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LIGHTLIKE EINSTEIN HYPERSURFACES IN LORENTZIAN
MANIFOLDS WITH CONSTANT CURVATURE
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Abstract

We consider a class of lightlike hypersurfaces M, of semi-Riemannian manifolds,
whose shape operator is conformal to the shape operator of its screen distributions.
Integrability and characterization results are then established.

1. Introduction and results

The classification of Einstein hypersurfaces (M, g) in Euclidean spaces R"*!
was first studied by A. Fialkow [1], T. Y. Thomas [2] in the middle of 1930’s. It
has been proved that if f: M” — R"™™ n>3 is a connected Einstein hyper-
surface, that is Ric = pg, for some constant p, then p is non negative.

*if p=0 then f(M") is locally isometric to R"

+ if p >0 then f(M") is contained in an n-sphere.

In this paper, a class of lightlike hypersurfaces in a semi-Riemannian manifold
(M(c),g) with constant sectional curvature ¢ is considered: the class of lightlike
hypersurfaces with conformal screen distribution. Some properties of those
hypersurfaces have been studied in ([3]) where a physical model of screen globally
conformal lightlike hypersurfaces is presented. Our text is organized as follows.
In section 2 we summarize notations and basic facts concerning geometric objects
on lightlike hypersurfaces, using notations in [4]. Section 3 deals with the Ricci
tensor of a lightlike hypersurface and we establish its equation. It is then proved
that screen locally (or globally) conformal totally umbilic lightlike hypersurfaces
of a Lorentzian manifold of constant curvature are Einstein manifolds. Finally,
section 4 is devoted to the proof of the following characterization theorem which
extends Fialkow and Thomas results.

TueorREM 1. Let (M"™%(c),g) be a Lorentzian manifold of constant curvature
c>0, and (M"™' g,S(TM)) a screen locally (or globally) conformal lightlike
hypersurface. If (M"' g,S(TM)) is Einstein, that is Ric = pg for some con-
stante p, then p is non negative
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« If p =nc, then M is locally a product L. x M* where M* is a Riemannian n-
space form with the same sectional curvature ¢ as M and L is an open subset
of a lightlike geodesic ray in M.

« If p > nc, then M is locally a product L x M* where M* is a Riemannian n-
space form of positive constant curvature which is isometric to an n-sphere.

2. Preliminaries and basic facts

Let (M,§) be a real (n+ 2)-dimensional semi-Riemannian manifold, where
n>1 and g is a non degenerate tensor field of type (0,2) and of constant index
g>1, on M. Consider a submanifold M of M of codimension p with p > 1.
The metric § might be non degenerate or degenerate on the tangent bundle TM
of M. The case g is non degenerate has many similarities with Riemannian
submanifolds [6].

In the degenerate case, basic differences occur mainly because of the fact
that the normal vector bundle TM* intersect with the tangent bundle along a
nonzero differentiable distribution called radical distribution of M and denoted
by Rad(TM)

(1) Rad(TM) : x — Rad(T M) =T MNT M".

The dimension r (r > 0) of fibres of Rad(TM) is the degree of nullity of M.
For r =0 the submanifold M is non degenerate.

Given an integer r > 0, the submanifold M is said to be r-lightlike
if rank(Rad(T\M)) =r at every point x e M. Lightlike hypersurfaces M of
M are one-codimensionnal submanifolds for which r=1. Given an (n+ 1)-
dimensional lightlike hypersurface M, a screen distribution, denoted S(TM), on
M 1is a subbundle of TM which is complementary to the radical distribution. It
is non degenerate and has constant rank n. It plays an important role in the
study of induced geometric objects on M. For the lightlike hypersurfaces,
equation (1) becomes Rad(TM) = TM~* and we have the orthogonal direct sum

(2) TM = S(TM) L TM*.

Throughout this paper we denote by % (M) the algebra of differentiable
functions on M and I'(E) the & (M)-module of differentiable sections of vector
bundle £ over M. The manifolds we consider are supposed to be paracompact,
smooth and connected. Although S(7M) is not unique, it is canonically iso-
morphic to the factor vector bundle TM/Rad TM. The screen distribution
S(TM) exits because of the paracompactness of M. The following normal-
ization result is now well known:

THEOREM (Duggal-Bejancu, [4, page 79]). Let (M,g,S(TM)) be a lightlike
hypersurface of a semi-Riemannian manifold (M,§). Then there exists a unique
vector bundle tr(TM) of rank 1 over M, such that for any non-zero section & of
TM* on a coordinate neighbourhood U — M, there exists a unique section N of
tr(TM) on U satisfying



60 C. ATINDOGBE, J.-P. EZIN AND J. TOSSA
Now, consider V the Levi-Civita connection of M and V the induced connection

on the lightlike hypersurface (M,g) where g is the induced metric on M by g.
With decomposition (2) and relations (3), we have

4) TM|,, =S(TM) L (TM* ® tr(TM)) = TM & tr(TM).
Gauss and Weingarten formulae provide (see details in [4, page 82))
(5) VY =VyY+h(X,Y), VX,Yel(TM)

(6) VyV =—AyX + V.V, VX e[ (TM),VV e [(t((TM)),

where VyY and 4, X belong to I'(TM) while / is a I'(tr(TM))-valued symmetric
Z (M)-bilinear form on I'(TM), Ay is an % (M)-linear operator on I'(TM) and
V' is a linear connection on #+(TM). In general, induced connection V is not
unique and depends on the triplet (M,g, S(TM)). Define a symmetric & (M)-
bilinear form B and a 1-form 7 on the coordinate neighbourhood % by

(7) BX,Y)=gh(X,Y), &), VX, YeDl(TM|,),
(8) ©(X) =g(VyN,&), VX eDl(TM|,).

It follows that,

9) VyY =VyY +B(X,Y)N, VX,Yel(TM|,),
(10) VyN = —AyX +(X)N, VX eD(TM|,).

Let P denote the projection morphism of I'(TM) on I'(S(TM)) with respect to
decomposition (2). We obtain

(11) VyPY =V;PY +h*(X,PY), VX,Y el (TM),
(12) VyU=—A4;X +V;/U, VX el (TM),VU el (TM").

where Vi Y and A} X belong to I'(S(TM)), V and V* are linear connections on
[(S(TM)) and TM* respectively, h* is a T'(TM*)-valued # (M)-bilinear form
on ['(TM) x I'(S(TM)) and A}, is I'(S(TM))-valued # (M)-linear operator on
I[(TM). They are the second fundamental form and shape operator of the
screen distribution S(TM) respectively. Define on #

(13) C(X,PY):g(h*(X7PY),N), VXaYEF(TM|’//)7

(14) §(X) = G(ViIE,N), VX e T(TML,).

One can show that &(X) = —t(X). Thus, locally we obtain

(15) VxPY =ViPY + C(X,PY)¢, VX,Y el (TM),
(16) Vxé=—-A:X —1(X)¢, VX el(TM).
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The linear connection V* is a metric connection on S(7M). Hence if S(TM) is
integrable and S denotes a leaf of S(TM) then V* represents the Levi-Civita
connection of S, intrinsically linked with its geometry. In general, the induced
connection V on M is not compatible with the induced metric g. Indeed, we
have

(17)  (Vxg)(¥.Z) = BOX, Y)n(Z) + B, Z)n(Y), VX,Y e T(TM],)
where
(18) n(X)=g(X,N), YXel(TM|,).

Finally, it is easy to check that
(19) B(X,&) =0, VXeI(TM|,).

3. The Ricci tensor of a lightlike hypersurface

In this section we study the Ricci tensor of a lightlike hypersurface of a semi-
Riemannian manifold (M, g) with Lorentzian signature. We have the following:

ProPOSITION 1. Let (M,g,S(TM)) be a lightlike hypersurface of a semi-
Riemannian manifold (M, g) with Lorentzian signature. Then the Ricci tensor of
M denoted by Ric is given for X, Y tangent to M by

(20) Ric(X,Y) = Ric(X,Y)+ B(X,Y) tr Ay —n(R(&, Y)X)
where Ric is the Ricci tensor of M and tr Ay the trace of the operator Ay.

Proof. For X and Y in T'(TM), we have
Rie(X,Y) Zg (Ei, X)Y,E) + §(R(E, X)Y),N)

where {& E,...,E,} is an orthonormal frame field on M adapted to de-
composition (2) and g is the causal character of the vector field E;, of the
orthonormal frame field {Ej,...,E,} of S(TM). The ambient space being
Lorentzian, the screen distribution is Riemannian so that ¢;, =1, 1 <i <n. Then
from Gauss-Codazzi equations

g(R(EH X) Y7 El) = Q_(R(Ela X) Y7 El) + g(h(Xv Y)7h*(E17 El))
- C?(h(E,, Y)a h*(XvEI))
= g(R(E;,X)Y,E) + B(X, Y)C(E;, E;) — B(E;, Y)C(X, E;)

hence
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Xn: (R(E, X)Y, E;) Zq (E;, X)Y,E)+ B(X, Y)zn:C(Ei,E,»)
i=1

i=1

- ZB(Ei, Y)C(X,E)
- Zg (EWX)Y.E) + BX. Y)Y g(AxE )
i=1

—ZgAfYE (AnX, E;)
n
—Zg (E, X)Y,E)+ B(X, Y)(ZQ(ANE,-,E,)
i=1

+§(AN§,N)) —g(ANX, ALY)
As §(R(&,X)Y,N) = G(R(¢, X)Y,N) we obtain
Zg (E, X)Y,E) +g(R(EX)Y,N) Zg (E, X)Y,E;) + g(R(E,X)Y, N)
+B(X,Y) tr Ay — g(ANX,ALY)

Hence
Ric(X,Y) = Rz‘c(X, Y)+B(X,Y)tr Ay —;7(1?(5, Y)X) —g(ANX7A§Y) [ |

It is important to stress that the Ricci tensor does not depend on the choice
of ¢ Indeed, if (¢',E),...,E,,N') is an other frame field adapted to (2) and
Ric' denotes the Ricci tensor with respect to (£, N') we have for X, Y tangent to
M

Ric(X,Y) Ze,g (E, X)Y,E)+ g(R(E,X)Y,N")

1 )

But & =uaf and N' = &N for some smooth function « > 0. Then
g(R(flv X) Y, N/) = Q(R(f, X) Y, N)

so that Ric(X,Y)= Ric'(X,7Y).

COROLLARY 1. Let (M,g,S(TM)) be a lightlike hypersurface of an (n+2)-
dimensional (n > 2) Lorentzian manifold (M,g) of constant curvature c. Then

(21) Ric(X,Y)=ncg(X,Y)+BX,Y) tr Ay — g(AnX,ALY)
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Proof. 1In the case M is of constant sectional curvature ¢, we have
Ric=(n+1)cg, and n(R( Y)X)=cg(X,Y),

and the result follows. [ |

3.1. Conformal screen on lightlike hypersurfaces

Let (M,g,S(TM)) be a lightlike hypersurface of a semi-Riemannian mani-
fold, Ay and A} the shape operators of M and its screen distribution S(7M)
respectively. In the srquel, we will use the following

DerINITION 1 ([3]).  The hypersurface M is said to be screen locally (resp.
globally) conformal if on any coordinate neighborhood U (rep. U = M), there is a
smooth function ¢ such that

(22) Ay = 9A;

holds; the function ¢ is referred to as the conformal weight.

A large class of lightlike submanifolds satisfy relation (22):
* The lightlike cone Aj™ of R/ is such that

1 * n+1
ANX—WAéX7 X eT(TAGT).
So Ag“ is a screen globally conformal lightlike hypersurface of er1+2’
whose conformal weight is globally defined on Ag“.

+ Lightlike Monge hypersurfaces, endowed with the canonical screen dis-
tribution, are screen globally conformal in Lorentz spaces, with constant
conformal weight ¢(x) = 3.

Conformal screen lightlike hypersurfaces have the outstanding feature that
their screen distributions are always integrable and their geometry essentially
reduces to the one of leaves of these screen distributions. More precisely, a
screen locally (or globally) conformal lightlike hypersurface is locally (or globally)
a product ¥ x M’ where € is a null curve and M’ is a leaf of S(TM) ([3]).

PROPOSITION 2. Any screen conformal totally umbilical lightlike hypersurface

(M"! g, S(TM)) of a Lorentzian space form (M(c),g) with ¢ > 0 is an Einstein
manifold.
Proof. The assumption yield B(X,Y) = pg(X,Y) and
g(ANX, AZY) = p’pg(X,Y)
for some smooth function p on % < M so that (21) reads
Ric(X,Y) = [nc + ps — ppJg(X, Y)

where s = tr Ay. The result follows. [ |
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Since Ay and A; commute when M is screen conformal, Corollary 1
shows that the Ricci tensor of any screen conformal lightlike hypersurface in a
Lorentzian manifold of constant curvature is symmetric.

4. Proof of Theorem 1

For the proof of our main theorem, we will make use of the following facts
and lemmas. Let x denote an arbitrary point on M.

Fact 1. The operator A: is diagonalizable and ¢ is an eigenvector with
eigenvalue 0. Since S(TM) is Riemannian for a Lorentzian M, consider a frame
field of eigenvectors of Af, say {Ey =¢, El,...,E,} such that {E;},_; , rep-
resents an orthonormal basis of the screen distribution S(7M) on M. Then
AZEy=A:{ =0 and

A;El = ;u,‘Ei 1<i<n.

Now we use the Ricci tensor equality (21) of corollary 1 to have

(23) g(A: X, AZY) —sg(A: X, Y) + o(p —nc)g(X, Y) =0

where s=1r A;. In (23) put X =Y = E; to obtain

(24) M —shi+—p(p—nc)=0 1<i<n

For each integer i, this equation admits no more than two distinct real solu-
tions. We may assume there exists p e {l,...,n} such that 4, =---=4, and
Ap+1 = -+ = An, by renumbering if necessary. We now follow the general scheme
in [5].

Assume p < nc and argue by contradiction. Set
M=r=lp=V, Jp=-=hh=4
from (24) we have
s=p+v=pv+(n—pu

that is

(p—lv+m—p—Du=0 with ywwv=—p(p—nc) <O0.
Note that condition n > 3 implies p > 1 and p <n—1. Then,
n—p—1

2 _

(p — nc).

Since (x — s =1r A} ) is a differentiable function, from (24) the roots x and v are

differentiable. From (25) we deduce that v is a finite valued smooth function, so

it is a constant function near x. The same for x and p in a neighborhood of x.
Now, consider the following distributions D, and D,
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Dy(x) = {X e TxM,A}X = vPX}
Dy(x) = {X € T\M,A:X = uPX}

where P is the projection operator on I'(S(7'M)) in the orthogonal direct sum of
the bundle resulting from

T.M=S(T.M) L T.M*

Facr 2. In a neighborhood of x € M, D, and D, are smooth distributions.
Indeed from (23) we deduce

(26) A2 — (u+v)A; + pvP = 0.

Consider Fy,...,F, differentiable vector fields in a neighborhood of x such
that {PFi(x)},_;., and {PF;(x)},, <<, constitute a basis of D,(x) and Dy(x),
respectively.

Put

From (26) we have

(A2 = VP)Y; = (A% — vP)(AZ — uP)F, = 0
and

(47 — uP)Y, = (A; — uP)(A; — vP)E; = 0
that is Y; € D, and Y; e D,. Therefore, since

Yi(x) = (A% — pP)Fi(x) = (v — ) PFy(x)
and
Yj(x) = (v — u) PFj(x)

we deduce that (Y;),_,_, and (Y}), ;. are basis of D, and D,, respectively in

a coordinate neighborhood of x; thus they are smooth distributions on M.

Fact 3.

Im(A: — uP) < D,
Im(A; —vP) = D,,.

Indeed, let Y elm(A; —uP), there exists X e7.M such that Y =
(A —pP)X. Then (27) is immediate from (26).

Lemma 1. For all X e D, and Y € D,, we have
(28) VXy € D,u, VyX € Dv
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Proof. Let XeD,, YeD, Remind first that
(29) (Vxg)(Y.Z) = B(X,Y)n(Z)+ B(X,Z)n(Y) X,Y eIl (TM)
Then
(30)  Vx(9(AIY,Z)) = BIX,A:Y)n(Z) + B(X, Z)y(4;Y)
+g(VyALY,Z) +g(A:Y,VxZ) ZeT(TM)
where # is the local 1-form dual of the local section ¢&; that is
n(X) =g(X,N)

Note that #(X) =0 if and only if X e ['(S(TM)). Using the stability of
D, and D, with respect to P and also their orthogonality with respect to B, we
deduce that B(X,4:Y)=0. As n(4;Y)=0, (30) becomes

(31) X -g(ArY,Z) = g(Vx ALY, Z) + g(ALY,VxZ)
XeD,YeD, ZeI'(TM)
By Codazzi equation,
X - g(ALY,Z) — g(Vy ALY, Z) — g(AY,VxZ)

=Y g(4:X,Z)

=g(VyA:X,Z) +g(A:X,VyZ),
which yields

g((A; —puP)Vx Y, Z) = g((A; —vP)VyX,Z)
that is
g((A: — pP)Vy Y — (4: —vP)VyX,Z) =0, VZe TM|,.
Then for all X eD,, Y eD,,
(A — uP)VyY — (A7 —vP)VyX e T M+
But (47 —uP) and (A? —vP) are S(TM)-valued, so
(A —uP)VxY — (A: —vP)VyX e S(TM)N T™* = {0},

then
(32) (Af —uP)VxY = (A; —vP)VyX, VXeD, VYeD,
From (27) and (32) and taking into account D,ND, = {0} we have

(Af = pP)VyY =0 = (A} — vP)VyX
that is for all X € D, and for all Y € D,
(33) VxYeD,, and VyXeD,. |
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LemMMA. For any X,Z e D, and any U,Y € Dy, the following holds

Proof. Let X,ZeD,, Y eD, From

1

Vv
~Lpix Py =0

Vv

we have
(35)  Vz(9(X,PY))=0
=B(Z, X)n(PY)+ B(Z,PY)n(X) +g(V,X,PY)
+9(X,VzPY)
=g(VzX,Y).

where we used the orthogonality of D, and D, with (respect to g) and (33).
Then from (19) we get

(36) g(VzX,Y)=0, VX,ZeD,VYeD,.
Similarly we get
(37) g(X,VyY)=0, ¥VXeD, U YeD, W

Fact 4. For X e D, and Y € D,, we have
g(R(PX,PY)PY,PX) = —puvg(X,X)g(Y,Y)
Indeed for X in D, and Y in D, we have
G(R(X, Y)Y, X) = g(VxVy ¥, X)
since
g(VyVx Y, X) =g(Vy,x Y, X) = g(Vy,y Y, X) =0

by using (34) and (33) and the g-orthogonality of D, and D,. Let us consider P,
the projection on D,. From (36) we know that VyY has no component in D,;
o)

VyY =P,VyY +5(VyY)<.
It follows that
g(VxVy Y, X) = g(Vx Pu(Vy Y), X) + Vx(n(Vy Y))g(¢, X) +n(Vy Y)g(Vx &, X)
and using again (34) and (33) and the g-orthogonality of D, and D, we get
(38) g(VxVyY, X)=-wm(VyY)g(X,X), XeD, YeD,
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One can check that #(VyY) =Y - (#(Y))+ oug(Y,Y) so that
gRX, Y)Y, X) = —vY - (n(Y))g(X,X) — ouvg(X, X)g(Y,Y) XeD, YeD,
In particular
(39) g(R(PX,PY)PY,PX)=—opuvg(X,X)9(Y,Y) XeD, YeD,
Proof of Theorem 1. Now, using Gauss equation with (39) leads to
g(R(PX,PY)PY,PX) = c{g(Py,PY)g(PX,PX) — (g(PX, PY))Z}
+ ¢{—(B(PX,PY))’ + B(PY,PY)B(PX,PX)}
hence
(40) g(R(PX,PY)PY,PX) = (c+ o)uwg(X,X)g(Y,Y)

where we use the orthogonality of D, and D, with respect to both B and g and
relation

C(X,PY) = pg(X,PY).

Choosing X € D, and Y € D, such that g(X,X) # 0 and ¢g(Y, Y) # 0 and taking

into account (39) and (40) leads to guv =1c. But we have also that guv =

(p—nc). This is a contradiction with p —nc <0 since ¢ >0. So p >nc is
proved. In the sequel we distinguish the two cases p =nc and p > nc

CASE p =nc
From (24) we have
Ai(di—s)=0 1<i<n
* Assume p=mn, then 4, =--- =4, =4, and
MA—nl)=—-m—-12>=0
which implies
/=0 and A4:=0

or equivalently

h=0
that is M is totally geodesic in M. Recall that for X, Y in ['(S(TM)) we
have
(41) VxY=VyY+C(X,Y)E+B(X,Y)N

Hence for a totally geodesic M, by (22) we have VyY =V} Y for X and
Y tangent to a leaf M™ of the screen distribution. Therefore M is a
Riemannian space form of same constant sectional curvature ¢ as M and
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M is locally a product L x M* where L is a leaf of the rank one dis-
tribution Rad(TM).
*Assume 1 < p<n—1. We have

M==ly=0#£ 2y = =ly=1

Then

s=(n—p)i
and

(n—p—12*=0

So

p=n—1
that is

0

@) A; =

A
Let K denote the sectional curvature of M*. From Gauss equation and

considering {Ey =¢,E,...,E,} such that {E|,...,E,} represents an
orthonormal frame field of S(7M), we have for | <i< j<n

_ 4(R'(E.E)E.E)
CEj, E<E} By — <E;, B’
Because of (42), B(E;, E;) =0for 1 <i < j<n. Hence from (41) we have

g(R*(Eiij)Ejin) = g(R(EivE})Ejin) =C.

K(Eiij)

M is a Riemannian manifold of same constant sectional curvature c¢ as
M, and M is locally a product L x M*.

CASE p > nc. Assume first that 1 < p <n that is

M==lp=0FF=Ips1 ==y
From (24) we have
o+p=s
43
) {waﬁ(pn6)>0-

o+p=s=pa+(n—p)p
(p—Da=—(n—p-1)p
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But, from the second equality of (43), « and f have the same sign. Then, since
p—1<0 and (—-(n—p—-1)<0)
the only possibility is p =1 and n > 2 which is a contradiction with n > 3.
So p=nand then A=11=---=4,
ALX =2PX, VX e[(TM

)

with 1 # 0 (for we have A* = p — nc > 0)
Using the fact that M is screen locally conformal we infer

(44) AyX = pPX, VX e[ (TM)

U

It follows that M is locally a product L x M* where M* is a totally umbilical
Riemannian manifold which is not totally geodesic (4 # 0) of codimension 2 in
M(c).

In fact, we show that the leaves M ™ are space forms of constant curvature
c+2¢)%. Indeed, for X, Y in I'(S(TM)) one checks that

VyY =ViY +g(X, Y)(pE + N)

so that
v[)(, rZ = V[*xﬁ <+ (X, Y], Z)(pS + N)
and
VxVyZ =ViVyZ +ig(Vy Y, Z)(pé + N) + 2g(X, V3 Z)
+9(Y, Vi Z)(p& + N) + Ag(Y, Z)Vx (¢S + N)
then

RX,Y)Z=R*(X,Y)Z +1g9(Y,Z)Vx(p&é + N) — dg(X, Z)Vy(pé + N)
It is easy to see that
Vx(pé+ N) = —22pX — 7(X)(pE — N).

Hence, using the fact that M is of constant sectional curvature ¢ and R*(X,Y)Z
is T'(S(TM))-valued, we obtain

(45) R (X, Y)Z = (c+ 2)L2(p){g(Y, H)X —g(X,2)Y}
and
(46) Ag(Y,Z)r(X) — g(X,Z)e(Y)] =0

The assertion that the leafs are space forms of positive constant curvature
follows from (45). Now, in (46), let Y be such that ¥ # 0 and 7(Y) =0. Then
(46) implies g(Y, Y)r(X) = 0 for all X tangent to the leaf M*. Thus 7 vanishes
identically on the leafs of the screen distribution on M.
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