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CONSTRUCTION OF LAGRANGIAN SURFACES IN COMPLEX
EUCLIDEAN PLANE WITH LEGENDRE CURVES

BaNG-YEN CHEN

Abstract

An important problem in the theory of Lagrangian submanifolds is to find non-
trivial examples of Lagrangian submanifolds in complex Euclidean spaces with some
given special geometric properties. In this article, we provide a new method to con-
struct Lagrangian surfaces in the complex Euclidean plane C? by using Legendre curves
in $3(1) < C>. We also investigate intrinsic and extrinsic geometric properties of the
Lagrangian surfaces in C? obtained by applying our construction method. As an ap-
plication we provide some new families of Hamiltonian minimal Lagrangian surfaces in
C? via our construction method.

1. Introduction

An immersion f: M" — M" of an n-manifold M” into a Kaehler n-
manifold M" is called a Lagrangian immersion if the complex structure J of
M" interchanges each tangent space of M" with its corresponding normal space.
Lagrangian submanifolds appear naturally in the context of classical mechanics
and mathematical physics. For instance, the systems of partial differential equa-
tions of Hamilton-Jacobi type lead to the study of Lagrangian submanifolds
and foliations in the cotangent bundle. Furthermore, Lagrangian submanifolds
are part of a growing list of mathematically rich special geometries that occur
naturally in string theory.

An important problem in the theory of Lagrangian submanifolds is to find
non-trivial examples of Lagrangian submanifolds with some given special geo-
metric properties. For instance, a method was given in [23] to construct an
important family of special Lagrangian submanifolds in C" with large symmetric
groups. Moreover, a method was introduced in [17] to construct Lagrangian
submanifolds of constant sectional curvature by utilizing twisted products
decompositions of real space forms. Furthermore, R. Aiyama introduced in [1,
2] a spinor-like representation formula which parameterizes immersions through
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two complex functions Fj, F> and a real one (the Lagrangian angle f).
Aiyama’s formula is very useful to construct many examples of Lagrangian
surfaces in C2.

For a Lagrangian submanifold in a Kaehler manifold with mean curvature
vector H and shape operator A4, the dual 1-form oy of JH is the well-known
Maslov form (up to constants). A non-minimal Lagrangian submanifold is
called Maslovian if its Maslov vector field JH is a principal direction of Ay (see
[12, 18]). Maslovian Lagrangian surfaces of constant curvature in C*> have been
classified in [10, 11].

A regular curve z:I — S3(r) =« C* in the hypersphere S3(r) of radius r
centered at the origin of C? is called a Legendre curve if {z'(t),iz(t)» = 0 holds
identically.

In [7], the author introduced the notion of complex extensors to construct a
special family of Maslovian Lagrangian submanifolds in C”. Furthermore, he
also established a method in [9] to construct flat Lagrangian submanifolds in
C" by using special Legendre curves in $?"~!(1) = C". In particular, his result
implies that, for any unit speed Legendre curve z : I — §3(1) < C? and any real-
valued function p(¢) defined on an open interval I containing 0, the map

t

(1.1) L(s, 1) = sz(t) + L p(0)z'(¢) dt

defines a flat Maslovian Lagrangian surface in C2.

In this article, we extends the idea of [9] to provide a more general method
than [9] to construct Lagrangian surfaces in C?> by using Legendre curves in
S3(1) =« C%. In this article, we also investigate extrinsic geometric properties
of Lagrangian surfaces in C? obtained in such way. Moreover, we completely
classify minimal Lagrangian surfaces as well as Lagrangian surfaces of constant
curvature in C? which are obtained by applying our construction method. As an
application we apply our construction method to provide some new families of
Hamiltonian minimal Lagrangian surfaces in CZ.

2. Preliminaries

Let f: M — C? be an isometric immersion of a surface M into the complex
Euclidean plane C?. We denote the Riemannian connections of M and C? by V
and V, respectively; and by D the connection on the normal bundle of the surface.

The formulas of Gauss and Weingarten are given respectively by

VyY =VyY +h(X,Y),
2.1) N
Vxé = 7A5X+Dxé

for tangent vector fields X and Y and normal vector field £&. The second fun-
damental form / is related to the shape operator A: by
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Ch(X,Y), &) =<A4:X,Y).

The mean curvature vector H of M in C? is defined by H :% trace h. The
length of H is called the mean curvature function.

If we denote the Riemann curvature tensor of V by R, then the equations of
Gauss and Codazzi are given respectively by

RIX, VZ,W>=L{WX,W),h(Y,Z))—<h(X,Z),h (Y, W),
(Vh)(X,Y,Z)=(Vh)(Y,X,Z),
where X, Y, Z, W are vector fields tangent to M and Vi is defined by
(VR)(X,Y,Z) = Dxh(Y,Z) — h(VyY,Z) — h(Y,VxZ).
When M is a Lagrangian surface in C?, we also have (cf. [20])
DyJY = JVyxY,
Ch(X, Y),JZy = <h(Y,Z),JX> = h(Z, X),JY ).

(2.2)

(2.3)

The following lemma was obtained in [8].

LemMA 2.1. We have the following:
(@) If z: 1 — S3(1) = C? is a unit speed curve satisfying

(2.4) 2"(6) — iA(0)Z'(£) + z(H) = 0

Sfor some nonzero real-valued function 1, then z = z(t) is a Legendre curve.

(b) Conversely, if z: I — S*(1) = C? is a unit speed Legendre curve, then it
satisfies (2.4) with A equal to the curvature function of the Legendre curve
in S3(1).

Remark 2.1. A unit speed curve z:1 — S3(r) = C? satisfying (2.4) with
/=0 is a great circle. A great circle in S(r) can be either Legendre or non-
Legendre. For examples, z(¢) = (cos t,sin ¢) is a Legendre curve in S3(1) and
z(£) = (¢™,0) in S3(1) is not a Legendre curve.

We also need the following lemma.

LEmMMA 2.2. Let A, B be two vectors in C" and z, w be two complex numbers.
Then we have

{zA,wB) =z, w){A4, B) + iz, w){A,iB),
(zA,iwB) = {z,w){A,iB) + {z,iw)»{A4, B),

where {z,w) = Real(zw) denotes the real part of the complex number zw, W the
complex conjugate of w, and {A,B) denotes the canonical inner product of the
vectors A and B in the complex Euclidean n-plane C".

Proof. Follows ecasily by straightforward computation. O
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3. Interaction of Legendre curves and Lagrangian surfaces

For each w e C" we put |w| =/ {w,w). We also put C* =C — {0}. Recall
that a curve is called regular if its speed function is nowhere zero.

The following result provides a simple method to construct many examples
of Lagrangian surfaces in C? by utilizing Legendre curves.

THEOREM 3.1. Let f : I} — C* be a regular curve defined on an open interval
Landz: L, — S3(r) C? be a regular spherical curve defined on an open interval
I, containing 0. Then, for any functions p: I, — C, we have the following:

(i) If z=2z(¢) is a Legendre curve, the map:

t

(3.1) Lm@ﬂzf@dﬂ—Jp®5mdt

0

defines a Lagrangian isometric immersion of M* = (U, gpp-) into C2, where
U={(s,)eh xL:[f(s) # p(1)}

and ggy. is the induced metric given by

(3:2) gp= = 1S )7 ds + £ (s) = p(OPI' (1) de’.

(ii) Conversely, if f contains no circular arcs and if Lg,. in (3.1) defines a
Lagrangian immersion, then z: I — S*(r) C? is a Legendre curve.

Proof. Let f: I} — C* be a regular curve, z: I, — S3(r) = C? be a regular
spherical curve, and L = Lg. be the map defined by (3.1). Then we have
0L
Li=""= f(9)=(1), <22 =0,

L= = (7(5) ~ p(0)0).

By applying Lemma 2.2 and (3.3), we find

(3.3)

(L, Ly = | f'(s)]%,
(34) <LS,L[> == <if/7f - p><27 iZ/>a
L, Ly =f = pl*l=')-

If z(¢) is a Legendre curve in S3(r) = C?, then (3.3) and (3.4) imply that the
induced metric on U is given by (3.2). Since z(7) is a Legendre curve, Lemma
2.2 and (3.3) imply {L,,iL,> = 0, which shows that L : M? — C? is Lagrangian.
This proves statement (i).

From (3.3) and Lemma 2.2, we have <{L,iL,y = {f", f — p)<{z,iz’>. So,
when Lj. is Lagrangian, we obtain {f”(s), f(s) — p(¢)><z(¢),iz'(¢))> = 0 identi-
cally.
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If {f7'(s), f(s) — p(t)> =0 holds for all s in an open subinterval I < Ij,
then we get |f(s) — p(r)|2 = 0 which implies that, for each 7€ L, the curve f is
contained in a circle centered at p(f). This is impossible unless p is a constant.
Hence, when f = f(s) contains no circular arcs, we get {z,iz’> =0, Thus, z =
z(f) is a Legendre curve in S3(r). O

Remark 3.1. For each Rab # 0,
. . 1

z(6) = a(e® be™ ), a=——,

( ) ( I )) \/1—|——b2
is a unit speed Legendre curve whose curvature A in S3(1) is the constant
(b* —1)/b. Unit speed Legendre curves in S3(1) with nonzero constant cur-
vature are congruent to those curves. Obviously, such Legendre curves lie on a
flat torus in S3(1). Moreover, when b is a rational number the Legendre curve,
z(z) is a closed curve.

Remark 3.2. Using closed Legendre curves, we may construct many
compact Lagrangian surfaces in C? by applying Theorem 3.1. In fact, if z =
2(t) : §'(a) — S3(1) =« C? is a closed unit speed Legendre curve in S3(1) = C?,
f = f(s): S'(h) — C* a constant speed curve in C* and p = p(¢) : S'(a) - C a
regular curve in C which does not intersects the curve f, then the immersion Ly,
defined by (3.1) gives rise to a compact Lagrangian surface in C? according to
Theorem 3.1.

Remark 3.3. The Hopf fibration z: S3(1) — CP'(4) is given by

1

n(z1,22) = 5(22122; 121> = 122%),  (z1,22) € S3(1) = C2.

For each Legendre curve z = (z1,z) in S3(1), the projection moz is a curve in
S2(4) = CP'(4). Conversely, each curve o in S?(}) gives rise to a horizontal lift
& in S3(1) via 7 which is unique up to a factor e”, reR.

A horizontal lift of « in S?({) is a Legendre curve in S3(1) with the same
curvature function. For each complete curve o in S?(1), the horizontal lift & of o
is a complete Legendre curve in S3(1). The complete Legendre curves obtained
from closed curves in $*(3) via the Hopf fibration 7 are closed Legendre curves if
they were periodic. By using complete Legendre curves in S3(1), we can con-

struct many complete Lagrangian surfaces in C> via Theorem 3.1.

4. Extrinsic properties

For a unit speed plane curve f : [} — C, we define the curvature function of
f by x(s) = {f"(s),if'(s)>. We may express f in polar form as f = p(s)e’®).

THEOREM 4.1. Let f : I} — C* be a unit speed curve, z: I, — S*(1) =« C* a
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unit speed Legendre curve, p = p(t) a complex-valued function defined on I, and
L=Lg.:(U,gp-) — C? be the Lagrangian isometric immersion defined by
I3

(4.1) Liye(s.0) = £()2(0) - | p(0)2'() .

0
Then we have:

(1) Ly = 0L/0s is an eigenvector of the shape operator A;p, with eigenvalue K,
where i is the curvature function of the plane curve f = f(s).

(2) L, =0L/dt is an eigenvector of the shape operator Ay, if and only if p
is constant and f(s) is a part of a line through the point p, ie., f(s) =
cs+ p for some ce C with |c| = 1.

(3) L is a totally geodesic immersion if and only if
(3.1) p is constant, f = f(s) is a part of a line through p, and
(3.2) z: I, — S*(1) € C* is a great circle in S*(1).

Proof.  Under the hypothesis, we know from (3.2) of Theorem 3.1 that the
induced metric on U via Ly is the twisted product metric:

(42) app= = ds> +1/(s) = p(0)|” dr*.
From (4.1) we have
oL

L= g = f/(S)Z(l),
@3 L= = (76) - )0,

Ly =f"(8)z(1), L= f"(s)z'(2),
Ly = (f(s) = p(1)z" (1) = p' ()= ().
By applying (2.3) and (4.3), we find

<L.vs7 ZLY> = <f”7 lfl> =K,

<Lssa lLf> = <LA'1‘7 lLS> = 07

(Lu,iLsy = {Lg,iL;y = {f',if —ip),
(LusiLey = |f = pl*¢" iz = p'if = ip).
Thus, we obtain statement (1) by applying (4.2) and (4.4).

From the third equation in (4.4), we know that L, = 0L/dt is an eigenvector
of Ay, if and only if {f'(s),if(s) — ip(¢)> = 0 holds identically. Since the later
condition holds if and only if the position vector of y,,(s) = f(s) — p(z) is
always tangent to the curve 7, for any fixed 7. Therefore, for each 7, 7, is a
part of a line through the origin of C. Thus, there exists a unit vector field
¢(t) in C such that f(s) — p(t) = ¢(¢f)s. This implies that ¢ and p are constant.

Thus, we get f(s) = ¢s + p, Therefore, f(s) is a part of a line through p. This
gives statement (2).

(4.4)



90 BANG-YEN CHEN

Let us put e = Ly and e; = L;/|f — p|. Then e, e, are orthonormal vector
fields according to (4.2). Hence, by using (4.2), (4.4) and Lemma 2.1, we have

K(s) 0
AJC’I = 0 <f/7if_ip> ’
2
|f =Pl
(45) . Sif i)
4 If =l
Jey = . . . .
SLif —ipy A <plif —ipy

2 3
f=pl* f=rl =l
where / is the curvature function of z in S3(1).

Suppose that L : M? — C? is a totally geodesic immersion. Then, statement

(2) implies that p is constant and f = ¢s+ p for some unit complex number c.
Moreover, from (4.5), we also have

(4.6) 0= ()| (s) = pI> = <p,if (s) — ip) = A(D)| f (s) — p|*.

Using these we find A =0. This shows that the Legendre curve z has zero
curvature in S3(1). Thus, z is an open portion of a Legendre great circle in

S3(1).
The converse follows easily from (4.4) and Lemma 2.1. Thus, we obtain
statement (3). O

5. Minimality
The Lagrangian surface M, in C? defined by
M() = {(21,22) € C2 : ‘21‘22 = |22|21 and 2|Zl| |22| = 1}

is an area-minimizing minimal Lagrangian surface invariant under the diagonal
action of SO(2) which is known as the Lagrangian catenoid (see [21]). Tt was
proved in [4] that, up to dilations, the Lagrangian catenoid is the only minimal
non-flat Lagrangian surface of revolution in C2. Moreover, it was shown in
[5] that, up to dilations, the Lagrangian catenoid is the only minimal non-flat
Lagrangian surface which is foliated by circles of C2.

It is well-known that an orientable minimal surface in C*> = (E* J) is a
Lagrangian surface if and only if it is a holomorphic curve with respect to
some other orthogonal almost complex structure on E* ([19], also see [2] for a
simple alternate proof of this fact). The holomorphic curve corresponding to the
Lagrangian catenoid is (w,1/w), we C*.

TuEOREM 5.1. Let f : I} — C* be a unit speed curve, z: I, — S*(1) = C? a
unit speed Legendre curve, and p = p(t) a complex-valued function defined on I.
Then the Lagrangian immersion Ly, : (U, gp-) — C? defined by
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t
(51) Lils) = S0)200) = | p(0)2'()
is minimal if and only if either Ly, is a totally geodesic Lagrangian surface or,
up to dilations and rigid motions, L. is an open portion of the Lagrangian
catenoid.

Proof. Let f:I; — C* be a unit speed curve, z: L, — S(1) = C* a unit
speed Legendre curve, and p = p(f) a complex-valued function defined on 1.
Then (4.5) and Theorem 4.1 imply that Lg. is a minimal Lagrangian immersion
if and only if we have:

(i) The curvature function r(s) of f satisfies

(5.2) k() /() = p()]> + {f'(s),if (s) — ip(1)> = 0.
(ii) The curvature function A(¢) of the Legendre curve z(¢) in S3(1) satisfies
(5.3) A0S (s) = p()|* = <p'(0), i (5) — ip(1)> = 0.

Now, let us assume that Lg. is a minimal Lagrangian immersion.

Cast (a). f”(s) =0. In this case we have k =0 and f(s) = ¢;s+ ¢, for
some complex numbers ¢, ¢, with |¢;] = 1. Also from (5.2) we get {f”,if —ip)
=0. Thus, by applying (4.5) and (5.3), we know that Ly, is a totally geodesic
immersion.

Cast (b). f"(s) #0. In this case we have x # 0 since f” = ixf’. By dif-
ferentiating (5.2) with respect to s, we find

k()1 (5) = p(0)]* + 36 (5), £ (5) = p(1)> = 0,

which can be expressed as

, 30
(5.4) (Injx(s)])" + 5 = (Inl.f = p*) =0.
By solving (5.4) we get
a0

(5.5) |f—p|2 :m
for some real-valued function (¢). Substituting (5.5) into (5.2) gives
(5.6) S s) = p(0),if () = Y20 (s).

Differentiating (5.6) with respect to s gives

2

(57) ) = plo). £y = -

35c5/3
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Since f is a unit speed curve with k # 0, f”(s), f"(s)/x form an orthonormal
frame over R. Thus, we obtain from (5.6) and (5.7) that

K_/

(58) 169 = pl0) =6 (555 =1 )01 )
By differentiating (5.8) with respect to 7, we find
(59) 0 =20 (35 = 1 oW (015,

If /(1) #0, then (5.9) gives

p'(t) PWVE K—l—i (s
10) oL (31«2 )f ()

K/
352

which implies that

N / K’
(s.11) P = 200000, (55
for some complex number 6. Thus, we have
(5.12) p() =y (05 +1

for some complex numbers ¢, #. Substituting (5.12) into (5.8) gives

(513 70 ={o- (=)0 J0 4

which implies that y is constant. Thus, p is also constant by (5.12). Hence,
A(t) = 0 by (5.3). Therefore, z = z(¢) is a Legendre great circle in S3(1). More-
over, from (5.5), we find

2\
14 —pP=(==
(5.14) 16 - =(55)
where pe C and 0 # a e R. Substituting (5.14) into (5.2) gives

(5.15) Gf'(s), f(s) — p = a¥ K.
Now, let us reparametrize f as f(s(x)) = p+ x+iy(x). Then we have

y"(x) o

(5.16) K=——"—"->—5, f,f-p>=
(14 (0}

By combining (5.15) and (5.16), we get
(5.17) a*y’(x) = (y = xp'(x))".
Letu=y—xy'. We get du/dx = —xy”. Thus, (5.17) becomes a*u’(x) = —xu>.
Solving this equation gives y — xy’ = +a?/vx? — a*c for some constant ¢. After
solving this first order differential equation, we have

- iK”)f’(S) s

y —xy'(x)
1+ y' ()
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_[Vx2—d*c
for some real number b. Thus, we find
x2 —a%c
5.19 = lFib)xFi—s—
(5.19) f=p+(1Fib)xFi ey

From (5.16) and (5.19), we discover that

+abc?
((x + a2bev/x2 — a%¢)? + a2 (x2 — a*¢))**
Hence, we obtain from (5.14), (5.19) and (5.20) that

(5.20) K=
2
T A
(x + a’beVx? —a*e)? + a* P (x* —ate) = a*P | X + <% + bx) ;

which implies that 5% = (1 —a*c?)/(a*c?). Thus, we have a*c> <1. Conse-
quently, we see from (5.18) that f(s) — p = x(s) + iy(s) lies in the hyperbola:

W de B
(5.21) X2+ e V- »? =7

By applying the following rotation:

1, (VI=a*e2\\__ (1 [VI—a*?\).
x=cos|z tan | ————| |X Fsin|; tan~ | ————] | 7,
2 a’c 2 a’c
= tsin : tan~! L= dle X + cos 1 tan ™! L—ale? y
e a’c x 2 a’c ¥

on C?, equation (5.21) becomes x> — 32 = a>. Since z(¢) is a unit speed Legendre

great circle in S°(1) € C* which can be represented by (1/v2 )( e”'"), the
Lagrangian immersion Lg. is thus congruent to (ae¥e™ ae™"e™™) in E Thus,
up to dilations and rigid motions, Lg. is an open portion of the Lagrangian
catenoid M.

The converse can be verified by direct computation. O

6. Hamiltonian minimality

Oh [26] introduced the notion of Hamiltonian minimal surfaces as follows.
A Lagrangian immersion L : M — C? is said to be Hamiltonian minimal if it is
a critical point of the area functional restricted to (compactly supported) Hamil-
tonian variations of L, i.e., variations with normal variational vector field ¢ such
that the dual 1-form o of J¢ on M is exact.
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Lemma 6.1. If f=f(s): I, = C* is a unit speed curve, z=12z(t): I, —
S3(1) € C? a unit speed Legendre curve, and p = p(t) a complex-valued function
defined on I, then the Lagrangian immersion Ly, : (U, gp-) — C? is Hamiltonian
minimal if and only if we have

(6.1) K'()|f = pl®+ {2 (1) + 2k()< S, f = pOYS - I
O " f = f - oIS — ol
= 3<ip,7p - f><p/7f - p>a

where i is the curvature of f in C and J is the curvature of z in S3(1).

Proof. It follows from (4.2) and (4.5) that oy satisfies
62 2= (s LL) (s LN
1/ = pl ./ = pl

In views of (4.2), we know that e; = 0/ds and e, = |f — p|~'0/d¢ form an
orthonormal frame. So, the dual frame of {ej,e,} is given by

o'=ds, o*=|f-p|dt.

From these we find

(6.3) do' =0, dw®= Mwl A
|f = pl?

If % denotes the star operator on M, we obtain from (6.2) that

* _ )”(t) _ <p,ai](_ lp> 1 _ <f/7if - lp> 2
(6.4) 2(xapy) = (If—pI TErL )w <K(S)+7|f—p|2 )w .

Therefore, by applying f”(s) = ix(s) f'(s) and (6.3), we know that Maslov 1-form
oy 1s co-closed if and only if (6.1) holds identically.

On the other hand, it is also known from [26] that a Lagrangian immersion
L: M — C? is Hamiltonian minimal if and only if its Maslov form is co-closed.
Therefore, we obtain the lemma by combining these two results. O

LEMMA 6.2. If f: I} — C* is a unit speed curve and z : I, — S*(1) « C* a
unit speed Legendre curve, then the immersion

(6.5) Le: D x h—C%  (s,1) = f(s)=(1)

is a Hamiltonian minimal Lagrangian immersion (with respect to the induced
metric) if and only if the following two conditions hold:
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(i) The curvature function A(t) of z(t) in S3(1) satisfies J'(t) =« for some
xeR.
(i) The curvature function x(s) of f(s) satisfies either

(6.6) K (8)F2(5) + (ot + K(8)F'(5)) F (5) = 4F(s) — F(s),

or

(6.7) k' ()F2(s) + (o + x(s)F'(5))F(s) = — F;fs) \/4AF(s) — F2(s),

where F(s) =|f(s)].

Proof. Let f: I} — C* be a unit speed curve and let z: I, — S3(1) = C? be
a unit speed Legendre curve. Assume that the Lagrangian immersion Lg.(s,t) =
f(5)z(¢) is Hamiltonian minimal. Then Lemma 6.1 implies that the curvature x
of f(s) and the curvature of z(¢) in S3(1) satisfy

(6.8) K|F1H 4 L0 + 26 f7 IO = K if-

Since both x and f are independent of 7, (6.8) implies that A'(¢) is a real
number, say «. So, we obtain condition (i).
Because f(s) is assumed to be of unit speed, we have

J =S+ LD
which implies that

R |
(6.9) 'y = F5\J4F = F2(s).

If {f,if"> = —%\/4F — F’2(s) holds, then we obtain (6.6). Similarly, if we have
{fLif"y =1+/4F — F(s), then we obtain (6.7).

Conversely, by applying Lemma 6.1, it is easy to verify that conditions (i)
and (ii) imply the Hamiltonian minimality of the Lagrangian immersion L.. [

The following theorem determines Hamiltonian minimal Lagrangian immer-
sions defined by L. such that f does not contained in a line through the origin.

THEOREM 6.1. Let f: I} — C* be a unit speed curve defined on an open
interval I; 30 and z : I, — S3(1) = C? be a unit speed Legendre curve. If f(s) is
not parallel to f'(s) for s € I, then L. defined by (6.5) is Hamiltonian minimal if
and only if we have:

(@) The curvature function J. of z in S*(1) is given by i(t) = at + f for some
o, f eR; and
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(b) Up to rotations about the origin, the curve f(s) is given by

B i [*+\/4F(s) — F(s)
(610) f(S) =/ F(S) exXp (iEJOT dS)7

where F(s) with 4F(s) > F'(s)? is a positive solution of the differential equation:
(611)  4F4F — FP)F" + F/(F” - 2FF") = +4aF (4F — ).

Proof. Let f: I} — C* be a unit speed curve defined on an open interval
L30and let z: I, — S3(1) < C? be a unit speed Legendre curve. Assume that
f(s) is not parallel to f’(s) for any se ;. Then {f,if’> is nowhere zero.

If Le(s,t) = f(s)z(¢) is Hamiltonian minimal, then Lemma 6.2 implies that
z has constant curvature in S*(1) and f satisfies condition (ii) of Lemma 6.2.

By using the assumption that f(s) is of unit speed, we find

(6.12) Sy =i()f'(s), S =L SOS + LS
So, by applying the first equation in (6.12), we find
F" =2+ 2k f,if "),
where F = |f|>. Hence, from (6.9) and the second equation in (6.12), we obtain

o
4F(s) — F2(s)
By substituting (6.13) into (6.6) and (6.7), we obtain (6.11). Due to F' =2{f, f'>
and (6.9), the second equation in (6.12) can be expressed as

(6.14) f(s) = LR 2;?(1(;) - Flz(S)f(s),

After solving this differential equation we obtain

(6.15) 7(s) = 7/F(s) exp (i%JmS)—_W ds)
0

F(s)

for some complex number j.

Now, by a direct computation we obtain |f’(s)|> = [y|>. Because f(s) is
of unit speed, this implies that y is unitary. Hence, after applying a suitable
rotation about the origin in C, we have y = 1. Consequently, up to rotations of
C about the origin, f(s) is given by (6.10).

Conversely, assume that F(s) is a positive solution of the differential equation
(6.11) and it satisfies 4F > F">. Let us define the curve f(s) in C* by (6.10).
Then we have
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(6.16)  F(s) = /()]

617)  fi =B E ,-2;% e <§ ] S ds>,

(6.18)  f"(s) =

Q- F")(&iF' — VAF - F") (i J VAF — F” s
2VA4F? — FF”? P\a)y F '

It follows from (6.17) that |f’(s)] = 1. Hence f(s) is a unit speed curve.
From (6.17), (6.18) and the identity f”(s) = ix(s)f’(s) we know that the cur-
vature of f(s) is given by (6.12). Thus, (6.11) can be expressed as one of (6.6)
and (6.7). From these, we conclude that the Lagrangian immersion Lp is
Hamiltonian minimal according to Lemma 6.2. O

Remark 6.1. The third order differential equation (6.11) admits infinitely
many positive solutions F(s) with 4F(s) > F?(s). This can be seen as follows:

Let us put y; = F(s), y» = F'(s) and y; = F”(s). Then (6.11) is equivalent
to the following first order differential system:

yi(s) = y2,  ya(s) = y3,

6.19 / 2
( ) /(s)_yz(y§_2y1y3)2 + % 4yl y2
’ 4p3(y3 —4y1) T i

It follows from Picard’s theorem (see, for instance [25, page 819]) that, for
any given initial conditions:

yi(so) = »7, yas0) = »3,  ya(so) = »3

at an initial point sy with »? >0 and 4y > »9, the initial value problem has
a unique solution in some interval containing sy). Therefore, the third order
differential equation (6.11) admits infinitely many positive solutions F(s) with
4F(s) > F"(s).

Remark 6.2. 1f F"(s) # 2 (i.e., the curvature function of f(s) is nonzero),
then the third order differential equation (6.11) with o =0 can be written as

'

(6.20) 2(%) =2F —F'F",

which is equivalent to

(6.21) 4F*(2 — F")? = (4F — w)(4F —w + ¢),

where ¢ is a real number. Equation (6.21) can be written as
dF’

2
(6.22) 4F? (2 - F’ﬁ> = (4F — F?)(4F — F"* + ¢).
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Solving (6.22) for F’ yields

(F=e) gy (F=1)

2 F? =4F —
(6.23) 4rF arF

for some positive number r. Therefore, if ¢(F) is an anti-derivative of
2VrF 2VrF
or
\/16}’F2—(F—C}’)2 \/16rF2—(cF—r)2

then the inverse function F(s) = ¢~!(s) of ¢(F) is a solution of (6.23). Hence, it
is also a solution of the third order nonlinear equation (6.11) with « = 0.

(6.24)

)

Remark 6.3. In principle, one can construct infinitely many examples of
Hamiltonian minimal Lagrangian surfaces by using the solutions of differential
equation (6.11) via Theorem 6.1. Here we provide two families of such Hamil-
tonian minimal Lagrangian surfaces.

Example 6.1. For any ceR, a unit speed Legendre curve in S°(1) with
curvature ¢ is congruent to

2(1) = (1/V/1 + b2)(e™ be™"/?)
with b =1(c+v4+2).

On the other hand, the simplest solution of the differential equation (6.11)
with « = 0 is given by F(s) = r?, where r is an arbitrary positive number. The
unit speed curve f(s) in (6.10) corresponding to F(s) = r? is the circle given by
f(s) =re®". Therefore, the corresponding Hamiltonian minimal immersion ;.
is congruent to

reis/r

iie

By applying formula (7.1), we know that, for any real numbers r, 5 > 0, this
Hamiltonian minimal Lagrangian surface is flat.

(6.25) L, (s,0) = (e he~ /"),

Example 6.2. 1If we put r=1/4V1 —a? for some ae (0,1), then ¢(F) =
V/F/a is an anti-derivative of the first function in (6.24) with ¢ = 0. Thus, the
inverse function F(s) = a’s* is a solution of (6.11) with o = 0.

It is easy to verify that the unit speed curve f(s) corresponding to F(s) =
a%s? is f(s) = as'+V1=4"/@ and the curvature function of f(s) is VI — a2/(as).

The corresponding Hamiltonian minimal immersion Ly is thus congruent to

asl+iu" V1-a?
V1+b?

For any real numbers «,c¢ > 0, this Hamiltonian minimal Lagrangian surface is
flat.

6.26 Li(s, 1) = e™t b)),
f:
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FIGURE 1. Curve f(s) =s'*/V/2. FIGURE 2. Curve f(s) = s!+2V6i/5,

Remark 6.4. 1In general, the Hamiltonian stationary Lagrangian surfaces
given in section 4 of [3] seems to be different from the examples given above,
since our examples of Hamiltonian Lagrangian surfaces do not admit a circle
symmetry in general. However, the Hamiltonian stationary Lagrangian surfaces
Jo.a (0<a<1) given in Remark 4 of [3] are congruent to the Lagrangian
surfaces Lz, defined by (6.25) with b =1 (i.e., to those with z being a Legendre
great circle in S3(1)).

Remark 6.5. Hamiltonian stationary tori in C? are also studied and con-
structed by Hélein and Ramon in [22] which include the examples previously
constructed by Castro and Urbano in [6].

COROLLARY 6.1. If f: I} — C* is a unit speed curve with constant curvature
k and z: 1L — S3(1) C? a unit speed Legendre curve, then the Lagrangian
immersion L. defined by L. = f(s)z(t) is Hamiltonian minimal if and only if we
have
(i) z:5 — S3(1) has constant curvature in S*(1) and
(i) f is either an open portion of a line through the origin or an open portion
of a circle centered at the origin.

Proof. Let f:I; — C* be a unit speed curve with constant curvature x
and z: I, — S3(1) = C? a unit speed Legendre curve in S3(1). Assume that the
Lagrangian surface defined by L.(s,7) = f(s)z() is Hamiltonian minimal.

If k=0, we have f(s) = ¢;s+ ¢, for some unitary complex number ¢; and
complex number ¢;. Thus we obtain
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F(s) = s* + 2{er, eds + |ea|*.
Substituting this into (6.6) or (6.7) of Lemma 6.2 gives

(6.27)  a(s* +2<cr, s+ |ea]’) = £/ |ea]* — ety )P (s + L1, 2)),

which implies o = 0 and |c2| = +<{¢1,¢2). From o = 0 we see that z has constant
curvature in S3(1). Since ¢ is unitary, |ca| = +<{c1,¢2) yields ¢ = +¢;.  So, we
get f(s) =ci(s = 1) which shows that f(s) is contained in a line through the
origin.

If x is a nonzero constant, then f is an open part of a circle with radius
r=rx"'. Thus, we may put f(s) = a + re™, where a is a real number. Hence,
we get F(s) =a*+r? + 2ar cos(ks). Substituting this into (6.6) or (6.7) of
Lemma 6.2 gives

(o — 2ar sin(xcs))(a® + r* + 2ar cos(xs)) + a sin(xs)(r + a cos(ks)) = 0,

which implies that « = a =0. Hence, the Legendre curve z has constant cur-
vature in S3(1) and f = re™*. So, f is an open portion of a circle centered at
the origin.

The converse is easy to verify. O

Remark 6.6. For the special case that z is a closed Legendre curve in
$3(1) = C* and Ly is a cone over z (i.e., f(s) is contained in a line through the
origin of C), Corollary 6.1 was obtained in [27, Theorem 7.1].

7. Intrinsic properties

The following result classifies Lagrangian surfaces of constant curvature in
C? which are obtained from our construction method.

THEOREM 7.1. Let f: I} — C* be a unit speed curve in C*, p: L, — C a
curve in C which does not intersects the curve f, and z: I, — S3(1) « C* a unit
speed Legendre curve. Then the Lagrangian surface Lg,. : (I} X I, gg:) — C?is
of constant curvature K if and only if, up to translations on s, one of the following
eight cases occurs:

(a) K=0, p is a complex number, and f(s) = p+re®/, ie., f is an open

portion of circle of radius r centered at p;

(b) K =0, p is a real-valued function and, up to rigid motions on C, f is

given by f(s) =s;

() K =0, pisacomplex number and, up to rigid motions on C, f is given by

f(8) = p+ (r/N1+73)s" /" for some nonzero real number r;

(d) K=c% ¢>0, p(t) = q—e 289 )2¢ for some q € C and some real-valued

function B(t) and, up to translations on s, f is given by f(s) = q + e*“/2¢;

(e) K=c% ¢>0, p=cy—a with co e C* and, up to translations on s, f(s)

is given by
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i
a

f =co—a-+acos(cs) exp (i J \/1 — ge~4* tan?(cs) ds),
0

where ¢ = 1 or —1 and a is a real number satisfying ac = \/1 + ge=4*t for
some real number b;

(f) K=—c? ¢>0, pis a complex number and, up to translations on s,
—2¢s _ 2,42
s)=ptaexp|es+irti u—i—sinf1 ace® ,
T ac

where 1 is a real number and a is a positive number;
(g) K=—c? ¢>0, pis a complex number and, up to translations on s,

f = p + asinh(cs) exp (ir + éj \/1 — a2¢? cosh?(cs) csch(cs) ds)7
0

where a and r are real numbers satisfying 0 < a*> < 1/c?;
(h) K= —c?, ¢>0, pis a complex number and, up to translations on s,

. N

f = p+acosh(cs) exp (ir + iJ \/1 — ac? sinh?(cs) sech(cs) cl’S)7
alo

where r is a real number and a is a positive number.

Proof. Suppose that f: I} — C* is a unit speed curve, p(¢) is a complex-
valued function defined on I, which does not intersect f, and z : I, — S3(1) = C?
is a unit speed Legendre curve. Then the induced metric gg,. via Ly, is given by

gp: = ds +11(s) = p(0)]” dr*.
Thus, the Gauss curvature K of Ly satisfies
(7.1) Gy =—KG, G=|f(s) - p(t)l.
Case (1). K=0. Solving (7.1) gives
(7.2) 17 (s) = p(0)]* = (A(0)s + B(1))?

for some real-valued functions A(z) and B(f).

Casg (1.1). A(f) =0. We obtain from (7.2) that

(7.3) {S'(s), f(s) = p(1)> =0,
which implies
(7.4) L), P (1) = <Sf"(s),p'(1)) = 0.

If /" =0, then we have f(s) = as+ b for some complex numbers a, b with
|a| = 1. Substituting this into (7.3) gives <a, p(t)) = <{a,as+b) =s+<a,b)
which is impossible. Thus, we get f”(s) #0. Since |f’'(s)]=1, we find
Sf',f">=0. Hence, f"#0 and (7.4) imply that p is constant. So, (7.2)
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shows that B is a positive real number, say r. Therefore, by applying a suitable
translation on s, we have f(s) = p +re®” peC. This gives Case (a).

Casg (1.2). A(z) #0. We obtain from (7.2) and |f’| =1 that
(7.3) {f1(3), £(5) = p(0)> = A% (1)s + A(0) B(1),
(7.6) {(s), f(s) = p(0)> = A%(1) — L.

Casg (1.2.a). f”=0. We have f(s) =as+ c¢; for some complex numbers
a, c; with a = eV, e R. Thus, after applying suitable rotation and translation
on C, we get f(s) =s. Also, from (7.6) we find 4> = 1. Without loss of gen-

erality, we may assume that 4 = 1. Substituting these into (7.2) shows that p(¢)
is a real-valued function given by p(¢f) = —B(f). This gives Case (b).

Cask (1.2.b). f” #0. Since f"(s) = irf’ with i # 0, we obtain from (7.5)
and (7.6) that

2 _
(1.7) ﬂﬁmo+m%m+Ammmf@H(A§gl)fm»

By differentiating (7.7) with respect to s, we find (A4s + B)Ax>® = (4% — 1)x’,
which is nothing but

1\ 24%(r)s  2A(t)B(1)
(78) <E) EVEOREEVEDE
Thus we get
1" 24%(1)
(7.9) (ﬁ)—Tthy

Since the left-hand-side of (7.9) is independent of ¢, (7.9) implies that there
exists a nonzero real number a such that

1 n 5 5
(ﬁ) =2a, A°(t)=a(l —A°(1)).
From these we obtain 1 /K,‘2 = as® + ¢;5 + ¢» for some real numbers ¢;, ¢3.  So,
by applying a suitable translation on s, we have

a
a+1

for some real number . From (7.8) and (7.10), we find B=0. Hence, (7.7)
reduces to

(7.11) ﬂ@p+(

1 2 2
(7.10) S =as +b, A°=

a+1  (a+ Dr(s)

)7

which implies that p is constant.
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Cast (1.2.b.i). b =0. In this case, we get a > 0. Let us put a =r? with
r> 0, so we find from (7.10) that x = 1/(rs). Substituting this into (7.11) gives

(1.12) 7 =p+ ),

After solving (7.12) we have f(s) = p + us'*/" for some complex numbers .
Since |f'| = 1, we find |u| = r/v/1 + 2. Therefore, after applying a suitable rigid
motion on C, we obtain

rs1+i/r

(1.13) o) =p+T—s

This gives Case (c).

Casg (1.2.b.i). b #0. We obtain from (7.10) and (7.11) that
(a+1)(as + ivVas® + b)

(714) f/(S): a(a+l)s2+b (f(S)—p)
which implies

a a)s®
(7.15) = W

Thus, by comparing (7.2) and (7.15), we conclude that b =0 which is a con-
tradiction. Hence this case is impossible.

Cast (2). K=c? ¢>0. Solving (7.1) gives
(7.16) |7 (s) — p(2)| = A(¢) cos(es + B(t))
for some real-valued functions A(#) # 0 and B(f). Thus we have
(7.17) CF1($), S (5) = plt)> = =5 A% sin(2es + 2B),
(7.18) Sf(s), f(s) — p(£)y = —c*A* cos(2es + 2B) — 1.
If =0, then (7.18) gives ¢>4%(¢) cos(2cs + 2B(t)) + 1 = 0 for all ¢, which

is impossible. Thus, f” #0, and f’(s), f”(s)/x form an orthonormal frame.
Hence, using (7.17) and (7.18), we have

(7.19)  f(s) = p(t) — {;A2 sin(2cs + 2B) +i(€2A2 cos(2cs + 2B) + l)}f’(s).
Differentiating (7.19) with respect to s gives

(7.20)  x'(s)(1 + c2A4%(1) cos(2es + 2B(1t))) = = (k° — 4c*i) A% (1) sin(2es + 2B(1)).

NS TN
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CaSE (2.a). « is constant. 1In this case, (7.20) implies that x> = 4¢>.  Hence,
f is contained in a circle of radius 1/2¢. Without loss of generality, we may put
r=2c. Since f(s) is a unit speed curve, we may also put

eZics
(7.21) f(s)=q+ e
for some ¢ € C. Substituting this into (7.17) and (7.18) gives
(7.22) e g — p()> = —%Az sin(2cs + 2B),
(7.23) 24e* g — p(t)> = cA? cos(2¢cs + 2B).

From these two equations we get
(7.24) 2q = 2p(t) + cA*(t)e B,
Combining this with (7.21) yields

2ics
_ C 2N -2 | €
(7.25) F() = (1) + 5450 + =
Thus, we find
(7.26) 4¢2|f(s) — p|* = (?4% = 1)* + 4> 4% cos?(cs + B).

Comparing (7.26) with (7.16) gives 4 = 1/c. Hence, (7.25) reduces to
e—2iB + eZics

(127) 1) = p(0) +

Cast (2.a.i). B is constant. 1If we put B = b, then (7.27) implies that p is

constant and
6721'[7 =+ eZi(?S
(7.28) f&)=p+————

2c ’
which gives Case (d) with constant B.

CaSE (2.a.il). B is non-constant. By applying 4 =1/¢, we obtain from
(7.21) and (7.24) that

2ics 8721'B(t)
(7.29) f(s)=q+

1)=q—
50 p(t)=q 3

where ¢ € C and B(¢) is an arbitrary real-valued function. This gives Case (d)
with non-constant B.

Case (2.b). « is non-constant. Solving (7.20) yields
2¢(1 + c®A4? cos(2¢s + 2B))

(7.30) K(s) = +
\/(1 + 242 cos(2¢s + 2B))* F e8¢
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for some real number b. Since x is non-constant, we see from (7.30) that 4 # 0
and B is constant. Without loss of generality, we may assume that B = 0.
Substituting (7.30) into (7.19) gives

(7.31) f=p-— %Az sin(ch) + ZLC\/(I + 242 COS(ZCs))z T o8¢ f/,

which implies that
(7.32) 4c?|f — p|* = 4c?4? cos?(cs) + (1 — A% F ™5,
By comparing (7.32) with (7.16), we get

AX () =(1 +se*4”2b)/cz, e=1or —1,

which implies that 4 is a real number, say a, satisfying a’c> =1 + ee4h We
may assume that a = /1 +¢e~4’?/c. Thus, (7.31) can be written as

a*c? sin(2es) F i\/(l + a2¢? cos(2es))? — e8¢

1 + a*c* + 2a%c? cos(2cs) — e8¢

/=2 (f = p).

So, by applying a2c? = 1 + ee~*’®, we have

(7.33) fl=- (c tan(cs) F é\/l — ge4ch tanz(cs)> (f - p).

Solving (7.33) gives

if* 5
(7.34) f = p+acos(cs) exp(i—J \/1 — ge~*’b tan?(cs) ds)
a 50
for some sy, x€ R with a=+/14¢ee4*/c. Since |f — p|* = a® cos?(cs), we
must have o = +a. Without loss of generality, we may assume that o= a.
Moreover, we may also assume that s) = 0 by applying a suitable translation on s

if necessary. Thus, we have

(7.35) f = p+acos(cs) exp(iéj \/1 — ee~4 tan?(cs) ds),
0
which implies that p = ¢y —a, ¢o = f(0) e C*. Consequently, we obtain

f =co—a-+acos(cs) exp (i J \/1 — ee~4* tan?(cs) ds),
0

i
a
whose curvature function is given by
2
2a*c? — e74b sec?(es)

“ay/1 — ee 4 tan?(cs)

K=

This gives Case (e).

Cast (3). K= —c? ¢>0. Solving (7.1) gives
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(7.36) | (s) = p(2)] = a(r) cosh(cs) + B(¢) sinh(cs)

for some real-valued functions o(z) and f(r). We divide this into several cases.

Cast (3.1). a=+p. In this case, (7.36) becomes
[£(s) = p(0)] = a(t)e*,

where «a is a positive function. Without loss of generality, we may assume that

(7.37) |f(s) = p(t)| = a(r)e”.

Thus we have

(7.38) S1(9),f(9) = p(1)y = ca’e™,
(7.39) (), f(s) = p(t)y = 2¢a*e — 1.

If /7 =0, then (7.39) gives 2c?a*(t)e*® =1 for all ¢ which is impossible.
Thus, we have f"”#0. So, by applying (7.38) and (7.39), we find

(7.40) f(s)=p(t)+ {cazez"s (2c2 2e2es 1)}f’(s).

Differentiating (7.40) with respect to s yields
K (s) 4+ a*(t)c(dc’x(s) + k3 (s) — 2ex’(s))e** = 0.
From this we know that x” # 0 and a is positive. In views of (7.37), we may put
(7.41) f(s) = p(t) + ae™*",

for some real-valued function 6 = 0(s,t). By applying (7.41) and |f"(s)| = 1, we
find

0y = +Ve 25 — c2a?/a.
Hence, 0 is given by
o 1(, fo—2¢s _ o242

(7.42) -

+ sin~! (ace”)) + (1)

for some real-valued function y = /(¢). Let us put

(7.43) o(s) = 1(\/@ + sin”! (ace“)) .

Then we obtain from (7.42) that ¢(s) = 8 — /(r). Now, by differentiating (7.41)
with respect to ¢ and using (7.42), we find

(7.44) 0= p'(t) + iap/' (1)e“e?) V)

oc

for all ¢ which is impossible unless p and y are constant. Thus, up to transla-
tions on s, we have
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(7.45) 1(5) = p + aeHP+V

where p is a complex number and  is a real number, say r. Thus, we obtain

A /672cs _ c2a2 . 3
—— 4 8In (ace“‘) +ir|.

ac

f(s) :p+aexp<cs F i(
This gives Case (f).

Cast (3.2). o(f) =0. In this case, (7.36) reduces to

(7.46) [/ (s) = p(1)] = B(1) sinh(cs).

Thus we have

(7.47) S1(),1(5) = p(1)) = 5B (1) sinh(2es),
(7.48) S (), £(5) = ple)> = c*B2(r) cosh(2es) 1,

If f” =0, then (7.48) gives ¢2f°(1) cosh(2¢s) = 1 for all r which is impossible.
So, we have f” =ixf’ #0. Hence, (7.47) and (7.48) imply that

(7.49) f(s)=p(t)+ {%ﬁz sinh(2c¢s) +£(czﬂ2 cosh(2¢s) — 1)}f’(s).
Differentiating (7.49) with respect to s gives
2k’ (5)(1 — 2B (1) cosh(2¢s)) + cxe(s)? (1) (4c? 4 %) sinh(2¢s) = 0

which implies that f is a nonzero real number, say a. Without loss of generality,
we may assume a > 0. Thus, in views of (7.46), we may put

(7.50) £ (s) = p(t) + a sinh(cs)e™
for some real-valued function 6 = 0(s, 7). From (7.50) and |f'(s)| =1, we find
(7.51) a® sinh?(cs)0? = 1 — a*c? cosh?(cs),

which implies that a*c? < 1 due to cosh(cs) > 1. If a’¢? = 1, then (7.51) becomes
(14 a26?) sinh?(cs) =0
2

for all s which is impossible. So, we must have a? < ¢72.
from (7.51) that

Hence, we obtain

\/1 — a2c? cosh?(cs)

a sinh(cs)

(7.52) 0, = +

If we put

s —da“c 2 CS
(7.5 o(s) = iJ \/1 2¢2 cosh”(cs)

0 a sinh(cs) ds,
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then we obtain from (7.52) that 6(s, ) = ¢(s) + y(¢) for some real-valued function
(). Substituting this into (7.50) gives

0 a sinh(cs)

: , ( s \/1 — a?c? cosh?(cs) )
(7.54)  f(s) = p(t) + a sinh(cs) exp iiJ ds—+ (1) |.

By differentiating (7.55) with respect to ¢, we get
ip'(1)e " = g sinh(cs)e "y’ (1),

which is impossible unless both p and  are constant. Therefore, up to trans-
lations on s, we have

(7.55)  f(s) = p+ asinh(cs) exp (z’r + éj; \/1 — a%c? cosh?(cs) csch(cs) ds),

where p is a complex number, « is a nonzero real number and r is a real number.
Consequently, we obtain Case (g).

Case (3.3). o2>p% We put A(r)=+/a>—p* a=Acoshy and f=
A sinh . Then (7.36) becomes

(7.56) 1/(6) ~ p(0)] = A1) coshies + (1),
which implies that

(7.57) CS'(5).1(5) = p(1)> = 5 4°(0) sinh(2es + 2n),
(7.58) CfM(s), f(s) — p(t)> = c?4%(¢) cosh(2es + 217) — 1.

Equation (7.58) shows that f” =ixf’ #0. So, we find from (7.57) and
(7.58) that

f(s)=p(t) + {%Az(t) sinh(2¢s + 27) +£(02A2 cosh(2¢s + 2) — 1)}f’(s).
Differentiating this equation with respect to s gives
21’ (s)(1 — ¢2A?(1) cosh(2¢s + 2)) + cxc(s) A (1) (4c? + x?) sinh(2¢s 4 257) = 0

which can be written as

B 2K'(s)
22k’ cosh(2¢s + 2) — cx(4c? + K2) sinh(2¢s + 27)

(7.59) A%(1)

By differentiating (7.59) with respect s gives

(4c* + k)" — 3rx”
2¢(4c? + 1)K (s)

(7.60) coth(2cs + 27) =

Since the right-hand-side of (7.60) depends only on s, (7.60) implies that #(z) is
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constant which is a real number. Thus, by applying (7.59) we know that A4 is
also constant which is a positive number.

Let us denote # and A by r and a, respectively. Then, by using (7.56), we
have

f(s) = p(t) + a cosh(cs + r)e”

for some real-valued function 6 = 6(s,¢). So, by applying a suitable translation
on s, we have

(7.61) £(s) = p(t) + a cosh(cs)e™

for some real-valued function 6 = 6(s, ¢).
From (7.61) and |f’(s)| =1, we obtain

a?0? cosh?(cs) = 1 — a*c? sinh?(cs).

Thus, we obtain

\/1 — a2¢? sinh?(cs)

b= a cosh(cs)
Hence, we get
(7.62) 0=p(s) + (1), P(s) = +JS 1= ee i)
’ ~Jo a cosh(cs) ’

where (f) is a real-valued function. By differentiating (7.61) with respect to ¢
and applying (7.62), we find

ip' (1) = ay’ (1) cosh(cs)e e
which is impossible unless p and y are both constant. Hence, we have
f(s) = p+acosh(cs)ee™

where a > 0, { are real number and p is a complex number. This gives Case

(h).
Case (3.4). o® < f* We put

A(t) =1\/p*— a2, a=Asinhy, f=Acoshy,

then we get from (7.36) that

(7.63) [£(s) — p(1)| = A(¢) sinh(es + 5(1)).
From (7.63) we find

<S8, S () = p(1)> = 5 A%(1) sinh(2es +21),

Cf(s), £(s) = p(6)y = ¢*A%(¢) cosh(2es + 217) — 1.
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Thus, we may applying the same argument as Case (3.3) to conclude that 4 and
n are real numbers, say « and y, respectively. So, after applying a suitable trans-
lation on s, we obtain | f(s) — p(¢)| = a sinh(c¢s). Thus, this reduces to Case (3.2).

Conversely, by straight-forward computation, we know that all of the as-
sociated Lagrangian surfaces obtained from Cases (a)-(i) are of constant cur-
vature. O

Remark 7.1. Up to rigid motions on C?, the Lagrangian surfaces of con-
stant curvature obtained in Theorem 7.1 are given respectively by

(@') Ly (s, 1) = re®"z(t);

!
(b) Lp:(s,t) = sz(t) — J p(0)z'(¢) dt,

0

r .
c) Lp-(s,1) = sz
(©) Lie(s,1) = s 70
1

t
(d/) Lﬁ;z(S, t) _ 2_c {Z(t)e%cs + JO 8721‘3(1)2/([) dl};

(') Ly:(s,t) = az(t) cos(cs) exp(iéj \/1 — ee~4* tan?(cs) ds); with a =

1 0
—W and ¢=1 or —1;
c
e—ch _ 61202 |
() Lyp:(s,t) = az(1) exp| es £ i| ———————+sin" (ace®) | |;

ac

I
a

(8") Lp-(s,t) = az(t) sinh(cs) exp <iér \/1 — a2¢? cosh?(es) csch(cs) ds);
0

(h') Ly-(s,t) = az(t) cosh(cs) exp (-_i— J: \/1 — a2¢? sinh?(cs) sech(cs) ds

Remark 7.2. For each closed Legendre curve z=z(¢) in S*(1), the
Lagrangian surface defined by (a’) is complete. Such a Lagrangian surface is a
flat torus which is contained in S3(r).

Remark 7.3. The local classification of Lagrangian surfaces of constant
curvature in the complex Euclidean plane have been obtained [11]. And the
local classification of Lagrangian surfaces of constant curvature in the complex
projective plane or in the complex hyperbolic plane was established in a series of
recent articles [12, 13, 14, 15, 16].
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