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ON HYPERSURFACES INTO RIEMANNIAN SPACES OF
CONSTANT SECTIONAL CURVATURE

ANTONIO CAMINHA

Abstract

In this paper, we compute L,(S,) for an isometric immersion x : M" — M*!, from
an n-dimensional Riemannian manifold M” into an (n+ 1)-dimensional Riemannian
manifold /l7[("“, of constant sectional curvature c¢. Here, by L, we mean the linea-
rization of the second order differential operator associated to the (r + 1)-th elementary
symmetric function S,;; on the eigenvalues of the second fundamental form A4 of
x. The resulting formulae are then applied to study how the behavior of higher-order
mean curvature functions of M” influence its geometry.

1. Introduction

In a seminal paper ([15]), J. Simons computed the Laplacian of the second
fundamental form of isometric immersions in spheres, applying the result to get
an integral inequality to be satisfied by the squared norm of the second fun-
damental form A of a minimal oriented hypersurface of the unit sphere S"*'.
More specifically, he proved that

|| 1aron 147y am <o,
M

what immediately gives a gap theorem concerning the size of the squared norm of
A for minimal hypersurfaces of the sphere. In fact, if 0 < |4|*> < n for such an
immersion, then one has |4|* =0 or n.

Followmg Simons’ approach and working independently, S. S. Chern, M. do
Carmo and S. Kobayashi in [6], and H. B. Lawson in [12], characterized minimal
Clifford tori S”l X S”Z, n+ny=mn, rp =\/ni/n, r, = \/nz/n as the only closed
minimal hypersurfaces of the unit sphere S"*! for which |A4|* =n. The natural
immediate generalization, namely, the study of rigidity properties of Constant
mean curvature hypersurfaces of the sphere under appropriate constraints on |A|

is due to H. Alencar and M. do Carmo, in [1], still working along the same 11nes
of [15].
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A slight variation of this general method for investigating rigidity properties
of hypersurfaces in Riemannian spaces of constant sectional curvature appeared
in a work of H. Alencar, M. do Carmo and A. G. Colares (see [2]), where the
authors obtained a formula for L,(S;) under the additional hypothesis that M
had scalar curvature identically equal to that of the ambient space. This formula
was later used by H. Alencar, M. do Carmo and W. Santos (see [3]) to prove a
gap theorem for compact orientable hypersurfaces of the unit sphere having
scalar curvature equal to 1. Here, x: M" — M"*! is an n-dimensional oriented
hypersurface of a Riemannian space M, of constant sectional curvature ¢, and
A denotes the second fundamental form of x with respect to a unit normal vector
field N globally defined on M. For 0 <r <n, S, is the r-th elementary sym-
metric function on the eigenvalues of 4, and P, : TM — TM is the r-th Newton
transformation on M, recursively defined by Py =1 and P, =S,I — AP, 1; L,
is the second order differential operator on M, given for a smooth f: M — R
by

L.(f)=tr(P, Hess f)

Observe that Ly = A, the Laplacian of M.

In this paper, we compute L,(S,) for isometric immersions of Riemannian
manifolds M as hypersurfaces of Riemannian ambient spaces M, of constant
sectional curvature, without additional restrictions (corollary 3.3). We then apply
this formula to study how the behavior of higher order mean curvature func-
tions of M influence its shape. We start generalizing (theorem 4.3) the above-
mentioned gap theorem of Alencar and do Carmo for hypersurfaces of the unit
sphere having constant mean or scalar curvature (not necessarily equal to 1).
Then we prove a result (theorem 4.5) generalizing Simons’ integral inequality for
r-minimal hypersurfaces of the sphere. The above-mentioned results of Chern,
do Carmo, Kobayashi and Lawson, as well as a theorem of J. Hounie and M. L.
Leite, allows us to characterize (r— 1)-minimal Clifford tori S x S, with
3 s . .
ri +r; =1 and n; + ny = n, as the only closed oriented hypersurfaces of the unit
sphere S™! for which S, =0, S,.; #0 and

tr(A2P, ) tr(Py) = tr(A%P )"

We next apply the formula for L,(S,), together with a theorem of J. L. Barbosa
and A. G. Colares giving sufficient conditions for the ellipticity of the operator
L,, to characterize, in theorem 4.9, geodesic hyperspheres as the only closed
orientable hypersurfaces of the standard Riemannian space forms having one
constant nonzero higher order mean curvature. Then we show, for the case of
hypersurfaces of the unit sphere, how much one can relax the condition of M
being contained in an open hemisphere (necessary to apply the theorem of
Barbosa and Colares), obtaining a result (theorem 4.11) that also works as a
sort of analogue to the gap theorem of Alencar and do Carmo for general
1 <r <n.We finish our discussion with some remarks on noncompact complete
hypersurfaces of the Euclidean space R""!, giving, in theorem 4.12, a charac-
terization of r-cilinders S" x R"™".
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This paper is organized in the following manner: in section 2 we establish
some notation and recall several results needed for further developments. Then,
in section 3, we obtain the formula for L,(S,) as a corollary of the more general
computation of L,(S,). Finally, in section 4, we state and prove the applications
referred to in the above paragraph.

2. Preliminaries

Unless stated otherwise, we mean by M", or simply M, an n-dimensional
orientable Riemannian manifold, with Riemannian metric g = {, ), Levi-Civita
connection V and curvature tensor R; Z(M) denotes the commutative ring of
smooth real functions on M.

2.1. Tensor fields. Let ¢ = <(T-,-> denote an arbitrary 2-tensor on M, and V¢
and V?¢ =V(V¢) be its first and second covariant differentials. For each
VeZ (M), the recipe (Vy¢)(X,Y) = (V$)(X,Y,V) defines another 2-tensor on
M, called the covariant derivative of ¢ in the direction of V. If VT denotes the
linear operator associated to Vy¢, one has

(Vi T)(X) = Vy(TX) = T(VyX).

Let {¢;} be a moving frame on an open neighborhood U = M, with coframe
{o;} and connection 1-forms w;. Letting ¢;, ¢;; and ¢, denote the components
of ¢, V¢ e V¢ with respect to {¢;}, the following relations take place:

(1 D b =ddy = $yon =Y prwp
k k k
(2) Z ¢ij/cla)/ = d%’k - Z ¢[/‘kwi1 - Z Pinewji — Z ¢ij/0)k1 .
] I I ]

The proof of the following lemma can be found in [5].

Lemma 2.1.  Let ¢ be a 2-tensor on M. With respect to an arbitrary moving
frame {er} on M, and letting Ry = R(e;, e, e, e), one has

Pijs — Pije = — Z Gy Rirkt — Z bR

The following remarks on components of tensors with respect to a given
moving frame will be used in the next section.

Remark 2.2. A moving frame {e;} on (an open neighborhood of) M is
called geodesic at p when (V,.e;)(p) =0 for all 1 <i,k <n, which is in turn
equivalent to w;(p) =0 for all 1 <i,j <n. The usual way to build frames on
M, geodesic at pe M, is by fixing a normal neighborhood of p and parallel
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transporting the elements of an arbitrary orthonormal basis of 7,M along the
geodesic rays issuing from p. Whenever we speak of a frame on M, geodesic at
some point p e M, we will always assume that it has been built this way.

Remark 2.3. Note also that, for fixed 1 <k <n, the above recipe gives
(Ve€i)(q) =0, for every 1 <i<n and every point ¢ along the geodesic ray
issuing from p with velocity vector e,. Therefore, w;(q)(er) = 0 for all such 7, j
and ¢, and setting ¢;., = ex(¢;) and ¢ = ex(ex(4;)) one has, along the
geodesic ray issuing from p with velocity vector ey,

(3) ¢ijk = ¢ij;k and ¢ijkk = ¢ij;kk'

The first part of (3) follows from (1), while the second one follows from
substituting the first into (2).

Remark 2.4. A 2-tensor ¢ on M is Codazzi when ¢, = ¢, for all
1 <i,j,k <n, and with respect to any moving frame {e;} on M. If this is the
case, changing indices j and k in (2) gives

(4) ¢ijk1 = ¢ikj17

for all 1 <i,j, k,I<n.

A 2-tensor ¢ on M is symmetric if ¢(X,Y) =¢(Y,X) for all X, Y € (M),
or equivalently, when its associated linear operator T is self-adjoint. If X e
Z (M) then Vy¢ is symmetric whenever ¢ is symmetric, so that Vy 7 is self-adjoint
whenever T is self-adjoint. With respect to an arbitrary moving frame {e;} on
M, the symmetry of ¢ is equivalent to ¢, = ¢, for all 1 <i,j <n. We define
the squared norm of a symmetric 2-tensor ¢ on M by setting

2 2 2
I9° = u(T%) =) _ 47,
iJ
where tr denotes the trace of its associated linear operator 7.

2.2. Isometric immersions. Let x : M" — M""! denote an isometric immersion
from M" into an (n+ 1)-dimensional, oriented Riemannian manifold M"*!.
Also, suppose M oriented by the choice of a unit normal vetor field N, and
denote by A4 the corresponding second fundamental form. When M"*! has
constant sectional curvature ¢, we recall Gauss’ and Codazzi’s equations: for
W.X,Y,ZeZ(M), one has

+ [KAW, Y YCAX, Z) — CAW, Z){AX, Y )]

and
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(6) (VyA)Y = (VyA)X.

Note that in this case Codazzi’s equation (6) is exactly what it means for the
second fundamental form 4 to be a Codazzi tensor.

Associated to the second fundamental form A of a general isometric im-
mersion x : M" — M"*! one has n invariants S,, 1 < r < n, given by the equality

det(tf — A) = > (=1 Set"*,

k=0

where Sy =1 by definition. If pe M and {e;} is a basis of 7,M formed by
eigenvectors of A,, with corresponding eigenvalues {A;}, one immediately sees
that

Sy = O-r(;bh s a)"n>7

where o, € R[X],...,X,] is the r-th elementary symmetric polynomial on the
indeterminates Xj,...,X,. In particular,
|4]* + 28, = S2.

The following lemma appears, in a slightly different form, in [2].

LemMA 2.5. Let x:M" — M"*' be an isometric immersion. If S, is
constant on M, then
) SEIVA® = VS ) = 28,v4].
In particular, if Sy >0 then |VA|* — |VS;|* = 0,

Note also that if R denotes the scalar curvature of M, and M has constant
sectional curvature ¢, it follows from Gauss’ equation that

(8) 28, =n(n—1)(R—-¢),
so that S, is constant on M if and only if R is constant on M.
2.3. Newton transformations. For 0 <r <n, one defines the r-th Newton op-

erator P, on M by setting Py = I (the identity operator) and, for 1 <r <n, via
the recursion formulae

P.=S1I—AP._,.
A trivial induction shows that
Po=Sd—S 1A+ S, 24> — -4 (=1)'4",

from where Cayley-Hamilton theorem gives P, = 0. Moreover, since P, is a
polynomial on A4 for every r, it is also self-adjoint and commutes with A.
Therefore, all bases of 7, M diagonalizing A4 at p € M also diagonalize all of the
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P. at p. Hence, denoting by A; the restriction of A to {e;>* < T,M, it is easy to
see that

=
—_

det(t — 4;) Ik
k:O

where

Sk )= > Ay

1<]1< <]1\ <n

With the above notations, one can easily prove that P.e; = S,(A4;)e;, and also

that
(a) Sr(Al) ;“1 l( )
(b) tr(Pr) = Z, 1 Sr(Ai) = (n—7)S,
() w(4P) =55 7S (4) - (r'+ DSy,

(d) tr(A2P) =300, 7S (Ay) = SiSp41 — (r+2)S4a.

Concerning general bases of 7,M, the following lemma is due to R. Reilly
([14]). For the sake of completeness, and also to establish some notation, we
include a short proof of it.

Lemma 2.6. If (h;) denotes the matrix of A with respect to a certain
orthonormal basis § = {ex} of T,M, then the matrix (hj;) of P, with respect to the
same basis is given by

1 n
ro__ Judvd
(9) hi/‘ - Z €y hjlll o -hjrir7
", Jie=1
where
o sgn(a), if the iy are pairwise distinct and
el = o = (Jx) is a permutation of them;
0, else.

Proof. Recall that P, =37 (=1)/S,_;47, with the coefficients S, ; not

depending on the chosen basis of 7,M. Therefore, it suffices to verify the above
formula when f diagonalizes 4 at p, with, say, Aey = Arex for 1 <k <n. In
this case, the right hand side of (9) sucessively equals

n

1
Jreed i
0 § : €. 116111' 5]rl;;” Y

ks Jie=1
l} : llll llrlli ;"ir = 51] § j'l‘l e )“ir
r . .
ik #1i 11§~;§1,.
i #i

= 5!']'S,.(Ai) = <P,~€i, €j> = hl’] I:‘
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We use the above lemma to compute first derivatives of /;;:
LemMa 2.7. Let {ex} be a moving frame on a neighborhood of pe M,

diagonalizing the second fundamental form A at p, with Ae, = Iger for 1<
k<n Then, for 1 <i,j k<n,i#j, one has at p

(10) ex(hy) = Z Se—1(Air) i
I#i

and

(1) er(hy) = =S (Ay)hijx,

where A;; denotes the restriction of A to {ei,e;}" < T,M.

Proof. Forgetting for the moment the restriction of being i # j, it follows
from (9) that

r 1 - r
(12) ek(hif) - ﬁ Z 1/11 l/l/h]lll kh]ziz e hjrir +oe
ks Ji=1

]1 JrJ
| E €y iy h]lll o 'hjr—lir—lhjrir;k'

ik Jk=1
At p, the first summand on the right hand side equals
1 n
(13) a Z zjll zjrzjélzlz 5irjrhjlili,k)"’i2 T ir | Z zjllzlzz ll’l]h]]llyk;°i2 : ";“l}-'

rl £
iy Jk=1 ix, 1=1

Now, consider two separate cases: for i = j,

1 & iyeeeiyd 7
(13) :_' Z 611111-;2 t,rhllﬁk;tfz”'/bl}

r. .~
ir, 1=1
_ 1 llh Irlh 1. i
*7' lll') Iyl ivi kA A
1<ixr<n
- g E hiichiy - -+ i, E Sr—1(Ai)hi k-
I;éz < <iy l;éi
i #i,1

Since the same is true for all other summands in (12), one gets (10). For i # j, it

follows from the definition of €2/ that
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1 175
_ Ru 1
__IZ lzll l]k/“iz"'j'ir
ix #1,
1

= Z hijediy -+ A, —_; rfl(Aij)hij:,ka

lk#l/
I <<l

so that (11) now follows from (12). O

In the sequel, we will need the following proposition. Item (a) is essentially
the content of lemma 1.1 and equation (1.3) in [10], while item (b) is quoted as
proposition 1.5 in [11].

PROPOSITION 2.8. Let x:M" — M"' be an isometric immersion, and
l<r<n peM.

(@) If S.(p) =0, then P,_ is semi-definite at p.

(b) If S:(p) =0 and S,11(p) #0, then P._y is definite at p.

Finally, for 0 <r <mn,let L, : 2(M) — 2(M) be the second order differential
operator given by

L.(f)=tr(P, Hess f).

When M"*! has constant seccional curvature, it was proved by H. Rosenberg in
[13] that

L,(f) = div(P.Vf),

where div stands for the divergence of a vector field on M. Thus, for
f,9€ 2(M), it follows from the properties of the divergence of vector fields that

L (/9) = fLr(9) + gL (f) + 2{P.Vf, Vg).

3. The formula for L,.(S,)

As in the previous section, x : M" — M+ denotes an isometric immersion
between oriented Riemannian manifolds, and 4 denotes the corresponding second
fundamental form.

PrROPOSITION 3.1. Let x:M" — M"' be an isometric immersion, and
0<qg<n O<r<n If{e} is any orthonormal frame on M, then

(14) Ly(Sy) = Li—1(Sg41)
+Ztr{ VekPr l) V—I(V@kpq)](vt’kA)}

+ c[tr(AP,_1) tr(Py) — tr(Pr_y) tr(AP,))]
+tr(A%P,y) tr(AP,) — tr(AP,_y) tr(A°P,).
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Proof. First of all, observe that the validity of (14) does not depend on
the particular chosen frame {e;}. So, let pe M and {e;} be a moving frame
on a neighborhood U < M of p, diagonalizing 4 at p, with Ae; = Arer for
1 <k <n. Denote respectively by &; and h/; the components of 4 and P, with
respect to such a frame. It follows from equation (9) that

(15) ii ' Z zl l,l /lll...hjrir‘

i, k=1

=7 Z sgn(a)hji, -+ hy;,
Lt ho= (i)

Z Z sgn(o ]lll o ‘hj,i,.

I<--<i, o=
i #1

= Z A(Ci1: .. .,Cl',_),

i1 <<y
i #Q

where by A(c;,...,c;,) we mean the r x r determinant minor of 4, obtained by
choosing lines and columns of A4 with indices i; < --- < i.. Hence,

Sy =— A(ciyy ... 5¢)
i 11< <y
Iy #1
Z A(Cl'l IR Cir)
i\ <<y
for once one has chosen 1 <ij <--- < i, <n, there will be left n — r possible
choices for i in {l,...,n}. Since determinants are multilinear functions of their

columns, one gets

(16) er(Sy) = Z [A(Ciyiker Ciys - - Ci) F oo+ A(Ciyy -5 Ciy s Cii)]

I <--<ip

on U. At p, one has

hiik O - 0
hizil;k A‘iz o O .
A(Cflzkaciza-'-vciy) = . . . . :hilfli,kifz"'/“h?
hi,-il:k 0 e A'ir
and analogously for the remaining summands, so that
(17) ex(Sy) = Z (hi]il§kii2 i Ay A By )

i <<y

i hii; kSrfl (A
i=1
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The last equality follows from the fact that, for fixed 1 <i < n, h;.; appears in
the above sum together with all products 4; ---4; ,, with ji,..., j—1 #i (note
that the above formula for e¢;(S,) could have been obtained directly from (10).
This alternative approach was chosen to ease, in what comes next, the com-
putation of second derivatives).

To compute second derivatives, suppose further {e;} geodesic at p. It
follows from (16) that

ek(ek(Sr)) = Z [A(cil;kka c[za sy Ci,) +--- A(Cila RN} Ci,v,17cir;/(k)}

i <<y
+ E E A(Ch;~~~7CiAv;k;~~'7Ci,;k;~~~7ci,);
SFEL <<y
and one gets at p

ex(ex(Sy)) = Z (haiyrachiy - Aiy -+ A Ai i)

i <-<iy

+ > (grhiige = higigihigg )2 - Ay - A A
i1 <<y
SF#L

Grouping equal occurrences of (1 — 2)-tuples ij < --- < i,_» in the last expression
above, ex(ex(S,)) equals

Z Z hii;kk)vi] . /Lz, T+ Z Z ii; kh/ ;k]) ';“I',<727

I <-<i—y i#j 11< <l, 2
e #i i #1,J

and finally

)):ZSH ukkJFZS’ 2(Ay) i ke — i)

i#j

Therefore, we get at p

(18)  L,(S,) = tr(P, Hess(S Zs (Ax)er(ex(S)))

=D SRS (A ik + D Sq(AR)Sr—2(Ay) i sk — hi ]
ik i,j.k
i;ﬁj
= S 1 (A)Ly(hi) + > Sy(Ai)Se—2(Ai) i ik

ij,k
i#]

= Sy(AK)Se 2 (A
ik
i%
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Lemma 2.1, as well as the remarks on commutation of indices in geodesic
frames made right after it, allow one to conclude that, at p,

(19) Z Sy—1(Ai) Lg(hi)
= Z Sr71 (Ai)Sq(Ak)hﬁkk = Z Srfl (Ai)Sl](Ak)hikik
ik

ik

= Z S—1(Ai)Sy(Ar) (i — hirki + hitci — Pickii + Picki)

= S 1(Ai) Sy (Ak) (hikike — hii) + Y Se—1(Ai) Sy (Ar) i
ik ik

== S_1(A4:)Sy(Ar) (hjx Rijirc + hij Rigei) + Z Sy—1(Ai)Sy(Ar) hickii

& ik

L,

= - Z Sr_1(Ai)Sq(Ar) A Rii — Z Sr—1(Ai)Sq(Ag) Ai Rikki
ik

+ > Sy (A Ly ()

K
Now, write » — 1 in place of ¢ and ¢ + 1 in place of r in relation (18) to get

(20) Li—1(Sq+1) ZS Ly 1(hi +ZS’ 1(Ai)Sg-1 (Ay)hicichs
i,j,k
%)
— Z Sl'fl(Ak)Sqfl(Aij)hégk'
ik
i#]

Substituting the result of (19) into (20), we arrive at

(21)  Li-1(Sg+1) ZS; 1 hii +ZS; 1(A41)Sq(Ak) 2x Rikix
+ZS; 1 Ak)/1 Rtkk1+ZS; 1 Ak)Sq l( U) ii; kh//k
i,jk
i#]

= > St (AR Sy 1 (Ay) i

Finally, subtracting (21) from (18) gives

(22)  Ly(S) = Sg+1) Z Sr-1(Ai)Sq(Ar) xRk
- Z S 1 Ak))"llekl + Z S Ak Sr 2( l/)hll kh// k
i,j,k

i#)
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- Z SCI(A/C)SV*Z(AI']‘)hgzj;k - Z S)‘fl(Ak)Sqfl(Aij)hji;khjj;k

ik ik

i% i4)
+ S (k) Syt (Ay)hy .

ik

i#j

In order to better examine the summands at the right hand side of (22), let
I= ZSr 1(Ai)Sq(Ar) M Riire, 1T = ZSr 1(A4:)Sy(Ar)Ai Rikki-

Using Gauss’ equation, one gets

I= Z <R(Prflei7 Pqek)eh Ae/c>
i,k

=Y [(Pres, i) Pyex, Aery — (Pr_re;, Aer Y Pyer, €]
i,k

+ ZKAPFM, eiy{APer, Aeyy — CAP—1e;, Aey y AP ex, €;)]
Pk

c|tr(P_y) tr(4P,) Z(AP, 1ex, Pyery
(AP, ) tr(A7P) = > <A*Prrex, APjer)
k

= c[tr(P_y) tr(AP,) — tr(AP,_| P,)] + tr(AP,_y) tr(4*P,) — tr(4°P,_| P,)

and

II =7 (R(Aer, Pyer)er, Prorery
= ¢ [(Aei exy{Pyex, Pryery — {Aei, Pr_yery{Pyex, ex)]
ik
+ ) [KA%er, ek y{ AP, Pr_re;y — {Aer, Pr_reiy{APyer, er)]

ik

= | (Aex, Py Pyery — tr(AP, ) tr(Py)
k

+ Z (A%er, AP,_1 Pyery — tr(AP,_y) tr(AP,)
%

= c[tr(AP,_1P;) — tr(AP,_) tr(P)] + tr(4° P,y P)) — tr(A*P,_y) tr(AP,).
On the other hand, letting
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I =" Sy(A)S;2(Ap)hi ik = Sy(Ar)Sr-2(Ay)hi
ik ik
i#j i#j

and
1V =" S (AQ)Sy-1 (Ag)hisihizr = Sr-1(Ak) Sy (Aip) i .

ik ij.k
i#] i#]

it follows from lemma 2.7 that, at p,

ZS Ak r2 lj zzkh//k—ZSqu zthSr2 lj jjk

i,j,k J#i
i#j

= Z Sy(A)his ke (™)
ik
and

= Sy (A) S (Ai)hi e = Sy(A)her(hf ).
i,j,k i,j,k
i#j i#j

Adding these two relations, one gets
II =" S,(Ar)ex(h Uk—Ztr 1)(V, A)).
i,j,k
Again from lemma 2.7, one has at p

ZSI lAk ql lj ukh]k—ZSt lAk nkzsql lj jjk

i,jk J#i
i#]

— Z Se—1(Ar)hiker (hl)
ik

and
=Y S () Sy (A = > S (A)hyker (),
ik ij.k
i#j i#j
so that

IV =>" S, 1(Ax)ec(hf) z]k—ztr r—1(Ve, Py) (Ve, 4)].
i,j,k

197

It now suffices to substitute the expressions for I, II, III and IV into (22).

O
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As a byproduct of the computations in the proof of the previous proposition,
we get a proof for the following well-known

LEMMA 3.2. Let x: M" — M be an isometric immersion, and V € ' (M).
Then

(23) tr(P_1(VyA)) = V(S)).
Proof. Let pe M, and {e;} be a moving frame on a neighborhood of

p e M, geodesic at p and such that, at p, Aep = Arer for 1 <k <n. Since
both sides of (23) are linear on V, it suffices to prove that tr(P_1(V, A4)) =

ek(Sr).

tr(PH(vekA)):Z<PH( A)ei, ey = ZSH (Ve A)ei, e

= Z S} 1 zlk

Since the frame is geodesic at p, we have h; = h;, at p, and (17) gives the
desired result. O

CoRrROLLARY 3.3. Let x: M" — ZWC"“ be an isometric immersion, and
0<r<n Then

(24) L.(S:) = Li—1(Sy41) + S:[AS, — L,—1(S))]
+ Z |P"*1V3kA‘2 - |VSr|2
k
+tr(AP,_1){S.(|4)* — en) — [tr(4%P,) — ¢ tr(P,)]}
— tr(A*P_)[tr(A%P,_y) — c tr(Pry))],
where {ey} is any orthonormal frame on M, or still

(25)  Li(Sy) = Lio1(Sa1) + SH[AS, — Loy (SD)] + D [Py Ve, A — VS,
k

225, 1(AD)Se-1 (A7) (2 — 4) K (o),

at pe M, where {ex} is an orthonormal frame on M, diagonalizing A at p, with
Aey = Jxer at p, and oy denotes the 2-dimensional subspace of T,M generated by
e; and e;.

Proof. 1t follows from proposition 3.1 that
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(26) Li(Sr) = Li1(Sr1 +Ztr{ Ve, Pro1) = Pt (Ve Pr)] (Ve A) }

+ c[tr(AP_y) tr(P,) — tr(Pr_y) tr(AP,))

+tr(A%P,_ ) tr(AP,) — tr(AP, ) tr(4%P,),

where {e;} is any orthonormal frame on M. Making

T = [P"(Vekl)r*l) - R’*I(Vekp")](VekA%

we get
Tie = [(Sd — APr—1) (Ve Pro1) — Prot (Ve (Si1 — AP—1)](Ve, 4)
= Sr (Ve Pro1)(Vey A) — APy 1 (Ve Pr-1)(Ve, A)
— Proa[er(S)I — (Ve A)Proy — A(Ve, Prot)] (Ve 4)

= S, (Vo Pro1) (Vi A) — ex(S)) Pr_1 (Vi A) + (P Vi A)?,
so that
(27) > u(T) =S, Ztr 1)V, A)]

k

threk P (V, A)] +Z|P, 1V, A%
Now, lemma 3.2 gives
(28) Ztr ex(S,)Pr_1 (Vi A)] = tr[P._; (Vys,A)] = |VS,|%.

On the other hand, making ¢ = 0 in proposition 3.1 one gets
AS, = L—1(S1) + Ztr{(V‘?kP"*l)(VekA)}
k

= +c[tr(AP_))n — tr(Po_y)S)] + tr(A2P,_1)S| — tr(AP._)|A|?,
so that

Ztr{(VekP,,l)(VekA)} =AS, — L,-,l(Sl) - c[tr(AP,,l)n — tr(P,.,l)Sl]
k

—tr(A2P,1)S) + tr(AP,_)|A]%,
Substituting (28) and (29) into (27), and then into (26), we finally arrive at
L,(S;) = L,—1(Sr+1) + Si[AS, — L,_1(S1)]
+ ) 1P Ve A = VS |? = eS/[tr(AP,_1)n — tr(P,_)Sy]
k
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— S, tr(A%P,_1)S| + S, tr(AP,_,)|A|?
+ c[tr(APy) tr(P,) — tr(Proy) tr(AP,))
+tr(A2P,_1) tr(AP,) — tr(AP,_1) tr(4*P,),

from where (24) easily follows. In order to get (25), let
— tr(AP,_1){S.(|4]* — cn) — [tr(4°P,) — ¢ tr(P,)]}
—tr(A%P,_))[tr(4%P,_)) — ¢ tr(P,_))]

and take a basis {ex} of T,M as in the statement of the corollary. Then

T = Zz, 1 (AD)S (A7 = en) + ) 4iSe 1 (A1) SH(A4)) (¢ = 27)

0]

+Z; 1 (A7) Sr-1(4))(c = 27)

= Zﬂ», 1 S,(|A)* — cn)
+ ins,,,l A7) > (e = D) [SH(Ap) + 4iSe-1(4))].

J

Observing that

(141 = en) + (e = 2))[S(A4)) + ZiS-1(4))

= S,(JA* = en) + Y (e = )Sr + (2 = 2)Sr1(4)]
j

=Y (=)0 = 4)Sia(4p),
J
we get

T = Zs, | A i = 2) (e = 47).

Doing the same computation as the one above, this time changing i by j from the
very beginning, we arrive at

T =S 1(4)S1(Ai) 4 (3 — Xi)(e = 2),
07

so that
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2T = ZSV*I(Ai)Srfl(Aj)(ii — 2)ile = 22) = Zi(c — 2D)]

—ZSr 1 l )(i _)) (C—’_j‘i;tj)?
= ZS, 1(A3)S, 1 (A7) (4 = 24)* K (5),
where Gauss’ equation was used in the last equality. O

COROLLARY 3.4. Let x: M" — M be an isometric immersion. Then
(30) Li(S1) = ASy + {|VA]* — [VSi|*} + tr(4Py)(|A|* — cn)
— Si[tr(4%Py) — ¢ tr(Py)].

4. Applications

From now on, all manifolds are supposed to be connected. Let x;:
Syt — R"™ and x,:8" — R™™ be the standard immersions, with second
(Vector) fundamental forms o and on. If rl +r2 =1 and n=n; +n,, the
product immersion x = (xi,x;) satisfies x(S' x S?) S/, The Clifford torus
Syt x S is the induced immersion S x S”2 S”+1

. . . r r
Orient the Clifford torus via N = (——le,—1x2>, and let (p,q) €S x S2,

r r
{e1,... e, } be any orthonormal basis of 7,S!' and {eyi1,...,¢€,4n,} be any

orthonormal basis of 7,S>. Making E; = (¢;,0) for 1 <i<n, and E; = (0,¢;)
for m +1<i<n +no, We get an orthonormal basis for 7, (S”l X S”Z)
Following [3], the matrix of the second fundamental form 4 = Ay of the Clifford
torus with respect to such a basis is given by

(31) = .
O __lln'_;
r

Therefore, the fundamental principle of counting allows one to immediately
read from this matrix the following expression for the elementary symmetric
function S, on the Clifford torus Sfl‘ X Sf; in the chosen orientation:

(32) S, = Ogg(_l)r*k (’2 ) (rn2k> <Z>k <2>r_k’

with the convention that . ] =0 whenever j > m. Yet another useful relation
J

is true, as asserted by the following
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LemMA 4.1. Let ry, ry be positive real numbers such that r}+r3 =1,
and ny, ny be positive integers, n=nj;+ny Concerning the Clifford torus
Syl x Sl — S™1 one has, for 1 <r<n,

(33) (AP, ){S,(A = n) — [tr(42P,) — ()]}
—tr(A%P,_))[tr(AP,_) — tr(P,_)] = 0.

Proof. Letting A denote the second fundamental form of the standard

. . . r ry .
immersion Sr”l1 X S — S™! with respect to N = (——X1,—xz), it follows from
> r

(31) that "
A= (V—Z—V—I)A.
rn o n
R_n

Therefore, letting y = ., one has for 0 <r <n that
2

r
A’P,— P, = (4> - 1P, =y- AP,
and thus
(AP, ){S:(|A|* = n) = [tr(4°P,) — tx(P,)]}
—tr(A%P,_))[tr(A°P,_) — tr(P,_y)]
= tr(AP,_1){S, tr(4>Py — Py) — tr(A*P, — P,)}
—tr(A°P,_y) tr(A*P,_ — P,_)
= tr(AP,_1)[Syy - tr(APy) — y - tr(AP,)] — tr(A*P,_y)y - tr(AP,_)
=9 tr(AP,_))[S1S, — (r 4+ 1)S,41] — p - tr(A?P,_y) tr(AP,_)
=9 -tr(AP,_ ) tr(A°P,_) — y - tr(A*P,_y) tr(AP,_;) = 0. O]

We now state a slightly modified version of remark 2.1 of [3]:

Lemma 4.2, Let x: M" — MC”“ be an isometric immersion. Assume that
the mean curvature H of M does not change sign, and choose the orientation in
such a way that H > 0.' If the scalar curvature R of M satisfies R > c, then
Py >0. If R>c, then P; > 0.

Proof. 1t follows from equation (8) that R > ¢ if and only if S, > 0.
Denoting by Ay,...,4, the eigenvalues of the second fundamental form A4 of x,
one has

'If M has scalar curvature R > ¢, then S, >0. It then follows from S? =2S, + |4 that
H #0. Therefore, H does not change sign on M.
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(34) S2=|A]> 28, > |A]* = 12,

so that —S; < 4, < S). Hence, Si(4;) =81 — 4 =0, and P; > 0. If, at some
p € M, one has S1(4;) =0, it follows that S} = 4;, and (34) gives S, =0 and
4j =0 for all j#1i. Therefore, S; >0, S»>0= P; > 0. O

Our first result generalizes theorem 3.1 of [3].

THEOREM 4.3. Let x : M" — S"™! be a closed orientable hypersurface of the
sphere, with scalar curvature R > 1. Assume that the mean curvature H of M
does not change sign, and orient M in such a way that H >0. If H or R is
constant on M, and

H[tr(P)) — tr(4%P)] + (n — 1)(R — 1)(J4|* —n) > 0
on M, then

(a) H[tr(P)) — tr(A2P))] + (n — 1)(R—1)(|A]* =n) =0 on M.
(b) M is either totally geodeivic or a Clifford torus S' x S2, with 1+ =1,

2

ny,ny, >0 and = <:—?> > 1 satisfying
(35) ni(m — 1) = 2mnaf +na(ny — 1) = n(n — 1)(R — 1)p.

Proof. 1t follows from (30) that
Li(S1) = ASy + |VA|* — |VS1|> +285(|4]> — n) 4 Si[tr(Py) — tr(A4%Py)],
and upon integration over M we get

0= J {|VA|? = [VS1|* +285:(|4|* — n) + Si[tr(P) — tr(A%P))]} dM.
M

Now, since 2S5, =n(n—1)(R—1) >0, lemma 2.5 gives for the case of
constant R that [VA|* — |[VS;|* > 0. Since this inequality is obviously true when
H is constant, we thus get

(36) VA* = [VSi | =0
and
(37) Htr(P)) — tr(AzPl)] +m-1)(R- 1)(|A|2 —n)=0

on M. Returning to the expression for L;(S), it follows that L;(S;) = AS,.
Therefore, whether H or R is constant, we get AS, =0, and Hopf’s strong
maximum principle assures that S, is constant. This in turn gives us L;(S;) =0
in both cases, and by using |A|2 = S —2S, we arrive at

1
EL1|A|2 = S1L1(S1) + (PIVS1, V81> — Li(S5) = (P\VS1, VS .

Integrating again over M gives [, (P1VS|,VS|> dM =0, and the previous lemma
gives (P\VS1,VS> =0 on M.
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If S, =0 (or, equivalently, R=1) on M, it was proved in [3] that M is
either totally geodesic or a Clifford torus. Otherwise, S» >0 on M, and
lemma 4.2 gives Py >0 on M. Thus, VS; =0 on M, and it follows from
(36) that VA =0. By theorem 4 of [12], M" is a Clifford torus S/ x S}, with
r?+r3=1. Finally, lemma 4.1 assures that

nHtr(P;) — tr(A%P))] 4+ n(n — 1)(R—1)(|4|* —n) =0
on all of these tori, so that the only algebraic condition to be satisfied by M is
28, =n(n—1)(R-1).

It now suffices to refer to expression (32) for S, on Clifford tori. O

Example 4.4. We construct some families of nontrivial Clifford tori having
constant prescribed scalar curvature 1 < R < 2.

When R > 2, every Clifford torus satisfying (35) also satisfies f > 1. In fact,
otherwise one would have from (32) that

n(n—1)(R—=1)=ni(n — 1) = 2mny + na(ny — 1) = (n; — nz)?> —n,
which would give in turn
(n—2)">(n —m)? =n[(n—1)(R—1)+1] > n?,

a contradiction. For 1 < R <2 there are several families of nontrivial tori
(i.e., non-minimal ones) with f = 1 and satisfying (35). For R = 1, for instance,
relation (35) reduces to (n; — n2)2 =n; +ny. Any solution n; =aj, np, =a
(a1 < ap) for this equation generates a whole family n; = ay, ny = agy of
solutions, where the sequence (ax),. satisfies, for k > 1, the recurrence relation
aiy2 =2ar1 —ai + 1. Since a; =1, a; = 3 is one solution, we get in this case
the family

k k+1

() (3
S1/\/§ x Sl/\/i
For R=3/2, (35) reduces to (n; + na)(n; +ny — 1) = 8niny. Once again, any
solution n; = a;, ny = ap for this equation generates a whole family n; = «,
ny = aj4 of solutions, where the sequence (ax),., satisfies, for k > 1, the re-
currence relation ay ., = 6ayy1 —ap + 1. Thus, the solution n; =1, n, =7 gen-
erates a family of Clifford tori having scalar curvature 3/2, the first member of

ce ol 7 9
which is Sl/ﬁxsl/ﬁfasl.

(";‘)4-1‘

f—>Sl

From now on we state and prove our main results, the first of which being a
gap theorem that generalizes theorem 5.3.2 of [15] for (r— 1)-minimal hyper-
surfaces of the sphere:

THEOREM 4.5. If x: M" — S"™ is a closed oriented hypersurface of the
sphere for which S, =0, then



ON HYPERSURFACES INTO RIEMANNIAN SPACES 205
(38) J tr(A*P,_1)[tr(P_y) — tr(A*P,_1)] dM < 0.
M

Moreover, if Syi1 #0 on M, then tr(A*P, 1) tr( 1) > (AZP,,,I)2 on M if and
only if M" is a Clifford torus S,.”I‘ X sz , with rl % 1, m +ny=nand S, =0.

Proof. 1t follows from corollary 3.3 that

(39)  0=Liy(Ses1) + Y [Po1 Vo A|” + tr(A2P,y)[tr(Proy) — tr(A7Poy)].
k

Integrating over M, we get
- J Z |P._1V, A|* dM +J tr(A2P,_1)[tr(P,_) — tr(A%P,_))] dM,
My M

and hence the first part of the theorem.

To the second part, note firstly that, by lemma 4.1, all Clifford tori
S,f’ll X Sr’zz with S, = 0 do satisfy tr(4?P,_;) = tr(P,_;). Conversely, suppose that
tr(A2P._;) tr(P,_) > tr(42P,_)* and S,.; #0 on M. Then

tr(42P,_y) tr(P,_,) = tr(A%P._)?

and
> PV AP =0
k

on M, from where it follows that P,_1V,, 4 =0 for all 1 <k <n. Since S, =0
and S,;1 #0, item (b) of proposition 2.8 assures that P,_; is invertible, so
that V,, 4 =0 for all 1 <k <n, or still V4 =0. Hence, by theorem 4 of [12],
M is an open submanifold of a Clifford torus S x S]?, with r{ +r; =1 and
n+ny=mn. Since M is also closed and connected, it follows that M =
S/ x S |

The nonnegativeness of the sectional curvature Ky of M suffices to
guarantee that tr(42P,_;) tr(P,_) = tr(A%P_ 1) , as asserted by the following

COROLLARY 4.6. Let x: M" — S""! be a closed, oriented hypersurface of the
sphere, with S, =0 for some 1 <r<mn. If Spy1 #0 on M", and M" has sec-
tional curvature Ky >0, then M" is a Clifford torus S;' x S;’z’, with 1} + 13 =1,
n+ny=n and S, =0.

Proof. The proof of corollary 3.3, together with S, = 0, guarantee that, for
PeM,
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tr(A2P,_))[tr(Pr_y) — tr(A%P._)) 225, ; 1(A4) (A — 4) K (o),

where {e;} is a moving frame on M", diagonalizing A at p, with Ae; = Axe; at

p, and o; denotes the 2-dimensional subspace of 7,M generated by e; and e;.
Now, item (b) of proposition 2.8 guarantees that P,_; is definite, so that

S,-1(A4i)S,—1(4;) > 0 for all 1 <i,j<n. Therefore, since Ky >0, we get

ZSr l 1 )(A —)) KM(GU) >0

on M", or still tr(A>P,_)[tr(P,_)) — tr(4?P,_1)] >0 on M". O

Remark 4.7. 1In both results above, condition S,,; # 0 eliminates the pos-
sibility of M" being totally geodesic. Moreover, it follows from (31) that, for all
Clifford tori M =S;' x S, one has

}’2
1+-2, if 1<ij<n
i
Kul(oy) =14 Aidj = 0, if 1<i<m<j<n,
2
L+ i om <ij<n
5

Hence, K, > 0.

For what comes next, we stress that the ellipticity of the operator L, is
equivalent to the positive definiteness of P,. In the proof of the next result we
use proposition 3.2 of [4], stated below.

PROPOSITION 4.8. Let M" be a closed hypersurface of R*™', H™! or of an
open hemisphere of S™', such that S, >0 on M" for some 2 <r <n. Then, for
1<j<r—1, one has Hy >0 and L; elliptic on M".

THEOREM 4.9. Let x: M" — M"™" be a closed orientable hypersurface of
M, where M"" denotes H"™', R"™! or an open hemisphere of 8", according
to whether ¢ = —1,0 or 1. If S, # 0 is constant on M" for some 2 <r < n, and
M" has sectional curvature Ky > 0, then M is a geodesic hypersphere and x is an
embedding.

Proof. First of all, it follows from the hypotheses on M" and M"*! the
existence of a point py € M where all principal curvatures of x have the same
sign. Orienting M" in such a way that these curvatures are all positive at py, we
get S;(po) > 0, and thus S, > 0 on M". On the other hand, since S, is constant
on M", equation (25) gives, at pe M,



ON HYPERSURFACES INTO RIEMANNIAN SPACES 207

(40) 0="L,1(Ss1 — SiS) + Z |P._ 1V, A|*

2ZSV 1(4;) A;)(4i _)”j)zKM(UU‘)7

where {e;} is a moving frame on a neighborhood of p in M, diagonalizing A at
p, with Ade; = ey, and o denotes the 2-dimensional subspace of 7,M generated
by e; and e;.

Now, proposition 4.8 assures the ellipticity of L,_;, so that P,_; is positive
definite, and S,_;(4;) >0 for all 1 <i<n. Therefore,

Z Sr 1 (A0) S (A7) (4 = ) K (o) = 0,

and equation (40) gives

1(Spa1 — S1S)) +Z|P,-71VekAlzso.

from where L, 1(S,+1 —S1S,) <0. Since M is closed and L, ; is elliptic, it
follows from Hopf’s strong max1rnum principle ([8]) that S,.; — S1S, is constant
on M, so that ), |P._V. A| =0. Using again the fact that P._; is positive
definite, we get V,,.4 =0 for 1 <k<n orstill V4 =0on M. Let’s now consider
three separate cases:

For ¢ = 0, theorem 4 of [12] assures that, up to isometries of R"*!, M is an
open subset of Sr”l1 x R", where ny +n, =n and nj,n, > 0. Since M is closed
(i.e., compact whithout boundary), we have M" = S[. The reasoning for ¢ = —1
is essentially the same. Suppose now that M" is contained in an open hemi-
sphere of S""!. It follows again from theorem 4 of [12] that, up to isometries
of ™' M is a Clifford torus S”‘ x S;?, where nj +ny=n and nyj,ny >0.
However, were ny,n, >0, M would not be contained in an open hemisphere of
S"*!. Therefore, min{nl,nz} =0, and the closedness of M gives that it is
isometric to S, for some 0 <7 < 1.

Finally, since in all of the above cases x: M — x(M) is a covering of the
simply connected space x(M), it follows that x is an embedding. O

The hypothesis of M" being contained in an open hemisphere of S"*! in
the above theorem is somewhat restrictive, but can be relaxed once one imposes
conditions on M" sufficient to guarantee the ellipticity of L, for some 1 <
r <n. The following lemma gives one such set of conditions:

LemMAa 4.10. Let M" be an orientable Riemannian manifold, of Ricci
curvature Ric > ¢, and x : M" — M be an isometric immersion. Suppose that
the mean curvature H of M" does not change sign, and orient M in such a way
that H > 0. If S,(p) #0 for some 2 <r <n, then L,y is elliptic at p.
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Proof. Fix pe M and choose a basis {e;} of 7,M, diagonalizing A at p,
with Adey = Arer for 1 <k <n. Gauss’ equation gives

1
lik(Sl — i)

. 1
Ric,(e;) = an(c +Ah) = €+ —

i#k
Then, Ric,(ex) = c and Si(p) =0 give 0 < A, < Si(p) for 1 <k <n. It follows
that all summands of S,(p) are nonnegative, so that S,(p) =0. If S.(p) #0
then S,(p) > 0, and at least r of the A; are positive, so that, at p, at least one of
the summands in S,_;(4;) is positive, for each 1 <i <n. Hence, P,_; is positive
definite at p. O

THEOREM 4.11. Let x: M" — S"™ be a complete orientable hypersurface of
the unit sphere, with Ricci curvature Ric > 1. Assume that the mean curvature H
of M does not change sign, and orient M in such a way that H > 0. If, for some
2<r<mn, S #0 is constant on M, then

(41) tr(AP, ) {S,(|4]* = n) + [tr(P,) — tr(AP,)]}
+tr(A* P )[tr(P,_y) — tr(A4?P,_)] = 0,

o?—’—M2 ifland only if M is a Clifford torus S;' xS[?, with ny +ny=n, and
=1

Proof: When M is a Clifford torus, it follows from lemma 4.1 that (41)
becomes an equality. Conversely, suppose that (41) is valid on M. Since S, is
constant on M, one has once more

L, (S,~+1 - S SI) + Z |R‘—1V€kA|2 <0.
k

The condition on the Ricci curvature of M assures, via Bonnet-Myers thorem,
that M is closed. On the other hand, since S, # 0 on M, the preceeding lemma
assures the ellipticity of L,_;, and from this point on the reasoning is identical to
that of the previous result. O

Concerning the non-compact case, we have the following result:

THEOREM 4.12. Let x: M" — R"™™ be a complete, non-compact, oriented
hypersurface of the Euclidean space, with sectional curvature Ky > 0. If, for
some 2<r<mn, S,#0 is constant on M, and S|S, — S,y attains a global
maximum on M, then M is isometric to S;' x R™ for some rA >0, where
n +ny=n and r <ny <n. In particular, if S,;1 =0 on M and H attains a
global maximum on M, then M is isometric to S| x R"™', for some ri > 0.

Proof. Since Ky >0, it follows that M has Ricci curvature Ric > 0.
Moreover, letting 4;,...,4, denote the eigenvalues of the second fundamental
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form 4 of M, it also follows from K,; > 0 that, at each point of M, one has

either Ay,...,4, >0 or Ay,...,4, <0. Therefore, S| does not change sign on
M, for otherwise there would exist pe M such that S;(p) =0, and hence
Ay =---=21,=0 at p; this would contradict S,(p) # 0. The ellipticity of L,_;

now follows from lemma 4.10.
Using equation (25), we get at p € M and for an appropriate frame {e;} that

Lr—l(SISr - Sr+l) = Z ‘P—IVGI(A|2
k

+ %Z Sr-1 (Ai)Srfl (Aj)(;bi - ;Lj)2KM(Gij).

Since both terms on the right hand side are nonnegative, it follows that
L, 1(S1S, — S,11) =0. The hypothesis of S;S, — S,;1 attaining a global max-
imum on M guarantees, via Hopf’s strong maximum principle, that S;S, — S,
is constant on M. It then follows from the above relation that

Z |R‘—1V(’kA|2 =0
k

on M, and thus VA =0 on M, for P,_; is positive definite.

Finally, applying once more theorem 4 of [12] we get M”" isometric to
S,’,’l1 x R™, where nj,n, >0 and n; +n, =n. However, since M is non-compact
and S, # 0 over it, it must happen that r < n; <n. To finish, note that S,;; =0
gives n; = r as the only possible option. ]
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