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LIGHTLIKE EINSTEIN HYPERSURFACES IN LORENTZIAN

MANIFOLDS WITH CONSTANT CURVATURE

C. Atindogbe, J.-P. Ezin and J. Tossa

Abstract

We consider a class of lightlike hypersurfaces M, of semi-Riemannian manifolds,

whose shape operator is conformal to the shape operator of its screen distributions.

Integrability and characterization results are then established.

1. Introduction and results

The classification of Einstein hypersurfaces ðM; gÞ in Euclidean spaces Rnþ1

was first studied by A. Fialkow [1], T. Y. Thomas [2] in the middle of 1930’s. It
has been proved that if f : Mn ! Rnþ1 nb 3 is a connected Einstein hyper-
surface, that is Ric ¼ rg, for some constant r, then r is non negative.

� if r ¼ 0 then f ðMnÞ is locally isometric to Rn

� if r > 0 then f ðMnÞ is contained in an n-sphere.
In this paper, a class of lightlike hypersurfaces in a semi-Riemannian manifold
ðMðcÞ; gÞ with constant sectional curvature c is considered: the class of lightlike
hypersurfaces with conformal screen distribution. Some properties of those
hypersurfaces have been studied in ([3]) where a physical model of screen globally
conformal lightlike hypersurfaces is presented. Our text is organized as follows.
In section 2 we summarize notations and basic facts concerning geometric objects
on lightlike hypersurfaces, using notations in [4]. Section 3 deals with the Ricci
tensor of a lightlike hypersurface and we establish its equation. It is then proved
that screen locally (or globally) conformal totally umbilic lightlike hypersurfaces
of a Lorentzian manifold of constant curvature are Einstein manifolds. Finally,
section 4 is devoted to the proof of the following characterization theorem which
extends Fialkow and Thomas results.

Theorem 1. Let ðMnþ2ðcÞ; gÞ be a Lorentzian manifold of constant curvature
cb 0, and ðMnþ1; g;SðTMÞÞ a screen locally (or globally) conformal lightlike

hypersurface. If ðMnþ1; g;SðTMÞÞ is Einstein, that is Ric ¼ rg for some con-
stante r, then r is non negative
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� If r ¼ nc, then M is locally a product L�M � where M � is a Riemannian n-
space form with the same sectional curvature c as M and L is an open subset
of a lightlike geodesic ray in M.

� If r > nc, then M is locally a product L�M � where M � is a Riemannian n-
space form of positive constant curvature which is isometric to an n-sphere.

2. Preliminaries and basic facts

Let ðM; gÞ be a real ðnþ 2Þ-dimensional semi-Riemannian manifold, where
nb 1 and g is a non degenerate tensor field of type ð0; 2Þ and of constant index
qb 1, on M. Consider a submanifold M of M of codimension p with pb 1.
The metric g might be non degenerate or degenerate on the tangent bundle TM
of M. The case g is non degenerate has many similarities with Riemannian
submanifolds [6].

In the degenerate case, basic di¤erences occur mainly because of the fact
that the normal vector bundle TM? intersect with the tangent bundle along a
nonzero di¤erentiable distribution called radical distribution of M and denoted
by RadðTMÞ

RadðTMÞ : x ! RadðTxMÞ ¼ TxM VTxM
?:ð1Þ

The dimension r ðr > 0Þ of fibres of RadðTMÞ is the degree of nullity of M.
For r ¼ 0 the submanifold M is non degenerate.

Given an integer r > 0, the submanifold M is said to be r-lightlike
if rankðRadðTxMÞÞ ¼ r at every point x A M. Lightlike hypersurfaces M of
M are one-codimensionnal submanifolds for which r ¼ 1. Given an ðnþ 1Þ-
dimensional lightlike hypersurface M, a screen distribution, denoted SðTMÞ, on
M is a subbundle of TM which is complementary to the radical distribution. It
is non degenerate and has constant rank n. It plays an important role in the
study of induced geometric objects on M. For the lightlike hypersurfaces,
equation (1) becomes RadðTMÞ ¼ TM? and we have the orthogonal direct sum

TM ¼ SðTMÞ ? TM?:ð2Þ
Throughout this paper we denote by FðMÞ the algebra of di¤erentiable

functions on M and GðEÞ the FðMÞ-module of di¤erentiable sections of vector
bundle E over M. The manifolds we consider are supposed to be paracompact,
smooth and connected. Although SðTMÞ is not unique, it is canonically iso-
morphic to the factor vector bundle TM=Rad TM. The screen distribution
SðTMÞ exits because of the paracompactness of M. The following normal-
ization result is now well known:

Theorem (Duggal-Bejancu, [4, page 79]). Let ðM; g;SðTMÞÞ be a lightlike
hypersurface of a semi-Riemannian manifold ðM; gÞ. Then there exists a unique
vector bundle trðTMÞ of rank 1 over M, such that for any non-zero section x of
TM? on a coordinate neighbourhood UHM, there exists a unique section N of
trðTMÞ on U satisfying
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gðx;NÞ ¼ 1; gðN;NÞ ¼ gðN;WÞ ¼ 0; EW A GðSðTMjUÞÞ:ð3Þ

Now, consider ‘ the Levi-Civita connection of M and ‘ the induced connection
on the lightlike hypersurface ðM; gÞ where g is the induced metric on M by g.
With decomposition (2) and relations (3), we have

TMjM ¼ SðTMÞ ? ðTM? l trðTMÞÞ ¼ TMl trðTMÞ:ð4Þ

Gauss and Weingarten formulae provide (see details in [4, page 82])

‘XY ¼ ‘XY þ hðX ;YÞ; EX ;Y A GðTMÞð5Þ

‘XV ¼ �AVX þ ‘ t
XV ; EX A GðTMÞ; EV A GðtrðTMÞÞ;ð6Þ

where ‘XY and AVX belong to GðTMÞ while h is a GðtrðTMÞÞ-valued symmetric
FðMÞ-bilinear form on GðTMÞ, AV is an FðMÞ-linear operator on GðTMÞ and
‘ t is a linear connection on trðTMÞ. In general, induced connection ‘ is not
unique and depends on the triplet ðM; g;SðTMÞÞ. Define a symmetric FðMÞ-
bilinear form B and a 1-form t on the coordinate neighbourhood U by

BðX ;Y Þ ¼ gðhðX ;YÞ; xÞ; EX ;Y A GðTMjUÞ;ð7Þ
tðX Þ ¼ gð‘ t

XN; xÞ; EX A GðTMjUÞ:ð8Þ

It follows that,

‘XY ¼ ‘XY þ BðX ;YÞN; EX ;Y A GðTMjUÞ;ð9Þ

‘XN ¼ �ANX þ tðXÞN; EX A GðTMjUÞ:ð10Þ

Let P denote the projection morphism of GðTMÞ on GðSðTMÞÞ with respect to
decomposition (2). We obtain

‘XPY ¼ ‘�
XPY þ h�ðX ;PYÞ; EX ;Y A GðTMÞ;ð11Þ

‘XU ¼ �A�
UX þ ‘�t

X U ; EX A GðTMÞ; EU A GðTM?Þ:ð12Þ

where ‘�
XY and A�

UX belong to GðSðTMÞÞ, ‘ and ‘�t are linear connections on
GðSðTMÞÞ and TM? respectively, h� is a GðTM?Þ-valued FðMÞ-bilinear form
on GðTMÞ � GðSðTMÞÞ and A�

U is GðSðTMÞÞ-valued FðMÞ-linear operator on
GðTMÞ. They are the second fundamental form and shape operator of the
screen distribution SðTMÞ respectively. Define on U

CðX ;PY Þ ¼ gðh�ðX ;PY Þ;NÞ; EX ;Y A GðTMjUÞ;ð13Þ
eðX Þ ¼ gð‘�t

X x;NÞ; EX A GðTMjUÞ:ð14Þ

One can show that eðXÞ ¼ �tðX Þ. Thus, locally we obtain

‘XPY ¼ ‘�
XPY þ CðX ;PY Þx; EX ;Y A GðTMÞ;ð15Þ

‘Xx ¼ �A�
xX � tðX Þx; EX A GðTMÞ:ð16Þ
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The linear connection ‘� is a metric connection on SðTMÞ. Hence if SðTMÞ is
integrable and S denotes a leaf of SðTMÞ then ‘� represents the Levi-Civita
connection of S, intrinsically linked with its geometry. In general, the induced
connection ‘ on M is not compatible with the induced metric g. Indeed, we
have

ð‘XgÞðY ;ZÞ ¼ BðX ;YÞhðZÞ þ BðX ;ZÞhðY Þ; EX ;Y A GðTMjUÞð17Þ

where

hðXÞ ¼ gðX ;NÞ; EX A GðTMjUÞ:ð18Þ

Finally, it is easy to check that

BðX ; xÞ ¼ 0; EX A GðTMjUÞ:ð19Þ

3. The Ricci tensor of a lightlike hypersurface

In this section we study the Ricci tensor of a lightlike hypersurface of a semi-
Riemannian manifold ðM; gÞ with Lorentzian signature. We have the following:

Proposition 1. Let ðM; g;SðTMÞÞ be a lightlike hypersurface of a semi-
Riemannian manifold ðM; gÞ with Lorentzian signature. Then the Ricci tensor of
M denoted by Ric is given for X , Y tangent to M by

RicðX ;Y Þ ¼ RicðX ;Y Þ þ BðX ;YÞ tr AN � hðRðx;YÞX Þð20Þ
� gðANX ;A�

xYÞ

where Ric is the Ricci tensor of M and tr AN the trace of the operator AN .

Proof. For X and Y in GðTMÞ, we have

RicðX ;YÞ ¼
Xn
i¼1

gðRðEi;X ÞY ;EiÞ þ gðRðx;X ÞY Þ;NÞ

where fx;E1; . . . ;Eng is an orthonormal frame field on M adapted to de-
composition (2) and ei is the causal character of the vector field Ei, of the
orthonormal frame field fE1; . . . ;Eng of SðTMÞ. The ambient space being
Lorentzian, the screen distribution is Riemannian so that ei ¼ 1, 1a ia n. Then
from Gauss-Codazzi equations

gðRðEi;XÞY ;EiÞ ¼ gðRðEi;X ÞY ;EiÞ þ gðhðX ;YÞ; h�ðEi;EiÞÞ
� gðhðEi;Y Þ; h�ðX ;EiÞÞ

¼ gðRðEi;X ÞY ;EiÞ þ BðX ;YÞCðEi;EiÞ � BðEi;YÞCðX ;EiÞ

hence
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Xn
i¼1

gðRðEi;X ÞY ;EiÞ ¼
Xn
i¼1

gðRðEi;X ÞY ;EiÞ þ BðX ;Y Þ
Xn
i¼1

CðEi;EiÞ

�
Xn
i¼1

BðEi;YÞCðX ;EiÞ

¼
Xn
i¼1

gðRðEi;X ÞY ;EiÞ þ BðX ;Y Þ
Xn
i¼1

gðANEi;EiÞ

�
Xn
i¼1

gðA�
xY ;EiÞgðANX ;EiÞ

¼
Xn
i¼1

gðRðEi;X ÞY ;EiÞ þ BðX ;Y Þ
 Xn

i¼1

gðANEi;EiÞ

þ gðANx;NÞ
!

� gðANX ;A�
xYÞ

As gðRðx;XÞY ;NÞ ¼ gðRðx;XÞY ;NÞ we obtain

Xn
i¼1

gðRðEi;XÞY ;EiÞ þ gðRðx;XÞY ;NÞ ¼
Xn
i¼1

gðRðEi;XÞY ;EiÞ þ gðRðx;X ÞY ;NÞ

þ BðX ;YÞ tr AN � gðANX ;A�
xY Þ

Hence

RicðX ;YÞ ¼ RicðX ;YÞ þ BðX ;YÞ tr AN � hðRðx;Y ÞXÞ � gðANX ;A�
xY Þ 9

It is important to stress that the Ricci tensor does not depend on the choice
of x. Indeed, if ðx 0;E1; . . . ;En;N

0Þ is an other frame field adapted to (2) and
Ric 0 denotes the Ricci tensor with respect to ðx 0;N 0Þ we have for X , Y tangent to
M

RicðX ;YÞ ¼
Xn
i¼1

eigðRðEi;X ÞY ;EiÞ þ gðRðx 0;X ÞY ;N 0Þ

But x 0 ¼ ax and N 0 ¼ 1

a
N for some smooth function a > 0. Then

gðRðx 0;XÞY ;N 0Þ ¼ gðRðx;X ÞY ;NÞ
so that RicðX ;Y Þ ¼ Ric 0ðX ;YÞ.

Corollary 1. Let ðM; g;SðTMÞÞ be a lightlike hypersurface of an ðnþ 2Þ-
dimensional ðnb 2Þ Lorentzian manifold ðM; gÞ of constant curvature c. Then

RicðX ;YÞ ¼ ncgðX ;YÞ þ BðX ;Y Þ tr AN � gðANX ;A�
xYÞð21Þ
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Proof. In the case M is of constant sectional curvature c, we have

Ric ¼ ðnþ 1Þcg; and hðRðx;YÞX Þ ¼ cgðX ;YÞ;

and the result follows. 9

3.1. Conformal screen on lightlike hypersurfaces
Let ðM; g;SðTMÞÞ be a lightlike hypersurface of a semi-Riemannian mani-

fold, AN and A�
x the shape operators of M and its screen distribution SðTMÞ

respectively. In the srquel, we will use the following

Definition 1 ([3]). The hypersurface M is said to be screen locally (resp.
globally) conformal if on any coordinate neighborhood U (rep. U ¼ M), there is a
smooth function j such that

AN ¼ jA�
xð22Þ

holds; the function j is referred to as the conformal weight.

A large class of lightlike submanifolds satisfy relation (22):
� The lightlike cone Lnþ1

0 of Rnþ2
1 is such that

ANX ¼ 1

2ðx0Þ2
A?

xX ; X A GðTLnþ1
0 Þ:

So Lnþ1
0 is a screen globally conformal lightlike hypersurface of Rnþ2

1 ,

whose conformal weight is globally defined on Lnþ1
0 .

� Lightlike Monge hypersurfaces, endowed with the canonical screen dis-
tribution, are screen globally conformal in Lorentz spaces, with constant
conformal weight jðxÞ ¼ 1

2 .

Conformal screen lightlike hypersurfaces have the outstanding feature that
their screen distributions are always integrable and their geometry essentially
reduces to the one of leaves of these screen distributions. More precisely, a
screen locally (or globally) conformal lightlike hypersurface is locally (or globally)
a product C�M 0 where C is a null curve and M 0 is a leaf of SðTMÞ ([3]).

Proposition 2. Any screen conformal totally umbilical lightlike hypersurface
ðMnþ1; g;SðTMÞÞ of a Lorentzian space form ðMðcÞ; gÞ with c > 0 is an Einstein
manifold.

Proof. The assumption yield BðX ;YÞ ¼ rgðX ;YÞ and

gðANX ;A�
xY Þ ¼ r2jgðX ;YÞ

for some smooth function r on UHM so that (21) reads

RicðX ;Y Þ ¼ ½ncþ rs� jr2�gðX ;YÞ

where s ¼ tr AN . The result follows. 9
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Since AN and A�
x commute when M is screen conformal, Corollary 1

shows that the Ricci tensor of any screen conformal lightlike hypersurface in a
Lorentzian manifold of constant curvature is symmetric.

4. Proof of Theorem 1

For the proof of our main theorem, we will make use of the following facts
and lemmas. Let x denote an arbitrary point on M.

Fact 1. The operator A�
xx

is diagonalizable and x is an eigenvector with

eigenvalue 0. Since SðTMÞ is Riemannian for a Lorentzian M, consider a frame
field of eigenvectors of A�

x , say fE0 ¼ x;E1; . . . ;Eng such that fEigi¼1;...;n rep-
resents an orthonormal basis of the screen distribution SðTMÞ on M. Then
A�

xE0 ¼ A�
x x ¼ 0 and

A�
xEi ¼ liEi 1a ia n:

Now we use the Ricci tensor equality (21) of corollary 1 to have

gðA�
xX ;A�

xY Þ � sgðA�
xX ;YÞ þ jðr� ncÞgðX ;YÞ ¼ 0ð23Þ

where s ¼ tr A�
x . In (23) put X ¼ Y ¼ Ei to obtain

l2i � sli þ�jðr� ncÞ ¼ 0 1a ia nð24Þ

For each integer i, this equation admits no more than two distinct real solu-
tions. We may assume there exists p A f1; . . . ; ng such that l1 ¼ � � � ¼ lp and
lpþ1 ¼ � � � ¼ ln, by renumbering if necessary. We now follow the general scheme
in [5].

Assume r < nc and argue by contradiction. Set

l1 ¼ � � � ¼ lp ¼ n; lpþ1 ¼ � � � ¼ ln ¼ m;

from (24) we have

s ¼ mþ n ¼ pnþ ðn� pÞm
that is

ðp� 1Þnþ ðn� p� 1Þm ¼ 0 with mn ¼ �jðr� ncÞ < 0:

Note that condition nb 3 implies p > 1 and p < n� 1. Then,

n2 ¼ j
n� p� 1

p� 1
ðr� ncÞ:ð25Þ

Since (x 7! s ¼ tr A�
xx
) is a di¤erentiable function, from (24) the roots m and n are

di¤erentiable. From (25) we deduce that n is a finite valued smooth function, so
it is a constant function near x. The same for m and p in a neighborhood of x.

Now, consider the following distributions Dm and Dn
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DnðxÞ ¼ fX A TxM;A�
xX ¼ nPXg

DmðxÞ ¼ fX A TxM;A�
xX ¼ mPXg

where P is the projection operator on GðSðTMÞÞ in the orthogonal direct sum of
the bundle resulting from

TxM ¼ SðTxMÞ ? TxM
?

Fact 2. In a neighborhood of x A M, Dm and Dn are smooth distributions.
Indeed from (23) we deduce

A�2
x � ðmþ nÞA�

x þ mnP ¼ 0:ð26Þ
Consider F1; . . . ;Fn di¤erentiable vector fields in a neighborhood of x such
that fPFiðxÞg1aiap and fPFjðxÞgpþ1ajan constitute a basis of DnðxÞ and DmðxÞ,
respectively.

Put

Yi ¼ ðA�
x � mPÞFi; 1a ia p

Yj ¼ ðA�
x � nPÞFj pþ 1a ja n

From (26) we have

ðA�
x � nPÞYi ¼ ðA�

x � nPÞðA�
x � mPÞFi ¼ 0

and

ðA�
x � mPÞYj ¼ ðA�

x � mPÞðA�
x � nPÞFj ¼ 0

that is Yi A Dn and Yj A Dm. Therefore, since

YiðxÞ ¼ ðA�
x � mPÞFiðxÞ ¼ ðn� mÞPFiðxÞ

and

YjðxÞ ¼ ðn� mÞPFjðxÞ
we deduce that ðYiÞ1aiap and ðYjÞpþ1ajan are basis of Dn and Dm, respectively in
a coordinate neighborhood of x; thus they are smooth distributions on M.

Fact 3.

ImðA�
x � mPÞHDn

ImðA�
x � nPÞHDm:

(
ð27Þ

Indeed, let Y A ImðA�
x � mPÞ, there exists X A TxM such that Y ¼

ðA�
x � mPÞX . Then (27) is immediate from (26).

Lemma 1. For all X A Dn and Y A Dm, we have

‘XY A Dm; ‘YX A Dnð28Þ
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Proof. Let X A Dn, Y A Dm. Remind first that

ð‘XgÞðY ;ZÞ ¼ BðX ;YÞhðZÞ þ BðX ;ZÞhðYÞ X ;Y A GðTMÞð29Þ
Then

‘X ðgðA�
xY ;ZÞÞ ¼ BðX ;A�

xYÞhðZÞ þ BðX ;ZÞhðA�
xYÞð30Þ

þ gð‘XA
�
xY ;ZÞ þ gðA�

xY ;‘XZÞ Z A GðTMÞ

where h is the local 1-form dual of the local section x; that is

hðX Þ ¼ gðX ;NÞ
Note that hðXÞ ¼ 0 if and only if X A GðSðTMÞÞ. Using the stability of

Dm and Dn with respect to P and also their orthogonality with respect to B, we
deduce that BðX ;A�

xY Þ ¼ 0. As hðA�
xY Þ ¼ 0, (30) becomes

X � gðA�
xY ;ZÞ ¼ gð‘XA

�
xY ;ZÞ þ gðA�

xY ;‘XZÞð31Þ

X A Dn Y A Dm Z A GðTMÞ

By Codazzi equation,

X � gðA�
xY ;ZÞ � gð‘XA

�
xY ;ZÞ � gðA�

xY ;‘XZÞ

¼ Y � gðA�
xX ;ZÞ

¼ gð‘YA
�
xX ;ZÞ þ gðA�

xX ;‘YZÞ;

which yields

gððA�
x � mPÞ‘XY ;ZÞ ¼ gððA�

x � nPÞ‘YX ;ZÞ
that is

gððA�
x � mPÞ‘XY � ðA�

x � nPÞ‘YX ;ZÞ ¼ 0; EZ A TMjU:
Then for all X A Dn, Y A Dm,

ðA�
x � mPÞ‘XY � ðA�

x � nPÞ‘YX A TxM
?

But ðA�
x � mPÞ and ðA�

x � nPÞ are SðTMÞ-valued, so

ðA�
x � mPÞ‘XY � ðA�

x � nPÞ‘YX A SðTMÞVTM? ¼ f0g;
then

ðA�
x � mPÞ‘XY ¼ ðA�

x � nPÞ‘YX ; EX A Dn; EY A Dm:ð32Þ

From (27) and (32) and taking into account Dn VDm ¼ f0g we have

ðA�
x � mPÞ‘XY ¼ 0 ¼ ðA�

x � nPÞ‘YX

that is for all X A Dn and for all Y A Dm,

‘XY A Dm; and ‘YX A Dn: 9ð33Þ
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Lemma. For any X ;Z A Dn and any U ;Y A Dm, the following holds

gð‘ZX ;Y Þ ¼ gðX ;‘UYÞ ¼ 0;ð34Þ

Proof. Let X ;Z A Dn, Y A Dm. From

gðX ;PYÞ ¼ 1

n
gðA�

xX ;PY Þ

¼ 1

n
BðX ;PYÞ ¼ 0

we have

‘ZðgðX ;PY ÞÞ ¼ 0ð35Þ
¼ BðZ;XÞhðPY Þ þ BðZ;PYÞhðXÞ þ gð‘ZX ;PY Þ

þ gðX ;‘ZPY Þ
¼ gð‘ZX ;YÞ:

where we used the orthogonality of Dm and Dn with (respect to g) and (33).
Then from (19) we get

gð‘ZX ;YÞ ¼ 0; EX ;Z A Dn; EY A Dm:ð36Þ
Similarly we get

gðX ;‘UYÞ ¼ 0; EX A Dn U ;Y A Dm 9ð37Þ

Fact 4. For X A Dn and Y A Dm, we have

gðRðPX ;PYÞPY ;PX Þ ¼ �jmngðX ;XÞgðY ;Y Þ
Indeed for X in Dn and Y in Dm we have

gðRðX ;Y ÞY ;XÞ ¼ gð‘X‘YY ;XÞ
since

gð‘Y‘XY ;XÞ ¼ gð‘‘YXY ;X Þ ¼ gð‘‘XYY ;XÞ ¼ 0

by using (34) and (33) and the g-orthogonality of Dm and Dn. Let us consider Pm

the projection on Dm. From (36) we know that ‘YY has no component in Dn;
so

‘YY ¼ Pm‘YY þ hð‘YY Þx:
It follows that

gð‘X‘YY ;XÞ ¼ gð‘XPmð‘YYÞ;X Þ þ ‘X ðhð‘YY ÞÞgðx;X Þ þ hð‘YYÞgð‘Xx;X Þ

and using again (34) and (33) and the g-orthogonality of Dm and Dn we get

gð‘X‘YY ;XÞ ¼ �nhð‘YYÞgðX ;X Þ; X A Dn; Y A Dmð38Þ
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One can check that hð‘YYÞ ¼ Y � ðhðYÞÞ þ jmgðY ;YÞ so that

gðRðX ;YÞY ;XÞ ¼ �nY � ðhðYÞÞgðX ;X Þ � jmngðX ;X ÞgðY ;YÞ X A Dn; Y A Dm:

In particular

gðRðPX ;PYÞPY ;PX Þ ¼ �jmngðX ;XÞgðY ;Y Þ X A Dn; Y A Dmð39Þ

Proof of Theorem 1. Now, using Gauss equation with (39) leads to

gðRðPX ;PYÞPY ;PX Þ ¼ cfgðPy;PY ÞgðPX ;PXÞ � ðgðPX ;PYÞÞ2g

þ jf�ðBðPX ;PYÞÞ2 þ BðPY ;PY ÞBðPX ;PX Þg

hence

gðRðPX ;PY ÞPY ;PXÞ ¼ ðcþ jÞmngðX ;X ÞgðY ;YÞð40Þ

where we use the orthogonality of Dm and Dn with respect to both B and g and
relation

CðX ;PY Þ ¼ jgðX ;PY Þ:

Choosing X A Dn and Y A Dm such that gðX ;XÞ0 0 and gðY ;Y Þ0 0 and taking
into account (39) and (40) leads to jmn ¼ 1

2 c. But we have also that jmn ¼
ðr� ncÞ. This is a contradiction with r� nc < 0 since cb 0. So rb nc is
proved. In the sequel we distinguish the two cases r ¼ nc and r > nc

Case r ¼ nc
From (24) we have

liðli � sÞ ¼ 0 1a ia n

� Assume p ¼ n, then l1 ¼ � � � ¼ ln ¼ l, and

lðl� nlÞ ¼ �ðn� 1Þl2 ¼ 0

which implies

l ¼ 0 and A�
x ¼ 0

or equivalently

h ¼ 0

that is M is totally geodesic in M. Recall that for X , Y in GðSðTMÞÞ we
have

‘XY ¼ ‘�
XY þ CðX ;Y Þxþ BðX ;YÞNð41Þ

Hence for a totally geodesic M, by (22) we have ‘XY ¼ ‘�
XY for X and

Y tangent to a leaf M � of the screen distribution. Therefore M � is a
Riemannian space form of same constant sectional curvature c as M and
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M is locally a product L�M � where L is a leaf of the rank one dis-
tribution RadðTMÞ.

� Assume 1a pa n� 1. We have

l1 ¼ � � � ¼ lp ¼ 00 lpþ1 ¼ � � � ¼ ln ¼ l

Then

s ¼ ðn� pÞl
and

ðn� p� 1Þl2 ¼ 0

So

p ¼ n� 1

that is

A�
x ¼

0

. .
.

. .
.

0

l

0
BBBBBBB@

1
CCCCCCCA
:ð42Þ

Let K denote the sectional curvature of M �. From Gauss equation and
considering fE0 ¼ x;E1; . . . ;Eng such that fE1; . . . ;Eng represents an
orthonormal frame field of SðTMÞ, we have for 1a i < ja n

KðEi;EjÞ ¼
gðR�ðEi;EjÞEj;EiÞ

hEi;EiihEj;Eji� hEi;Eji
2
:

Because of (42), BðEi;EjÞ ¼ 0 for 1a i < ja n. Hence from (41) we have

gðR�ðEi;EjÞEj ;EiÞ ¼ gðRðEi;EjÞEj;EiÞ ¼ c:

M � is a Riemannian manifold of same constant sectional curvature c as
M, and M is locally a product L�M �.

Case r > nc. Assume first that 1a pa n that is

l1 ¼ � � � ¼ lp ¼ a0 b ¼ lpþ1 ¼ � � � ¼ ln

From (24) we have

aþ b ¼ s

jab ¼ ðr� ncÞ > 0:

�
ð43Þ

aþ b ¼ s ¼ paþ ðn� pÞb
ðp� 1Þa ¼ �ðn� p� 1Þb
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But, from the second equality of (43), a and b have the same sign. Then, since

p� 1a 0 and ð�ðn� p� 1Þa 0Þ

the only possibility is p ¼ 1 and nb 2 which is a contradiction with nb 3.

So p ¼ n and then l ¼ l1 ¼ � � � ¼ ln

A�
xX ¼ lPX ; EX A GðTMjUÞ

with l0 0 (for we have l2 ¼ r� nc > 0)
Using the fact that M is screen locally conformal we infer

ANX ¼ jlPX ; EX A GðTMÞjUð44Þ

It follows that M is locally a product L�M � where M � is a totally umbilical
Riemannian manifold which is not totally geodesic (l0 0) of codimension 2 in
MðcÞ.

In fact, we show that the leaves M � are space forms of constant curvature
cþ 2jl2. Indeed, for X , Y in GðSðTMÞÞ one checks that

‘XY ¼ ‘�
XY þ lgðX ;YÞðjxþNÞ

so that

‘½X ;Y �Z ¼ ‘�
½X ;Y �Z þ lgð½X ;Y �;ZÞðjxþNÞ

and

‘X‘YZ ¼ ‘�
X‘

�
YZ þ lgð‘�

XY ;ZÞðjxþNÞ þ l½gðX ;‘�
YZÞ

þ gðY ;‘�
XZÞ�ðjxþNÞ þ lgðY ;ZÞ‘X ðjxþNÞ

then

RðX ;YÞZ ¼ R�ðX ;YÞZ þ lgðY ;ZÞ‘X ðjxþNÞ � lgðX ;ZÞ‘Y ðjxþNÞ
It is easy to see that

‘X ðjxþNÞ ¼ �2ljX � tðX Þðjx�NÞ:
Hence, using the fact that M is of constant sectional curvature c and R�ðX ;Y ÞZ
is GðSðTMÞÞ-valued, we obtain

R�ðX ;Y ÞZ ¼ ðcþ 2l2jÞfgðY ;ZÞX � gðX ;ZÞYgð45Þ
and

l½gðY ;ZÞtðX Þ � gðX ;ZÞtðYÞ� ¼ 0ð46Þ
The assertion that the leafs are space forms of positive constant curvature

follows from (45). Now, in (46), let Y be such that Y 0 0 and tðYÞ ¼ 0. Then
(46) implies gðY ;Y ÞtðX Þ ¼ 0 for all X tangent to the leaf M �. Thus t vanishes
identically on the leafs of the screen distribution on M.
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