(Im(¢;)) =0 and 75.(Im(¢,)) = 0. O

COROLLARY 3. For Im(¢,) = constant, the Maxwell equations obtained in M
for the corresponding induced electromagnetic tensor field are

dF =0

(23)
d+*F=0 (0F =0)
The condition ¢, = constant is satisfied in the class of homogeneous non
singular electromagnetic spacetime.
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