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CR WEYL GEOMETRY AND CONNECTIONS
OF THE CANONICAL BUNDLE

TAkAAKI OHKUBO

Abstract

A nondegenerate CR manifold has a natural conformal class consisting of hermitian
forms, which are called Levi forms, on the hyperdistribution. It is important to study
the objects on CR manifolds which are independent of the choice of Levi forms. A CR
Einstein-Weyl structure defined in [8] is one of such objects. Our purpose is to find
nondegenerate CR manifolds with CR Einstein-Weyl structures.

In this paper, we shall obtain many examples of CR Einstein-Weyl manifolds.
These examples are actually derived from the fact that CR Einstein-Weyl structures are
closely concerned with connections of the canonical bundle of CR manifolds.

0. Introduction

We have been considering the following problem: Find nondegenerate CR
manifolds with CR Einstein-Weyl structures. Actually we have the only one
example in [8] of CR Einstein-Weyl manifolds.

A nondegenerate CR manifold has a natural conformal class consisting of
hermitian forms, which are called Levi forms, on the hyperdistribution. Ac-
cordingly the geometry on a CR manifold has been compared with that on a
usual conformal manifold with a conformal class consisting of Riemannian
metrics. The objects which are invariant under the conformal change of Rie-
mannian metrics are important. Correspondingly it is natural to consider that
the objects which are independent of the choice of Levi forms have significance
for CR geometry. A CR Einstein-Weyl structure appearing in the above prob-
lem is one of such objects on CR manifolds. Therefore it is consequential in
CR geometry to study the various problems with respect to CR Einstein-Weyl
structures.

A CR Einstein-Weyl structure on a nondegenerate CR manifold is intro-
duced in [8] as an analogous notion to an Einstein-Weyl structure.

The Einstein-Weyl structure is one of the above mentioned objects in con-
formal geometry and, in fact, is a pair of a conformal class of Riemannian
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metrics and a torsion-free linear connection preserving the conformal class (Weyl
connection) whose Ricci tensor satisfies the equation that the symmetric part is
proportional to the Riemannian metrics belonging to the conformal class point-
wise. We can say that the Einstein-Weyl structure is the conformal version of
the Einstein structure.

The CR Einstein-Weyl structure is similarly defined for the conformal class
of Levi forms on nondegenerate CR manifolds, but the definition has a certain
remarkable point. This point is that the CR Einstein-Weyl structure is the
pseudoconformal version of the pseudo-Einstein structure.

The pseudo-Einstein structure is the notion introduced by J. M. Lee in [7]
and correponds to the Einstein structure. In fact, the pseudo-Einstein structure
is as follows: On a nondegenerate CR manifold, there is a class consisting of
particular almost contact structures belonging to the CR structure and the Levi
forms are actually induced by the almost contact structures. Therefore when
we compare CR geometry with conformal geometry, we had better consider that
the almost contact structures correspond to the Riemannian structures. Fixed
an almost contact structure belonging to the CR structure, there is a unique
linear connection associated with the almost contact structure which is called
the Tanaka-Webster connection. It follows that Tanaka-Webster connections
correspond to Levi-Civita connections. An almost contact structure is pseudo-
Einstein if the #-Ricci tensor of the Tanaka-Webster connection is proportional to
the Levi form pointwise. Here, the =-Ricci tensor is the hermitian tensor field
defined in [10] and is more natural in CR geometry than the usual Ricci tensor.

In fact, the linear connection corresponding to the Weyl connection in the
definition of CR Einstein-Weyl structures (CR Weyl connection) is defined as the
connection which is preserving the class of the almost contact structures and is
closely concerned with Tanaka-Webster connections. A CR Weyl connection is
CR Einstein-Weyl if the hermitian part of the %-Ricci tensor of the CR Weyl
connection is proportional to the Levi forms pointwise.

Seemingly the pseudo-Einstein structure is fundamental, but it depends on
the choice of the Levi forms. Therefore the author considers that we should
attach importance to CR Einstein-Weyl structures rather than pseudo-Einstein
structures. However we should keep it in mind that CR Einstein-Weyl structures
is closely related to pseudo-Einstein structures.

In this paper, we shall show the following theorem (Theorem 5.1): Let N
be a complex manifold with a holomorphic connection of the canonical line
bundle. Then every nondegenerate real hypersurface in N admits a CR Einstein-
Weyl structure. Theorem 5.1 provides us with many examples of CR Einstein-
Weyl manifolds. Concretely we can see these in Examples 1, 2 and 3 in Section
5. For instance, we obtain the following corollary (Corollary 5.3) in Example
3. Let N be a compact Kédhlerian manifold with zero first Chern class. Then
every nondegenerate real hypersurface in N admits a CR Einstein-Weyl structure.

Theorem 5.1 is brought about by the result which Lee obtained in [7]. In
fact, it is as follows: If there is a nonvanishing closed (n+ 1,0)-form on an
orientable nondegenerate CR manifold M of dimension 2n+1 (n>1), M
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admits a pseudo-Einstein structure. This Lee’s work becomes a great help to
obtain the key theorem (Theorem 3.3) which induces Theorem 5.1. Theorem 3.3
states that connections of the canonical bundle on CR manifolds are closely
concerned with CR Einstein-Weyl structures.

The canonical bundle on CR manifolds is appeared in various studies [2] and
[3]. CR Weyl connections and CR Einstein-Weyl structures would be useful for
the study of CR geometry through connections of the canonical bundle.

In Sections 1 and 2, we recall the definitions of Tanaka-Webster connections,
pseudo-Einstein structures, CR Weyl connections and CR Einstein-Weyl struc-
tures. In Section 3, we give a new proof of the above theorem which Lee ob-
tained in [7]. This viewpoint makes us think of Theorem 3.3. In fact, Theorem
3.3 gives a sufficient condition for the existence of CR Einstein-Weyl structures
on orientable CR manifolds. In Section 4, we observe that Theorem 3.3 holds
even if CR manifolds are not necessarily orientable. Moreover we show in Prop-
osition 4.3 that the assumtion of Theorem 3.3 is the necessary condition for the
existence of CR Einstein-Weyl structures. The last section is devoted to The-
orem 5.1 and the examples of CR Einstein-Weyl manifolds.

1. Tanaka-Webster connections

Let M be a connected differentiable manifold of dimention 2n+1 (n > 1).
Let & denote a 1-codimensional subbundle of the tangent bundle 7'M, which is
called a hyperdistribution. A cross section J of the bundle ¥ ® 2™ satisfying
J?> = —I is called a complex structure on %, where Z* is the dual bundle of ¥
and 7 is the identity transformation. Let (2,J) be a pair of a hyperdistribution
2 and a complex structure J on &. The complex structure J on & can be
uniquely extended to a complex linear endomorphism of the complexification CZ
of 2 and the extended endomorphism, denoted also by J, satisfies the equation
J> = —I. Thus the vector bundle CZ is decomposed as

C7=9"@9",

where 20 (resp. 2*!) be a subbundle of CZ composed of the eigenvectors
corresponding to i (resp. —i) of J. A pair (2,J) is a CR structure if 2'° is
involutive, that is, 2"° satisfies

©) [Y1, Vo] e D(2"7)

for any Y, Y, e T(2'°), where T'(2'°) denotes the set of all cross sections of
the vector bundle 2"°. A pair (2,J) is a CR structure if and only if the
following two conditions hold:

(C.1) JX,JY]—[X, Y] e(2)
(C.2) X, JY] = [X, Y] = J(X,JY]+[JX,Y]) =0

for any X, Y e I'(2) (cf. [9]). If M admits a CR structure (Z,J), then (M, 2,J)
is called a CR manifold. Let 0 be a local 1-form on an open set U c M
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annihilating the hyperdistribution 2, which is determined up to nonvanishing
smooth functions. Noting that

(1.1) —2dO(X,Y) = 0(X, Y])

for any X,Y eI'(U,2), we see that the condition (C.1) for the pair (2,J) is
equivalent to the condition

(1.2) dO(JX,JY) =dO(X,Y)

for all X,Y € &, where ['(U,2) denotes the set of all cross sections on U of the
vector bundle 2. The base space M of the vector bundle & may be restricted on
an open set according to the objects of . Moreover we have

d(f0)(X,Y) = f dO(X, Y)

for all X,Y € % and every smooth function f on U, which allows us to call
(2,J) a nondegenerate CR structure if d6 is nondegenerate on Z.

Let (M,2,J) be a nondegenerate CR manifold and 6 a local 1-form on an
open set U annihilating 2. For 0, there uniquely exists £ e ['(TU) satisfying

o) =1,
(*) (€, T(U,2)] =« T(U,2)
(cf. [9]). Then defining the tensor field ¢ on U by
p(V) =J(V =0(V)S)

for every V e TU, the triplet (¢,&,0) becomes an almost contact structure on U
(cf. [9]). Such an almost contact structure (¢, &, 6) satisfying the condition (%) is
called a @-preserving almost contact structure belonging to (2,J) and is written

as (U,(¢,¢,0)) (cf. [8]).

Remark. Note that if M is orientable, there exist Z-preserving almost
contact structures (¢, ¢, 0) globally defined on M. Fix an orientation ¢ on M.
Usually assumed that a manifold is second countable, there is a Riemannian
metric 7 on M. We take a base {ey,...,e,, Jer,...,Je,} of & at each point
xe M. Then we can take a differentiable unit vector field £° such that it is
orthogonal to & with respect to 4 and {&°,ey,... e, Jey, ..., Je,} is a positive
base of the orientation . We put (V) = h(&°, V) and ¢°(V) =J(V — 0(V)E®)
for every Ve TM. Then (¢°,£°,6) becomes an almost contact structure on M.
This almost contact structure may not satisfy the condition (x). However by
Proposition 1.2 in [9], we can always obtain a Z-preserving almost contact
structure globally defined on M.

Let (U, (¢,¢,0)) be a Z-preserving almost contact structure on U. Define
w by

(1.3) w = —2do.
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Moreover define g: 2 x 2 — R by

(1.4) g X, Y)=w(JX,Y),

which satisfies the equations

(1.5) g(X,Y)=g(Y,X), ¢(JX,JY)=g(X,Y)

for all X,Y e2, where we have used (1.2). Therefore g is hermitian and
nondegenerate on Z and is called Levi form with respect to (U, (¢,¢,0)). On
nondegenerate CR manifold (M, 2,J), Tanaka [12] showed (cf. [9]):

Lemma 1.1. Let (U,(¢,¢,0)) be a @-preserving almost contact structure on
U. Then there uniquely exists a linear connection V on the open submanifold U
such that

Vé=0, VE=0, VO=0, V°g=0,

1
TV(X,Y) = —oX, V)¢ TVEY)=—54(Lh)Y
forall X, Y € 9, where V° denotes the induced connection on the hyperdistribution
9, TV the torsion tensor of V and ¥: the Lie differentiation with respect to &.

The linear connection in the above lemma is called the Tanaka-Webster
connection associated with (U, (¢, ¢, 0)).

For a Z-preserving almost contact structure (U, (¢,&,0)), we can take a
frame field of CTU:

(1.6) (&2, 2 Zss o Za),s

where we shrink U if necessary, {Z,...,Z,} is a frame field of 2% on U and

Z; =27, We call such a frame field containing ¢ an admissible frame of
(U, (¢,¢,0)). We put the dual frame field of (1.6) as

(1.7) 0,0",....0m0',... 0",

where 0% = 0*. The set {#',...,0"} in (1.7) is called the admissible coframe with
respect to 6 (cf. [6]).

Remark. We uniquely extend g to a complex bilinear form of C%, denoted
also by g, and we put

ga[} = g(ZOwZ[})a 9gap = g(ZiaZﬁ)

for the adapted frame (1.6). From the property (1.5) of g, it follows that
the matrices (gaﬁ-) and (gsp) satisfy the equations 9.5 =95, and g ;= gz, and
moreover these are the nondegenerate matrices. We put

@ =(0,)7" (@) =gz,
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where (g“/;)f1 (resp. (g_&p)fl) denotes the inverse matrix of (g,;) (resp. (gsp))-
Then we have g% = g#* and ¢ = ¢*’. 1In the sequel small Greek indices run
from 1 to n, and Einstein convention is used. The Levi form g ; and its inverse
g” are used to lower and raise indices. On the other hand, note that d0 is
written as

i B
(1.8) d0 = ig, ;0" 0
in virtue of (x).
We uniquely extend the covariant derivative of the Tanaka-Webster con-

nection associated with (U, (¢, &, 6)) to the covariant derivative of CTU and it is
also denoted by V. When we write the connection form with respect to (1.6) as

0
(1.9) vg? )
vﬁ_
we know that (1.9) satisfies
(1.10) d0" +vg" AOF = — 4707 N0, Ay = Ap,,
(1.11) Vg Vi = 49,5,

where v;7 = vy7, A7y :Aiy/;, Asp = gu5A7g and v,z =v,7g 5 (cf. [6], [11], [13]).
Taking any two Z-preserving almost contact structures (U, (¢, &, 6)) and
(U, (¢',E",0") such that UN U’ # 0, these are related as follows (cf. [9]):

LemMMA 1.2. There is a unique smooth function y on UNU' such that
(L12) 0 =ae™0, & =ac(E-20"), ¢ =¢—20@P", g =cey,
where ¢=+1, P*el(UNU',2) is defined by ¢(P*,X)=du(X) for every
XeT(UNU', %) and Q* = JP*.

Let V and V' be the Tanaka-Webster connections associated with
(U,(¢,¢,0) and (U',(¢',&',0')) respectively. Then it is known in [9] that

LEMMA 1.3. Define the difference H* between V and V' by H* =V' — V.
Then on UNU’, we have

(1.13) H (X, Y)=p"(X)Y +p (V)X —g(X,Y)P"

T4 (X)JY +q"(Y)JX —g(JX, Y)Q",
(1.14) H*(&Y)=VyP" +VyQ" =24 (Y)P" +2p*(Y)0Q" + 29(P",P")JY
Sfor all X, Y eT(UNU',2), where p* =du and q* = —p* o ¢.

We write the expression of du with respect to (1.7) as
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(1.15) du = 10,0 + pz0" + o0
Then we have
(1.16) q* = —i(u,0" — pz0%), P*=p*Z,+1*Z;, Q" =i(WZy — u*Z;),

where u* = ,ulgfg/;‘DC and u* = pzg”®.
Let

(1.17) (&2}, 2020 Z0)

be an admissible frame of (U’,(¢’,&’,0")) such that Z! =Z, on UNU’. The
relation between (1.7) and the admissible coframe

(1.18) (0'0",....,'0", 0", ..., 0"},
is
(1.19) 0% = 0" + 2iu0.

We write the connection form of the Tanaka-Webster connection V' associated
with (U’,(¢',&',0")) with respect to the admissible frame (1.17) as

0
(1.20) Vg

/vl}y

We prepare notations before stating the following lemma. In general,

expressing a 1-form p as
P = p0” + ps0” + pol
on U,Athe notation pgp; (resp. p/;i) denotes the coefficient of 6° ® 6* (resp.
0" ® 0%) of Vp, where (Vp)(V, W)= (Vyp)(V) for V,W € TU, namely,
P =2 pp =g (Z)pur Py = Zi- Py — Vi (Zi)pa-
We similarly define Pgis Pgi> Ppo and pg. Note that
Por=2Z;-po, Py;=2Z; Po, Poo=¢<" Po.

Define Pe I'(U,2) by g(P,X) = p(X) for every X e I'(U,2). We easily obtain
that the expression of P with respect to (1.6) is

P= p“ZOC + paZ%

where p* = g% p; and p” = g®ps. The notation pf, (resp. pf,) denotes the
coefficient of Zz ® 6“ (resp. Z[§®0’1) of VP, that is,

Pl =2 pP v Z)pt, pP=2i p" i (20"
We similarly define pf;, pﬁ—i, pPy and p#,. From (1.11), we have
R —dg“’é.
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By this result, we obtain
(1.21) pPi=9"pz.

We have the similar results for pﬁ_ P i p[};, pPy and pﬁ_o, that is, the covariant

derivative with respect to the Tanaka-Webster connection is commutative with
the lowering and raising indices.
On the other hand, we see that the expression of dp with respect to (1.7) is

(122)  dp=pyt’ nO" + (=p,5+ pj, +ig,3p0)0" 70 + p 50 A 07
+ (=P + Pos — Aﬁul’,})@a A0+ (=pso + poz — A"3p)07 10
in virtue of (1.8) and (1.10). In particular, since d?u =0, we obtain

(1.23) Map = B M5 — Hg, = 10,500, Hoy — Hoo = AP upg.
Therefore we have the following lemma, by using Lemma 1.3:

LEMMA 1.4. On UNU’, the connection forms of V and V' with respect to the
admissible frame (1.6) are related as follows:

(1.24) ' = v+ 2(ug0" — 1 Op) + 205,0”
i g+ g+ A + A0, — (G410 0.

Remark. The equation (5.7) in [6] is the relation of components of the
connection forms when (1.17) is an adapted frame to (U’,(¢',&',60')) such that
Z,=¢e*Z, on UNU'.

Let RV be the curvature tensor of the Tanaka-Webster connection V
associated with (U, (¢,¢&,0)). Define k¥ by

(1.25) KV, W) :% trace(¢pRY (V,¢pW))

for all V, W e TM (cf. [10]), which is called the %-Ricci tensor of V. Expressing
kY with respect to (1.6) and (1.7), we have

(126) KV, W) = S (0GR (V. pW)) + 0GR (V. pW)Z))
+ 0P RV (V. ¢W)Z;)}
= {0 2y v Ay )V W) Z,)
— 0P Qv + v AV, W) Z5))
= i(dv,” — dv")(V, ¢ W),
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where we have used the definition of RY in [5] and the fact that ¢RY = RV¢
proved in [10]. Note that dv,* is independent of the choice of frames adapted to
(U,(¢,&,0)). From (1.11), we have

Vot 4 vy = gﬁ_‘“ dg,;=d log\det(g“/);)|.
Therefore we obtain
(1.27) dv,” + dvi” =0,

which states that the complex valued 2-form dv,” is pure imaginary. By using
this result, we see that the equation (1.26) becomes

(1.28) K (V, W) =2idv,*(V,¢W).

Remark. The #-Ricci tensor kY satisfies the following equations (cf. [10]):
K(Y,z)=k"(Z,Y), K'(JY,JZ)=k"(Y,Z).
for all Y,Z e 9.

A -preserving almost contact structure (U, (¢, &, 0)) is pseudo-Einstein if kY

”

is proportional to g pointwise, that is, there is a smooth function 4 on U such
that

K(Y,Z)=1g(Y,Z)

for all Y, Ze 2.
For any two Z-preserving almost contact structures (U, (¢,¢,0)) and
(U, (¢',E',0"), we obtain

(1.29) kKY'(Y,Z)=k"(Y,Z) = 2(n+2) dq*(Y,JZ)
—g(Y,Z2){2(n+1)p*(P*) + tracey VP*}

for all Y,Ze % on UNU’, where trace, denotes the trace on only 2. In fact,
the equation (1.29) can be shown as follows. By a direct calculation, we have

(1.30) (Vyp")(Z) = (Vorg" )(Z) + p"()g(JY, Z) = 2.dp™(JY,JZ) =2 dq"(Y,JZ)
for all Y,Ze%. Using Lemma 1.3, we have
(Y, Z) = k(Y Z) = (n+ 2{(Vyp )(2) = (Vova")(Z) + p" (&g Y, Z)}
—g(Y,Z){2(n+ 1)p*(P*) + traceg VP*},

for the detail, see [10]. Applying (1.30) to the above equation, we have (1.29).

Remark. We extend p* and ¢* to complex linear forms and denote
them also by p* and ¢* respectively. Then the complex valued 1-form p* + ig*
becomes a (1,0)-form, that is, (p* + ig*)(Y,) = 0 for every Y, € 2"°. From the

condition (C), we have d(p* +ig*)(Y,, Y,) =0 for all ¥;,Y, e 2" This fact
is equivalent to the following equation:
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(1.31) dp*(X,Y)—dp*(JX,JY) —dq*(X,JY)—dq"(JX,Y)=0
for all X,Ye%. Since dp*=d’u=0, the equation (1.31) states that
dq*(JY,JZ) =dq*(Y,Z) for all Y,Ze 2.
Let sV be the usual Ricci tensor of the Tanaka-Webster connection V
associated with (U, (¢,&,0)), that is,
sY(V, W) = trace(X — RY(X, V)W)

for V., WeTM. Define S'el'(U,2® %*) by g(SVY,Z)=s"(Y,Z) for all
Y,Zel(U,2). Moreover, define p¥ by pV = trace; SY, which is a smooth
function on U and is called the scalar curvature of V (cf. [10]).

Remark. The Webster scalar curvature R defined in [6] is related to pV as

follows:
pV =2R.

On UNU’, the scalar curvature p¥ of V' is related to p¥ of V as follows:
(1.32) ee¥pV" = pV — 4(n+ 1) trace, VP* —4n(n + 1)p*(P*)
(cf. [10]). By using the admissible frame (1.6), we have
(1.33) tracey VP* = p*, + 1" = 1," + 15", p*(P*) = 2u,p*,
so that we obtain

eep¥ = p¥ —4(n+ D{u*, + p,” + 2},

Note that u”,, u,* and u,un” are independent of the choice of the admissible
frames of (U, (¢,¢&,0)).

2. CR Weyl connections

Let (M, 2,J) be a nondegenerate CR manifold of dimension 2n+1 (n > 1).
A linear connection D on M is a CR Weyl connection if for each Z-preserving
almost contact structure (U, (¢,&,0)), there is a l-form p on U such that

(2.1) Dy0=-2p(V)0, Dyc=2p(V)s, D}J=0, Djg=-2p(V)yg,
1
TX,Y)=-wX,Y);, T(Y)= —Egp(,?;(p)Y

for all Ve TM and X,Y € &, where D° denotes the induced connection on the
hyperdistribution &, T the torsion tensor of D, ¢ =¢—-20, p=¢—20Q P,
Pel'(U,9) is defined by g(P,X) = p(X) for every X e I'(U,%) and Q = JP.
For a given D, we call p the associated 1-form relative to (U, (¢,£,0)). Let a
CR Weyl connection D on M be fixed. Then it is shown that each associated
I-form p should satisfy
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(2.2) dp(JX,JY)+dp(X,Y)=0

for all X, Y € & (cf. [8]). Taking any two Z-preserving almost contact structures

(U.(4,¢,0) and (U',(¢,¢",0)),

—2p'(V)0' = Dy0' = Dy (ge*0) = 2ee™ du(V)0 + ee* Dy 0

=2du(V)0' + ee* (—2p(V)0)
==2(p—dw) (V)¢

so that we have

(23) p'=p—du

on UNU’, where p’ is the associated 1-form on U’ relative to (U’, (¢',&',0")).
From (2.3), we have

(2.4) P =ee(P—P"), Q =& (Q-0Q)
on UNU’'. Therefore we have
E 20 =g M(E-20), ¢ -20QP =¢—-20QP
because of (1.12), so that we obtain
(2.5) ¢ =ae M, 9=y

on UNU".
Let V be the Tanaka-Webster connection associated with (U, (¢,¢&,0)).
Then the following lemma has been proved in [8].

Lemma 2.1. Define the difference H between D and V by H =D —V.
Then, on U, we have

(2.6) H(X, Y) = p(X)Y + p(Y)X — g(X, ¥)P
+q(X)JY +q(Y)JX - gJX, Y)O,
(27)  H(EY)=ViyP+Vy0—24(Y)P+2p(Y)0+2g(P, P)JY

for all X, Y eT(U,2), where p is the associated 1-form relative to (U, (¢,&,0))
and ¢ = —po ¢.

Next lemma gives us the sufficient condition for the existence of a CR Weyl
connection.

LemMaA 2.2.  Assume that M be covered by open sets {U} and that, for each
9-preserving almost contact structure (U, (¢,¢&,0)), there is a 1-form p on each U
satisfying the equation (2.2) and the 1-forms satisfy (2.3) on each nonempty in-
tersection UNU'. Then there is a CR Weyl connection D on M such that the
associated 1-form coincides with the given p on each U.
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Proof. For each (U, (¢,&,0)), define D by
(28) DyY =VyY+H(X,Y), D:Y=V:Y+HEY), Dyc=2p(V)s

forall Ve TU and X,Y € I'(2), where H is defined as (2.6) and (2.7). Then D
becomes a linear connection on the open submanifold U. By a direct calcu-
lation, we can show that the linear connection D satisfies (2.1). Note that we
require the assumption (2.2) to show Dig = —2p(&)g.

We can complete the proof if, for any two Z-preserving almost contact
structures (U, (¢,&,0)) and (U, (¢',&',0")), we show

(2.9) D' =D.

on UNU’. From (1.12), (2.3) and the definition of ¢, we have
(2.10) q'=q—q" +2p(P")0 - 2p"(P")0.

First, applying (1.13), (2.3), (2.4) and (2.10) to (2.8), we have
(2.11) D\Y =DyY

for all X, Yel'(UNU',2). Next, from (1.13), (1.14) and (2.4), we have the
two following equations:

(2.12) V) P = ge 2 {V,x P — V;x P* — 2¢*(X)P* — 2p*(X)Q*
+¢ (X)P+q(X)P" + p"(X)Q + p(X)Q"
+p (P)JX —q"(P)X — p*(P")JX}
(2.13) VyQ' =ee #{VyQ—VyQ* +2¢*(X)P* + 2p*(X)Q"
—q" (X)P—q(X)P" — p*(X)Q — p(X)Q"
+p (P)JX + p (Q)X — p"(P")JX}
for every X e (UNU',2). Applying these equations to (2.8), we obtain
(2.14) DLX =DyX.
Finally, we have
D¢ = Dy(c" +20)
=2p'(V)s' = Dy (&' —20") + Dy’
=2p'(V)¢' — Dy(ee¢) + Dyé&’
=Dy,
where we have used (2.5), (2.11) and (2.14). O
From the definition of CR Weyl connections and Lemma 2.2, we see that

there is a CR Weyl connection D if and only if, for a family of Z-preserving
almost contact structures (U, (¢, &, 0)) such that {U} cover M, there is a 1-form
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p on each U which satisfies (2.2) and (2.3) on every nonempty intersection
unvu'.

If M is orientable, there is a global Z-preserving almost contact structure
(¢,£,0). Then we have the following corollary (cf. [8]):

COROLLARY 2.3. Let M be an orientable nondegenerate CR manifold.
Then, for a 1-form p on M satisfying (2.2), there is a CR Weyl connection D
whose associated form is p.

Proof. Fix a global Z-preserving almost contact structure (¢,¢&,60) and
define D by (2.8). Then the linear connection D on M is a CR Weyl connection.
O

Note that if we define D’ by using the global 1-form p —du and a 2-
preserving almost contact structure (¢',&’,0") related with (¢, &, 0) as (1.12), we
see that D’ coincides with D. However if we use the 1-form p and (¢',&’,0"), we
obtain another CR Weyl connection.

Remark. Let D be a CR Weyl connection on M. If each local 1-form
associated with D is exact, there is a Z-preserving almost contact structure
(U,(¢,&,0)) such that V=D on U, where V is the Tanaka-Webster connection
determined by (U, (¢,¢&,0)).

Let D be a CR Weyl connection on M and R the curvature tensor of D.
Define k£ by

(2.15) k(V, W) :% trace(pR(V,pW))

for all V, W e TM, which is called the =-Ricci tensor of D. Since ¢’ = ¢ from
(2.5), k is globally defined. It was shown in [8] that the tensor field k satisfies
(2.16) k(X,Y)—k(Y,X)=—-4n+2)dp(X,7Y),

k(JX,JY) —k(X,Y)=4(n+2) dp(X,Y)
for all X,Y € 2. Note that the 2-form dp globally exists on M because of (2.3).
We denote the usual Ricci tensor of D by s and define SeT'(U,2 ® 2%) by
g(SY,Z)=s(Y,Z) for all Y, ZeT'(U,Z) for each Z-preserving almost contact

structure (U, (¢,£,0)). Moreover define p by p = trace; S. Then, for any two
9-preserving almost contact structures (U, (¢,¢,0)) and (U, (¢',&',0")), we have

(2.17) p' = ee Hp
on UNU'. Also, for (U, (¢,¢,0)), define I by
1
2.18 (Y,Z)= KY,Z)+—->—— Y.Z
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forany Y,Z e 9. We see from (1.12) and (2.17) that / is globally defined on M.
We have

(2.19) Y, Z)-1(Z,Y)=2dp(Y,Z),
1JY,JZ) - I(Y,Z) = -2 dp(Y,Z)
for all Y,Z € @ because of (2.16). Define rice I'(2* ® Z*) by

(2.20) ric(Y,Z2)=1(Y,Z)—dp(Y,Z)
for Y,Ze%. From (2.19) we have
(2.21) ric(Y,Z)=ric(Z,Y), ric(JY,JZ)=ric(Y,Z)

forall Y,Ze%. A CR Weyl connection D is CR Einstein-Weyl if, for each &-
preserving almost contact structure (U, (¢, &, 6)), there is a smooth function 4 on
U such that

(2.22) ric(Y,Z) =29(Y,Z)

for all Y,Z e %. Since ric is globally defined, for any two Z-preserving almost
contact structures (U, (4,&,0)) and (U’,(¢',&,0")), we have

(2.23) M =g *) on UNU'

Let D be a CR Weyl connection on M. For every %-preserving almost
contact structure (U, (¢,&,0)), we have

(2.24) k(Y,Z)=k¥(Y,Z) = 2(n+2)dq(Y,JZ)
—9(Y,Z){2(n+ 1)p(P) + traceg VP}

for all Y,Ze % on U. In fact, this equation is showed by the same way as
(1.29). In [8] it was shown that

(2.25) k(Y,Z)=k"(Y,Z) - g(Y,Z){2(n+ 1)p(P) + trace; VP}
= (n+2{(Vyp)(Z) = (Vixa)(Z) + p($)g(JY,Z) + 2 dp(Y, Z)}

for all Y,Ze 2 on U. Also by a direct calculation, we have the equation in
which we replace p* and ¢* with p and ¢ in the equation (1.30) respectively.
Applying (2.2) and this equation to (2.25), we obtain (2.24).

Remark. Since the complex valued 1-form p + ig is a (1,0)-form, we have
the equation in which we replace p* and ¢* with p and ¢ in the equation (1.31)
respectively. Applying (2.2) to this equation, we have

(2.26) 2dp(Y,Z)=dq(Y,JZ)+dq(JY,Z)
for all X,Y € 2.

It is also proved in [8] that
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(2.27) p=p" —4n+1)traces VP —dn(n+ 1) p(P)
on U.
For a Z-preserving almost contact structure (U, (¢,&,0)), define [V by
1 1
MY Z)=——k' (Y, Z)+—+————p"g(Y,Z
¥ 2) =~ VD4 s y” 92

for all Y,Ze 2 on U. Then, from (2.24) and (2.27), we have
1
(2.28) IY,Z)=1"(Y,Z)+dq(Y,JZ) + 5P(P)9(Y,2)

on U. Then, from (2.20), (2.26) and (2.28), we have
1
2(n+2)

(2.29)  rie(Y,Z) = — K (Y,Z) —i—%{dq(Y, JZ) —dq(JY,Z)}

1 1
+ {21’(P) TS +2)”V}g(Y’ 2)

on U. If a CR Weyl connection D is CR Einstein-Weyl, for every Z-preserving
almost contact structure (U, (¢,&,6)), we obtain

(2.30) K(Y,Z) — (n+2){dq(Y,JZ) — dq(JY,Z)}
1 1
=-2 28 A—=p(P) ———-——p ' ry(Y,Z
4]0 300 - gy o1 2)
for all Y,Z € & in virtue of (2.29). Conversely, from Lemma 2.2 and (2.29), we

immediately have

Lemma 2.4. Let p be the local 1-form on each U in the assumption of
Lemma 2.2. If, for each D-preserving almost contact structure (U, (¢, &, 0)), there
is a smooth function A on U such that

(2.31) kKY(Y,Z) — (n+2){dq(Y,JZ) —dg(JY,Z)} = Ag(Y, Z)
forall Y, Z € 9, then the CR Weyl connection D determined by Lemma 2.2 is CR
Einstein-Weyl.

If M is orientable, we have (cf. [8])

COROLLARY 2.5. Assume that there is a 1-form p on M satisfying (2.2). If
there is a 9-preserving almost contact structure (¢,&,0) such that (2.31) holds, a
CR Weyl connection D in Corollary 2.3 is CR Einstein-Weyl.

3. CR Einstein-Weyl structures on an orientable CR manifold

In this section, let M be an orientable nondegenerate CR manifold of
dimension 2n+ 1 (n>1). Then there exist global Z-preserving almost contact
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structures. We choose (¢,¢,0) from them arbitrarily. The Tanaka-Webster
connection V associated with (¢,&,0) is a linear connection defined on M.

Let Kjs be the complex line bundle consisting of (n+ 1,0)-forms which
vanish on 2%!, that is,

n+1
(3.1) Ky = {Ce /\ CT*M|Y|{=0 for Ye@l’o},

which is called the canonical bundle on M. Farris [2] showed the following
lemma which we prove to complete this paper.

Lemma 3.1, For every nonvanishing global cross section { of Ky, there exists
a unique 1-form 0" annihilating & up to the multiple of +1 such that

(3.2) 0'A(dO)" = " n)(=1)"0" A (E'|0) A (E']D),

where &' is a unique vector field satisfying the condition () determined by 0" and t'
denotes the signature of the Levi form defined by 0.

Proof. We first show the existence of the 1-form 6’. We fix a 1-form 0 on
M annihilating 2 and put 0’ = ee**0. We shall find a function x such that the
I-form 0 satisfies the equation (3.2).

Assume that the 1-form ¢’ satisfies (3.2). Take an admissible frame (1.6)
and the dual frame (1.7) of (¢,&,6) on an open set U < M and determine the
admissible frame (1.17) and the dual frame (1.18) of (¢',&’,0') on the same U.
From (1.8), we have

(3.3) (d0)" = " nl det(g,;)0' A+ AO" AO" A A0
on U. It follows that the equation (3.3) similarly holds for every I-form 0

annihilating 9 and every admissible coframe of (¢,&,6). Also when we put the
local expressions of { with respect to (1.7) and (1.18) as

(3.4) C=fONO" A AO", C=Ff'0ANO A---AO"
on U respectively, we have from (1.19)
(3.5) ! =ee S,
Since the 1-form 0 satisfies (3.2), we have
(3.6) (=1)" det(g);) = /"]’
on U, where we have used (3.3) and (3.4). Applying (3.5) and the equation
g' . =ee’g - to (3.6), we have
ofs off
t+t' 2 |f|2
(3.7) (=) (ee™)" =

(—1)" detlg, )’
where ¢ denotes the signature of the Levi form defined by 8. Note that if ¢ =1

(resp. e = —1), t' =t (resp. ¢’ =n —1t). Thus the left hand side of (3.7) becomes
(e24)™2. Therefore we obtain
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_ 1 /1°
(3:8) A v ) o8 ((_1)f det(g“[;)>

on U.

Conversely, define a function u by (3.8) on each open set U where an
admissible frame (1.6) of (¢,&,6) is defined. Taking another admissible frame
and the dual frame

(3.9) (20 2 25y Za), {0,6Y,...,07,0",...,6")

on U, we have Z, = ZzX,” on UNU, where (X,”) is the n x n nonsingular
matrix valued function on UNU and it is written as X = (X,”). Then we
obtain f = f det X and (§ /;)— ‘X(g, )X on UNU. Thus we have fi=u on
UNU, which states that the functlon Mis a globally defined function on
M. Putting 0' = ee?0, we see that the 1-form 0’ satisfies (3.2).

Next, we show the uniqueness of the 1-form 0. Assume that two 1-forms
0 and 0" annihilating & satisfy (3.2). Then there is a smooth function x such
that 0’ = ¢e*0 by Lemma 1.2. Since both 0" and 0 satisfy (3.2), we obtain (3.7)
and the equation (—1)’det(g, ) |/|> on an arbitrary open set U where an
admissible frame (1.6) of (¢, ¢, 0) and (1.17) of (¢',¢&',0") are defined. Therefore
we have e = 1. m

Lee [7] showed the following lemma. We show this Lee’s result by the other
way, since the proof makes us guess the main theorem in this section.

LEMMA 3.2. Assume that there exists a closed nonvanishing global cross
section { of Ky. Let 0’ be a 1-form on M determined by { as in Lemma 3.1.
Then the %-preserving almost contact structure (¢',E',0") determined by 0 is
pseudo-Einstein.

Proof. We fix a Z-preserving almost contact structure (¢,&,6) on M and
put 0’ = ¢%0 by using the smooth function u defined by (3.8) for (¢,&,0). Take
an arbitrary admissible frame (1.6) and the dual frame (1.7) on an open set U.
To show that (¢', &', 0') is pseudo-Einstein by making use of (1.28) and (1.29), it
is sufficient to show that there is a function A such that

(3.10) idv,* — (n+2)dg* = A do (mod ),

where vg” is the connection form of the Tanaka-Webster connection associated
with (¢, &, 0) with respect to (1.6), ¢* = —p* o ¢ and p* =du. Note that since
kY(JY,JZ) =k¥(Y,Z) and dq*(JY,JZ) = dq*(Y,Z) for Y, Z € &, dv,” and dq*
do not have the parts of @/ A 67 and 67 A 6.

From (1.11) and the fact that d det(g, ) det(g,;)g Z dg ;, we have

.1 df N
(3.11) p —n+2Re<7—va ),
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where Re denotes the real parts of complex valued forms. To simplify the
notation, we put v = v,*. In general, giving a 1-form p = Re(«) for a complex

valued 1-form o = o0’ + aﬁﬁﬁ—i— apf) on U, we have
(3.12) q = Im (0" — ocp;Hﬁ),

where ¢ = —p o ¢ and Im denotes the imaginary parts of complex valued forms.
Thus from (3.11) and (3.12), we have

(3.13) ‘= Im{(%—u;z)eﬂ_ (%—”’Jeﬁ}’

where

df = f30" +f/}9/; + /o0, v=uv50" + 030/} + vo0.

Note that although both df /f and v depend on the choice of the admissible
frames of (¢,&,0), df /f —v and d(df /f) are independent of the choice of them.
The equation d df =0 yields

(3.14) (~fig + fop + igpf0)0” A O7 = 0.

Since
(3.15) d{ (% - uﬁ> 05}
1 1 , R 1 1 b B
= (70 o =0 )0 A0+ (= = )7 0P

(- s (]}

and d{(f3/f —vp)0"} is similarly calculated, we have

1 1, 1 . 2
1— 11— 2 _—— _
‘}ﬂﬁ—}fﬁﬁﬁﬂfﬁ+%+%}0’%m (mod 6).

On the other hand, from the assumption d{ =0, we have

(}fb—uli)Oﬁ =0,

where we have used (1.10). Therefore (3.15) vanishes identically. In particular
we have

| | B
(3.17) 7l =72l —vom =0
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Applying (3.14) and (3.17) to (3.16), we have

(3.18) dq* = 3t 1+ ) { — g+ 05— Vg — 2i Im(?)zg/; }0/f A0 (mod 0).
Also, from (1.22), we have
(3.19) (vp5 — 550" A 07 = —dv + iggr000” A0 (mod 0),

(0,5 — ﬁywﬂ ANO7 = db — igge0” A07  (mod 0).
Substituting (3.19) and applying the fact that dv is pure imaginary to (3.18), we
have

(320)  dg* = 21(”1+2) {_2 dv—2i Tm (‘j{ _ 1)) @) d@} (mod 0),

from which we obtain (3.10). O

It determines a connection —# of the complex line bundle K, to assign a
I-form —#(y) to each frame y of Kj; on each member U of a family of open
subsets such that U’s cover M and —5(y)’s satisfy the transformation rule of
connection forms on each intersection of the open sets. If a local frame is fixed,
we shall often denote the connection form of —# with respect to the fixed frame
also by —#. The reason why we add minus sign is that we have the follow-
ing example: Let M be an m-dimensional manifold, x a linear connection and
i(y) the connection form with respect to a local frame y = (Xi,...,X,,) of the
tangent bundle 7M. Then x naturally induces a connection of the line bundle
/\" T*M, which is determined by each local 1-form —trace(r(x)) with respect to
0" A---AO™, where {0} is the dual frame of .

Let { be a nonvanishing global cross section of Kj,. For each local frame y
of Ky, we define a local function f, by { = f,x. Then we assign a local 1-form

4

J

to each local frame y of K,;, which gives us a connection of Kj,;. Writing this
connection as —#, we see that the local 1-form —df /f appearing in (3.11) is the
connection form of —# with respect to the local frame @A A---A0". Also
noting that the curvature form of a connection of K, is globally defined, we see
that the condition d(df/f) = 0 implies that the curvature of the connection —z
defined by (3.21) is identically zero.

Let (¢,&,6) be a Z-preserving almost contact structure on M, V the Tanaka-
Webster connection on M associated with (¢, &, 0) and vg” the connection form of
V with respect to a frame (1.6) on an open set U. Assign a local 1-form —v,* =
—trace(vy”) to each frame O A0 A--- A0" of Ky on U. Taking any two frames
(1.6) and (3.9), we have

B’ = (X" dXp + (X710 Xp?

(3.21) -
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on UNU, so that we have
(3.22) —7,* = det X ddet(X 1) + (—v,%)

on UNU, where vg” is the connection form of V with respect to (3.9). Noting
that OAQ'A---A0" =det(X)OAO'A---A0", we see that the system of
the local 1-forms —v,* satisfies the transformation rule of connection forms of
Ky;. Therefore we have a connection of K,,. This connection of K, is called
the connection induced by a Tanaka-Webster connection V and written as —v.

Considering a connection of K, instead of a global cross section of K, and
taking (3.11) into account, we can obtain the following result for the case of CR
Einstein-Weyl structures.

THEOREM 3.3. Let (M,%,J) be an orientable nondegenerate CR manifold
of dimension 2n+1 (n>1). Assume that, for a D-preserving almost contact
structure (¢,&,0) on M, there is a connection —n of Ky such that

(323) _drl(yla )_/2) = 07

(3.24) u(Y)) =0

for any Y1, Y, e 2Y° where —dn is the curvature form of the connection —n
and u is the difference between the connections —v and —n defined by u=
—v(y) — (=n(y)) for an arbitrary local frame y of Ky. Define a real valued 1-
form p on M by

1

3.25 =
( ) P n+2

Re(u).

Then the CR Weyl connection determined by p and the almost contact structure
(¢,£,0) on M (c¢f. Corollary 2.3) is CR Einstein-Weyl.

Proof. Since the 2-form dv,” is pure imaginary, we have from (3.23)
— 1 —
dp(Y1,Y:) =——= Re(dy)(Y1,Y,) =0
p(Y1,Y>) ni2 e(dn) (Y1, Y2)

for all Yy, Y, € 2"°, which indicates that the 1-form p satisfies (2.2). Therefore
we see from Corollary 2.3 that the 1-form p and the Z-preserving almost contact
structure (¢, &, 6) determine a CR Weyl connection, which is denoted by D.
Take an arbitrary local frame (1.6) and its dual frame (1.7) with respect to
(¢,£,0) on an open subset U. To show that D is CR Einstein-Weyl, we see
from Corollay 2.5 that it is sufficient to show there is a function A such that

(3.26) ido—(n+2)dg=Ad0 (mod6”r0" 0% N7, 0),
where —v simply denotes the connection form —v(@A@' A---A0") and ¢ =
—pog.

From the definition of p and (3.12), we have
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1

(3.27) 4=

Im{(ny — vp)0" — (; — v7)0"},

where "= ;7 0* + 15 0F +ny0 and —»u simply denotes the connection form
—n(OAO" A- /\9") Since

(3.28) d{(n; —v5)0"} = (ng, — 050" AO" + (ng; — v3,)07 A OF
— (150 — v30)0" A0 — (5 — v5) 740" A0

and d{(n; — uﬁ)ﬁﬁ } is similarly calculated, we have
1

(329)  dg= m{—% — 3 + v+ vgp — 5 — Mg, + 0.5+ 05 Y0 A0
(mod 0/ A 07,0% A 07, 0).

On the other hand, from (3.23) and (1.22), we have

(3.30) —Mgz + M55 + igg5ie = 0.

Also, from (3.24), we have (n; — U[;,)@ﬁ_ = (0. Therefore the right hand side of
(3.28) identically vanishes. In particular we have

(331) ’7,11_’}1 — U,b_’y =0.

Applying (3.30) and (3.31) to (3.29), we have
1 . . 7
(3.32) dq = Wt {vg7 —vsp + 05— 05, — 2 Im(no)zgﬂ;,}é’ﬁ N
(mod 0/ A 07,0% A 07, 0).

Moreover, applying (3.19) and the fact that dv is pure imaginary to (3.32), we
have

1 P
. =__ "~ [ 2dv—2il B A 07 OF A Q7
(3.33) dq 2i(n+2){ dv —2i Im(u)(&) dO0}  (mod 6" A 07,07 AO7,0),
from which we obtain (3.26). O

4. CR Weyl structures and connections of the canonical bundle

In this section, we consider a nondegenerate CR manifold which is not
necessarily orientable. Thus Z-preserving almost contact structures are defined
on open subsets which cover M. Turning our attention to the 1-form (3.25), we
shall obtain the following Theorem 4.1. To begin with we prepare the following
result.

Let Ky be the restricted line bundle of K, to an open set U. Take any two
-preserving almost contact structures (U, (¢,&,0)) and (U, (¢',&',0")). Let V
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(resp. V') be the Tanaka-Webster connection associated with (U, (¢,&,0)) (resp.
(U',(¢',&',0"))) and —v (resp. —v’) the connection of Ky (resp. Ky) induced by
V (resp. V'). We investigate the relation between —v and —v’. Take arbitrary
admissible frames (1.6) and (1.17) of (U, (¢,¢&,0)) and (U’, (¢',&',0")) respectively
such that Z, = Z, and (1.19) hold for any indices « on UNU’. From the
definition of connections induced by Tanaka-Webster connections, we have

—0(OAO" A~ AO") = —trace(vg?) = —v,7,
—0' (0" A0 A AT0") = —trace('vgT) = =17,

where vg? (resp. 'vg”) is the connection form of V (resp. V') with respect to
(1.6) (resp. (1.17)). From (1.24), we have

(4.1) —vy* = —v,* = 2(n+ ), 0" + 2uz0”
— i{us + "+ A+ D p” — inpig }0
on UNU’. On the other hand, since

(4.2) O ANO A A" =eePONO A AO",
we have
(4.3) —0(0' A0 A A0 =2 du+ (—v,%).

Then from (4.1) and (4.3), we have
(4.4) v = (=) = =2(n+2)u,0" — (n+2)uo0 — i{ p"s + p" + 4(n + Vg, " 0
= —(n+2)(,0" + 150" + 10) — (n+2)(p1,0" — 150"
— i+ " + 4+ D, 30
=—(n+2)du—i(n+2)q" —i{tracey VP* +2(n+ 1)p*(P*)}6
where —v’ — (—v) is the difference between the connections —v’ and —v and we

have used (1.15), (1.16) and (1.33).
Let o7 be the set of all connections of K, satisfying

(4.5) Re(—d;y)(Yl, Yz) =0

for all Yy, Y, € 20, where —dy denotes the curvature form of the connection —z
and we note that —dz is globally defined on M. We define an equivalence
relation in the set .o/ by setting —y ~ —r if and only if the difference —y — (—x) isa
pure imaginary 1-form on M. And we write the set of all equivalence classes as
of [~. Let # be the set of all CR Weyl connections on M. Then we obtain

THEOREM 4.1. There exists a one to one correspondence between <of [~ and
AB.

Proof. To begin with, note that a connection —z of K, induces a con-
nection of Ky for an arbitrary open set U. The induced connection of Ky is
denoted also by —#.
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Take a connection —# of K, in the set .«7/. For each Z-preserving almost
contact structure (U, (¢,¢,0)), we have the difference u between —v and —7,
where —v is the connection of Ky induced by the Tanaka-Webster connection
associated with (U, (¢,&,0)). Note that u is a complex valued 1-form on U.
Define a real valued 1-form p on U by (3.25). For any two Z-preserving almost
contact structures (U, (¢,&,0)) and (U’,(¢',&',0")), from (4.4), we have

(4.6)  w'=—v"—(-n)
=—(=n)—v—(n+2)du—in+2)q"
— i{traceg VP* 4+ 2(n+ 1)p*(P*)}0
=u—(n+2)du—iln+2)g" — i{traces VP* +2(n+ 1)p*(P*)}0,
where ' is the difference between —v’ and —7. From (3.25) and (4.6), we obtain
p=p—du on UNU".

Noting that each 1-form p satisfies (2.2) by (4.5), this system of local 1-forms
determines a CR Weyl connection D, by virtue of Lemma 2.2. We can define a
map w: o/ — % by —n— D,.

For two connections —# and —« of K;; contained in the set .o/, assume that
D, = D,. The associated local 1-forms of D, and D, relative to the same Z-
preserving almost contact structure (U, (¢,¢,0)) coincide. Thus we have

(4.7) Re(n(x)) = Re(x(x)),

where y is an arbitrary frame of K3, on U. The equation (4.7) states that the
difference between —z and —x is a pure imaginary 1-form on M. Therefore the
map o//~— 2% induced by w is injective.

We show that w is surjective to complete the proof. Fix an arbitrary
CR Weyl connection D. The CR Weyl connection D assigns the associated 1-
form p on U which satisfies (2.2) to each Z-preserving almost contact structure
(U, (¢,¢,0)). Note that the system of these 1-forms satisfies the property (2.3).
For a frame y of Ky, we define a 1-form —wy(y) on U by

|
dn+ )n+2) pv(;} = o0,

where pV is the scalar curvature of the Tanaka-Webster connection V associated
with (U, (¢,&,0)). Note that the 1-form in the right hand side of (4.8)

(4.8) —ko(y)=—-(n+2)p—iln+ 2){(] + p(P)0+

1
- 2)p—i 2 PO +——p'0
(+20p = i+ {4 o0+ g0}
is independent of the choice of the local frame y of Ky. Thus the system of the
local 1-forms —rxo(y) defined by (4.8) determines a connection of K.
If, for any two Z-preserving almost contact structures (U, (¢,¢,0)) and
(U',(¢',&',0")), the connection forms —x}(y) of Ky and —xo(y) of Ky with
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respect to an arbitrary local frame y on UN U’ coincide, we see that the family
of the locally defined connections determines a connection of Kj;. From (2.3),
(2.4) and (2.10), we have

(4.9) (q"+p'(PN0") = (q+ p(P)O) = —(q" + p"(P")0)

on UNU’. Thus, applying (1.32), (4.4) and (4.9) to (4.8), we have —r((y) =
—x(y) for every frame y on UNU’. Thus (4.8) determines a connection —rx( of
Ky. Since D = D,, by (4.8), the map w is surjective. O

From Theorem 3.3 and Theorem 4.1, we immediately obtain

COROLLARY 4.2. Let (M,2,J) be a nondegenerate CR manifold of di-
mension 2n+1 (n>1). If a connection —n of Ky satisfies (3.23) and for each
D-preserving almost contact structure (U, (¢,E,0)), the difference u between —v
and —n satisfies (3.24), the CR Weyl connection D, corresponding to —n is CR
Einstein-Weyl.

Remark. For each Z-preserving almost contact structure (U, (¢,¢,0)), the
difference u between —v and —# is a complex valued 1-form on U. For any two
-preserving almost contact structures (U, (¢,¢,0)) and (U, (¢',&',0")), we have
from (4.4)

u —u=—(n+2)(p*+ig*) (mod0)

on UNU’. Since the local 1-form p* + ig* is a (1,0)-form, the equation (3.24) is
a global condition on M. Therefore, if the condition (3.24) holds for a con-
nection —y, we say that —y or D, satisfies (3.24).

Moreover, we have from Theorem 3.3 the following proposition.

ProposiTION 4.3. (M, 2,J) admits a CR Einstein-Weyl connection if and
only if there exists a connection of Ky satisfying (3.23) and (3.24) for (2,J).

Proof. Since we have shown the if part in Corollary 4.2, we shall show that
if there exists a CR Einstein-Weyl connection on M, there exists a connection of
K, satisfying (3.23) and (3.24).

Let D be a CR Einstein-Weyl connection on M. Consider the connection
—rxo of Ky defined by (4.8). We note that, for each Z-preserving almost contact
structure (U, (4,¢&,0)), the difference u between —v and —x satisfies (3.24).

Since D is a CR Einstein-Weyl connection, it satisfies the equation (2.22).
For each almost contact structure (U, (¢,&,0)), from (1.28) and (2.30), we have

(4.10)  dv(Yy,Y2)+i(n+2)dg(Y1,Y,)

=2i(n +2){/1 —%P(P) —WPV} do(Yy, Y»)
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for any Yi, Y> € 20, where —dv is the curvature form of the connection —v of
Ky and 1 is a function defined on U. Furthermore, from (4.8), we have

(411) —dKo(Y], Yz) = —dl)(Y], Yg) — i(l/l +2) dq(Yl, Yz)
- i(n+2){p(P) +mﬂv} do(Yy, Y2)

for any Y;,Y, e 2"°, where —dx, is the curvature form of the connection —rj
of Kj; and we have used the fact that each associated 1-form p of D relative to
(U,(4,&,0)) satisfies (2.2). Substituting (4.10) into (4.11), we have

(412) —dIC()( Yl, ?2) = —Zi(l’l + 2)1 dG( Yl, ?2)
for any Y;,Y> e 2"°. Define a 1-form —z by
(4.13) —n = —ko + 2i(n + 2)20.

Since the system of the functions A satisfies (2.23), we see that A0 is a global
I-form on M. Therefore —# becomes a connection of Kj,. From (4.12) and
(4.13), we have

(4.14) —dn(Y1,Y,) =0
for all Y;,Y> e 2"°. Therefore the connection —n of K satisfies (3.23) and
(3.24). O

Remark. Since the 1-form 2i(n+ 2)A0 on M is pure imaginary, we obtain
D,, = D, by Theorem 4.1.

Let {(U,(¢,&,0))} be a family of Z-preserving almost contact structures
on open sets U which cover M. Let .o/ be the set of all connections —« of Ky,
satisfying (3.24) and, for each (U, (¢,¢,80)),

(4.15) —dK( Yl7 72) = —il d@( Yl, )_/2)

for some real valued function A on U. We define an equivalence relation on
the set .&/* by setting —x ~ —3§ if and only if there is a system of real valued
functions a such that —x — (—9) = iaf and a’ = ee~*a on each the nonempty
intersection UNU’. And we write the set of all equivalence classes as .o/ */~.
Moreover, let #* be the set of all CR Einstein-Weyl connections on M. Then
from the proof of Proposition 4.3, we also have the following corollary:

COROLLARY 4.4. There exists a one to one correspondence between of * [~
and A*.

Remark. Since —dx is a global 2-form on M, for any two Z-preserving
almost contact structures (U, (¢,&,0)) and (U’, (¢',E',0")), we have A/ = ee™24
on UNU'.
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Proof. Let —k be a connection of K, satisfying (3.24) and (4.15). Take an
admissible frame (1.6) and the dual frame (1.7) of (U, (¢,&,60)). From (4.15), we
have

—dic = Agg0” A67 (mod 6F A 070" A 07, 0)

on U. Thus, since

1 5 5 ] >

Re(—dx) = 5 {2g5:0" A 07 + 1gg:0" A 07} (mod 0F A 07,07 A 07, 0)
1 v ] b

= 5 gy - 2g.5)0" A 07 (mod 07 A 07,07 A 07,0)

=0 (mod 0% A 07,07 A 07, 0),

we see that the set .o/ is contained in the set .«/. Therefore we may restrict the
domain of the map w to the set .«/*. We denote this restricted map also by w
and put w(—«) = D, for every —k € o/*.

Take a connection —x in «/*. Define a 1-form —# by

(4.16) = —K +iM0

on each U. Then —7 becomes a connection of Kj, since A0 is a global 1-form
on M. Since this connection —# of K, satisfies (3.23) and (3.24), the CR Weyl
connection D, is CR Einstein-Weyl in virtue of Corollary 4.2. Also from (4.16)
and Theorem 4.1, we have D, = D,. Therefore the image of the map w is
contained in the set #”.

For two connections —x and —3 of K, contained in the set .o/*, assume that
D, = Dy. From Theorem 4.1, there is a pure imaginary 1-form o« on M such
that —x — (—9) = «. From (3.24), we have «(Y) = 0 for every Y; € 2"°, which
also implies that a(Y;) =0 for every Y, e 2'°, because o is pure imaginary.
Thus there is a system of real valued functions a such that o =iaf on U.
Therefore the map .«/*/~ — %" induced by w is injective.

Fix a CR Einstein-Weyl connection D on M. For this connection D, define
the connection —ry of K3 by (4.8). From the poof of Proposition 4.3, this
connection —xj 18 contained in the set .«/* and satisfies D = D,,,. Therefore the
map /" /~— B* is surjective. O

5. Example of CR Einstein-Weyl real hypersurfaces in complex manifolds

Let N be a complex manifold of complex dimension n + 1 and J the almost
complex structure naturally induced by the complex structure on N. Also let
1: M — N be an imbedded real hypersurface in N. We often omit the notation
1, (resp. 1*) which denotes the differential map (resp. the pullback) of i throughout
this section. We define & by

9 =TMNJTM.
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Then 2 becomes a real vector bundle of rank 2n. The almost complex structure
J induces a complex structure on &, which is denoted also by J. Let 2" be a
subbundle of CZ composed of the eigenvectors corresponding to i of J. Then
since we have

9" =T"'NNCTM,

we see that 2! satisfies the integrability condition (C) in Section 1, where THN
the subbundle of CTN consisting of all complexified tangent vectors of type
(1,0). Thus the pair (2,J) on M becomes a CR structure on M, which is called
an induced CR structure on M. A real hypersurface M in the complex manifold
N is nondegenerate if the induced CR structure on M is nondegenerate. We
shall consider only the nondegenerate real hypersurface M in N.

Let Ky be the holomorphic line bundle consisting of all (n + 1,0)-forms on
N, that is, Ky = /\"+1 T1.0N, where T} N is the dual bundle of T"°N. Ky is
called the canonical line bundle on N. We denote a connection of a line bundle
by —# and the connection form with respect to a local frame y by —#(y) as we
did so in Section 3. Let —# be a connection of Ky. If y is a local frame of Ky,
that is, y is a nonvanishing local (n + 1,0)-form on N, the pullback of y is a local
frame of Kj;, which is denoted also by y, where K, is the canonical bundle on
M. Thus assigning the local frame y of Ky a local 1-form —i*(5(x)), we obtain
a connection of Kj, which is called the induced connection of Kj; and denoted by
—n*, that is,

(5.1) =" (1) = =" (n(x))-

In general, a connection of a holomorphic vector bundle is holomorphic if the
connection form with respect to every holomorphic local frame is a holomorphic
1-form. From Proposition 4.3, we obtain

THEOREM 5.1.  Let N be a complex manifold with a holomorphic connection of
Ky. Then every nondegenerate real hypersurface M in N admits a CR Einstein-
Weyl structure.

Proof. Fix an arbitrary Z-preserving almost contact structure (U, (¢,¢,0)).
Let V be the Tanaka-Webster connection associated with (U, (¢, ¢, 0)) and —v the
connection of Ky induced by V. On each U, we can take a frame of Ky as

(5.2) (dz' A Adz™

if necessary we shrink U, where (z!',...,z"") is a local complex coordinate on

N. To simplify the notation, we also denote (5.2) by dz' A--- Adz""!. Taking
an admissible frame (1.6) and the dual frame (1.7) on U, we obtain

(5.3) —v(dz' A+ Adz™Y) :d—er{fv(@/\Hl/\---/\G”)}
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where v,* = trace(vg”), vg” is the connection form of V with respect to (1.6) and
f is the complex valued function defined by

(5.4) dz' A AdZ"TN = fONO A A D"
on U. Since the (n+ 1,0)-form (5.2) is a closed form, we have
(5.5) —v(dz' A AdZ"TH(Y) =0

for every Y1 € 2"? as in the proof of Lemma 3.2. Note that the equation (5.5)
is independent of the choice of the local coordinates (z!,...,z"*') on N.
Therefore (5.5) is a property of the induced CR structure on a real hypersurface
in a complex manifold.

Let —y be a holomorphic connection of Ky. Since dz' A---Adz™! is a
holomorphic local frame of Ky, —#n(dz' A--- Adz"*!) is a holomorphic 1-form.
Thus we have

(5.6) —p*(dz A AdZTY(Y) =0

for every Y, € 2"°. Combining (5.5) with (5.6), we see that the induced con-
nection —z* satisfies (3.24). On the other hand, for the curvature form of the
induced connection —x*, from (5.1), we have

(5.7) —dn* (Y1, Y2) = —=d(n"(1))(Y1, Y2)

= —d(n(2) (1. ¥i,1.72)
=0

for all Y,,Y, e 2"° where y is an arbitrary holomorphic local frame of Ky.
Thus the induced connection —x* satisfies (3.23).

Therefore, from Corollary 4.2, the CR Weyl connection determined by the
induced connection —n* of K, is CR Einstein-Weyl. O

By making use of Theorem 5.1, we give some examples.

Example 1. Let 1: M — N be a nondegenerate real hypersurface in C"*!,
Assign zero-form on C™*! to the global holomorphic frame dz' A --- A dz"™! of
Keno derived from the standard coordinate (z!,...,z"*!) of C"'. Then we
have a flat holomorphic connection of Ky. Thus, by Theorem 5.1, we obtain
a CR Einstein-Weyl connection on M, which is written as D;. We investigate
the CR Einstein-Weyl connection Dy in detail. To begin with, note that the
pullback of dz! A---Adz"*! is the global frame of Kj;. Fix an arbitrary Z-
preserving almost contact structure (U, (¢,&,6)) and take an admissible frame
(1.6) and the dual frame (1.7) on an open set U. Then Dy is determined by the
following 1-form



CR WEYL GEOMETRY AND CONNECTIONS OF THE CANONICAL BUNDLE 141

_ 1 1 n+1
(5.8) P= Re{0—v(dz' A---Adz")}

_ 1 qa 1 n

_n+2Re{f—u(0A9/\ /\6)}

B 1 df o
_n+2Re<f_V“>’

where v,* = trace(vp”) , vg” is the connection form of V with respect to (1.6) and
f is the complex valued function defined by (5.4). From (3.8) and (3.11), the
local 1-form p is exact. Thus from the first remark in Section 2, there is a &-
preserving almost contact structure (U’,(¢',&’,6")) such that V' =Dy on U,
where V' is the Tanaka-Webster connection associated with (U’, (¢',¢&,6")). In
fact 0’ = ee*0 for the function u defined by (3.8). Therefore, by Lemma 3.2,
(U',(¢',&',0")) coincides with the pseudo-Einstein structure obtained in Lee [7].

Example 2. Let 1: M — N be a nondegenerate real hypersurface in C"*!,
Assign a global 1-form

n+1

(5.9) Zcﬁyzﬁ dz’?
By
to the global holomorphic frame dz! A--- Adz"! of Kcun, where (z!,...,z"1)

is the standard coordinate of C""' and cg, is constant. Then we have a
holomorphic connection of Ky whose curvature form is

n+1

Z Cpy dzP A dz.
By

This connection of Ky induces a CR Einstein-Weyl connection on M.

Example 3. Let (N,h) be a pair of a complex manifold N of complex
dimension n+ 1 and a Hermitian metric 2 on N, that is, 4 is a Riemannian
metric satisfying

h(JX,JY) =h(X,Y)

for all X, Y € TN, where J is the almost complex structure naturally induced by
the complex structure on N.

Let A”9 be the module of the (p,q)-forms on N. Then the exterior dif-
ferential d¢ of any form ¢ € 479 is the sum of a (p + 1, ¢)-form and a (p,q+ 1)-
form denoted respectively by d’¢ and d”¢.

We uniquely extend / to a complex bilinear form, denoted also by 4. For
all Z,WeT"ON,

(Z, W) — h(Z, W),
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is a sesquilinear form which becomes a hermitian fiber metric on the holomor-
phic vector bundle 7"°N. Then there exists a unique connection D of TN
such that the connection form with respect to every holomorphic local frame
is a (1,0)-form and the connection is compatible with /, that is, for any
Z, W el (T"°N),

dh(Z,W))=h(DZ, W)+ h(Z,DW),

which is called the Hermitian connection of h (cf. [4]). When we denote the
connection form of D with respect to a holomorphic local frame (0/0z,.. .,
8/0z"1) by ng?, that is, D(0/0zF) = 57 (0/0z7), we have

(5.10) np’ = d'hggh™,
B B

where hg; = h(0/0z",0/0z%) and h* is a component of the inverse matrix of the
hermitian matrix (/gz). The Hermitian connection of / naturally induces a con-
nection of the canonical line bundle Ky, which is denoted by —# as usual. In
fact, the connection form of —#x with respect to the local holomorphic frame
dz' A Adz™ s

(5.11) —n(dz" A+ Adz"1) = —trace(np”) = —d/h’[;gh&ﬁ = —d' log(det(hg))
because of (5.10). We see from (5.11) that the curvature form of the connection
—n is

(5.12) —dn = —d"d’ log(det(hg)).

Note that (5.12) implies that the global 2-form —d» on N is pure imaginary, that
is,

(5.13) Re(—dp) = 0.

If (N, h) is a Kdhler manifold, the Ricci form of the Kéhler manifold is given by
—2i dn (cf. [5]) and the first Chern class ¢;(N) is represented by the Ricci form
(cf. [1]). Note that the notation “—dx” does not mean at all that it is exact.

Let 1: M — N be a nondegenerate real hypersurface in N and —»* the con-
nection of K, induced by —. From (5.13), we have

(5.14) Re(—dn*) =0,

where —dn* is the curvature form of the connection —z*. Thus since the
induced connection —#* satisfies (4.5), it determines a CR Weyl connection D by
virtue of Theorem 4.1. The CR Weyl connection D is called the canonical CR
Weyl connection on M induced by the Hermitian structure 7 on N. By (5.5) and
(5.11), the canonical CR Weyl connection D satisfies (3.24). We consider when
the canonical CR Weyl connection D becomes CR FEinstein-Weyl. Yau showed
(cf. [1], [14)

LemmA 5.2. Let N be a compact Kihlerian manifold. If ¢;(N)=0, N
admits a Kdhler metric with zero Ricci form.

From this lemma, we immediately obtain
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COROLLARY 5.3. Let N be a compact Kdihlerian manifold with zero first
Chern class. Then every nondegenerate real hypersurface M in N admits a CR
Einstein-Weyl structure.

Proof. From Lemma 5.2, we have a Kédhler metric 2 on N with zero Ricci
form. Let —# be the connection of Ky induced by the Hermitian connection of
this metric 4. Since the Ricci form is zero, we have —dy = 0. Thus, combining
this result with (5.11), we see that the connection —# of Ky is holomorphic.
Therefore we see from Theorem 5.1 that every nondegenerate real hypersurface
M in N admits a CR Einstein-Weyl connection. In fact the canonical CR Weyl
connection induced by / is CR Einstein-Weyl. O

Acknowledgements. 1 wish to express my deep gratitude to Professor K.
Sakamoto for the encouragement and suggestions which he gave me during the
time I was working on this paper. I am indebted to Y. Nitta for his help.

REFERENCES

[1] A. L. Bessg, Einstein manifolds, Springer-Verlag, Berlin, Heidelberg, New York, 1987.

[2] F. A. Farris, An intrinsic construction of Fefferman’s CR metric, Pacific J. Math. 123
(1986), 33-45.

[3] H. JacoBowitz, The canonical bundle and realizable CR hypersurfaces, Pacific J. Math. 127
(1987), 91-101.

[4] S. KoBavasHi, Differential geometry of complex vector bundles, Iwanami Shoten and
Princeton University Press, 1987.

[5] S. KoBavasur aNp K. Nowmizu, Foundations of differential geometry I and II, Interscience,
New York, London, 1963.

[6] J. M. Leg, The Fefferman metric and pseudohermitian invariants, Trans. Amer. Math. Soc.
296 (1986), 411-429.

[7] J. M. Leg, Pseudo-Einstein structure on CR manifolds, Amer. J. Math. 110 (1988), 157-178.

[8] T. OukuBo anD K. Sakamoro, CR Einstein-Weyl structures, Tsukuba J. Math. 29 (2005),
309-361.

[9] K. SakamoTto AND Y. TAKEMURA, On almost contact structures belonging to a CR-structure,
Kodai Math. J. 3 (1980), 144-161.

[10] K. SAKAMOTO AND Y. TAKEMURA, Curvature invariants of CR-manifolds, Kodai Math. J. 4
(1981), 251-265.

[11] C. M. StANTON, Intrinsic connection for Levi metrics, Manuscripta Math. 75 (1992), 349-364.

[12] N. Tanaka, A differential geometric study on strongly pseudo-convex manifolds,
Kinokuniya Book-Store Co. Ltd. Tokyo, 1975.

[13] S. M. WEBSTER, Pseudo-hermitian structures on a real hypersurface, J. Differential Geom. 13
(1978), 25-41.

[14] F. Zueng, Complex differential geometry, American Mathematical Society and International
Press, 2000.

DEPARTMENT OF MATHEMATICS

FACULTY OF SCIENCE

SAITAMA UNIVERSITY

SiMO-OHKUBO, SAKURA-KU, SAITAMA 338-8570
JAPAN

E-mail: tohkubo@rimath.saitama-u.ac.jp



