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THE CORANK AND THE INDEX ARE BLOW-NASH INVARIANTS

Goulwen Fichou

Abstract

Is the corank an invariant of the blow-analytic equivalence between real analytic

function germs? We give a positive answer in the case of the blow-Nash equivalence,

which is a natural variant of the blow-analytic equivalence for Nash function germs. In

addition, we prove that the index is also a blow-Nash invariant. Their proof is based

on the computation of some virtual Poincaré polynomials and zeta functions associated

to a Nash function germ.

Introduction

The classification of real analytic function germs is a di‰cult topic, notably
in the choice of a good equivalence relation, between germs, to study. An
interesting relation, called blow-analytic equivalence, has been introduced by T.
C. Kuo [10] and studied by several authors (see [5] for a survey). Notably, it has
been proved that such an equivalence relation does not admit moduli for a family
with isolated singularities. Moreover, the proof of this result produces e¤ective
methods to give blow-analytic triviality criteria. On the other hand, some
invariants have been introduced in order to distinguish blow-analytic types (cf.
[9]). However, it remains di‰cult to obtain e¤ective classification results, at least
in dimension greater than 3, because of the complexity of these invariants.

In this paper, we address the following related question, raised by T. Fukui.
Let f : ðRd ; 0Þ ! ðR; 0Þ be an analytic germ. Assume that the Jacobian

matrix of f at 0 does vanish. Let r denote the rank of the Hessian of f at 0.
Then f is analytically equivalent to a function germ of the form

Xs

i¼1
x2
i �

Xsþt
j¼sþ1

x2
j þ F ðxÞ;

where sþ t ¼ r (note that s or t may vanish) and F is an analytic germ with order
at least 3. The corank of f is defined to be the corank of its Hessian matrix at
0, that is d � r.
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Question. Is the corank of an analytic function germ an invariant of the
blow-analytic equivalence?

The answer to such a question would be a step toward a better under-
standing of the blow-analytic equivalence relation, and therefore a better un-
derstanding of the singularities of real analytic function germs.

We will not give a complete answer to this question, but we answer a natural
variant of the question for Nash function germs (i.e., germs that are analytic
and semi-algebraic). One can define the blow-Nash equivalence between Nash
function germs (see [4]; see also [6, 7, 8] for the case of Nash sets), and this
relation still has good triviality properties and e¤ective invariants called zeta
functions. These zeta functions are defined, following the idea of motivic in-
tegration [3], using an additive and multiplicative invariant, under Nash iso-
morphisms, of real algebraic sets: the virtual Poincaré polynomial (cf. part 1.1).

The main result of this paper states that blow-Nash equivalent Nash function
germs have the same corank (theorem 1.5). We prove moreover that their index
coincide (the index is defined to be the integer t above, which counts the number
of minus signs in the quadratic part).

The proof is based on the invariance of the zeta functions with respect to
the blow-Nash equivalence [4], and on the computation of a significant part of
these zeta functions for germs of Nash functions of the type

Ps
i¼1 x

2
i �

Psþt
j¼sþ1 x

2
j

(cf part 3). To reach this aim, the computation of some virtual Poincaré
polynomials associated to these germs is crucial. Such a computation may be
di‰cult in general, but here we manage to conclude thanks to the degeneracy of a
Leray-Serre spectral sequence (cf part 2).

Acknowledgments. The author does wish to thank Toshizumi Fukui for
stimulating discussions during the invited stay of the author at Saitama Uni-
versity. He thanks also Michel Coste, Satoshi Koike and Adam Parusiński for
valuable remarks.

1. Corank and Blow-Nash equivalence

1.1. Blow-Nash equivalence. In this section, we recall briefly the notion of
blow-Nash equivalence as well as that of zeta functions. For more details, the
reader is refer to [4].

Definition 1.1.
(1) An algebraic modification of a Nash function germ f : ðRd ; 0Þ ! ðR; 0Þ

is a proper birational algebraic morphism sf : ðMf ; s
�1
f ð0ÞÞ ! ðRd ; 0Þ,

between semi-algebraic neighbourhoods of 0 in Rd and s�1f ð0Þ in Mf ,
which is an isomorphism over the complement of the zero locus of f ,
and for which f � s is in normal crossing.
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(2) Let f ; g : ðRd ; 0Þ ! ðR; 0Þ be Nash function germs. They are said to be
blow-Nash equivalent if there exist two algebraic modifications

sf : ðMf ; s
�1
f ð0ÞÞ ! ðRd ; 0Þ and sg : ðMg; s

�1
g ð0ÞÞ ! ðRd ; 0Þ;

such that f � sf and jac sf (respectively g � sg and jac sg) have only
normal crossings simultaneously, and a Nash isomorphism (i.e. a semi-
algebraic map which is an analytic isomorphism) F between semi-
algebraic neighbourhoods ðMf ; s

�1
f ð0ÞÞ and ðMg; s

�1
g ð0ÞÞ which preserves

the multiplicities of the Jacobian determinants of sf and sg along the
components of the exceptional divisors, and which induces a homeo-
morphism f : ðRd ; 0Þ ! ðRd ; 0Þ such that f ¼ g � f, as illustrated by the
commutative diagram:

ðMf ; s
�1
f ð0ÞÞ �����!F ðMg; s

�1
g ð0ÞÞ

sf

???y
???ysg

ðRd ; 0Þ f ðRd ; 0Þ

ðR; 0Þ

����������!

 ���
��� ������!f g

The principal results, concerning this equivalence relation between Nash
function germs, are the following. On one hand, it does not admit moduli for
a Nash family with isolated singularities. On the other hand, we know in-
variants for the blow-Nash equivalence, called zeta functions. These invariants
will be crucial in the proof of the main result of this paper. We recall now the
definition of these zeta functions. To begin with, let us introduce the invariant
of constructible real algebraic sets we will deal with.

By an additive map on the category of constructible real algebraic sets, we
mean a map b such that bðXÞ ¼ bðY Þ þ bðXnY Þ where Y is an algebraic subset
closed in X . Moreover b is called multiplicative if bðX1 � X2Þ ¼ bðX1Þ � bðX2Þ
for constructible real algebraic sets X1, X2.

Proposition 1.2 ([4]). For an integer i, there exists an additive map bi
with values in Z, defined on the category of constructible real algebraic sets. It

coincides with the classical Betti number dim Hi � ;
Z

2Z

� �
on the connected com-

ponent of compact nonsingular real algebraic varieties.
Moreover bð�Þ ¼

P
ib0 bið�Þui is multiplicative, with values in Z½u�.

Finally, if X1 and X2 are Nash isomorphic real algebraic sets, then bðX1Þ ¼
bðX2Þ.

The invariant bi is called the i-th virtual Betti number, and the polynomial b
the virtual Poincaré polynomial.
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Then, using our virtual Poincaré polynomial, we can define the zeta
functions of a Nash function germ f : ðRd ; 0Þ ! ðR; 0Þ as follows. Denote by L

the space of arcs at the origin 0 A Rd , that is:

L ¼LðRd ; 0Þ ¼ fg : ðR; 0Þ ! ðRd ; 0Þ : g formalg;

and by Ln the space of arcs truncated at order nþ 1:

Ln ¼LnðRd ; 0Þ ¼ fg A L : gðtÞ ¼ a1tþ a2t
2 þ � � � þ ant

n; ai A Rdg;
for nb 0 an integer.

We define the naive zeta function Zf ðTÞ of f as the following element of
Z½u; u�1�½½T ��:

Zf ðTÞ ¼
X
nb1

bðAnÞu�ndT n;

where

An ¼ fg A Ln : ordð f � gÞ ¼ ng ¼ fg A Ln : f � gðtÞ ¼ btn þ � � � ; b0 0g:
Similarly, we define zeta functions with sign by

Zþ1f ðTÞ ¼
X
nb1

bðAþ1n Þu�ndT n and Z�1f ðTÞ ¼
X
nb1

bðA�1n Þu�ndT n;

where

Aþ1n ¼ fg A Ln : f � gðtÞ ¼ þtn þ � � �g and

A�1n ¼ fg A Ln : f � gðtÞ ¼ �tn þ � � �g:
The crucial result concerning these zeta functions is the following:

Theorem 1.3 ([4]). Blow-Nash equivalent Nash function germs have the same
naive zeta function and the same zeta functions with sign.

1.2. Corank of a Nash function germ. The corank and the index of a Nash
function germ is defined in the same way as in the smooth case. Moreover, the
same splitting lemma holds in the Nash case.

Lemma 1.4. Let f : ðRd ; 0Þ ! ðR; 0Þ be a Nash function germ. Assume that
the Jacobian matrix of f does vanish at 0. Then there exist a Nash isomorphism
f : ðRd ; 0Þ ! ðRd ; 0Þ and integers s, t ( possibly equal to zero), where sþ t equals
the rank of the Hessian matrix of f at 0, such that

f � fðx1; . . . ; xdÞ ¼
Xs

i¼1
x2
i �

Xsþt
j¼sþ1

x2
j þ F ðxsþtþ1; . . . ; xdÞ;

where F is a Nash function germ with order at least 3.
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Classical proofs of lemma 1.4, in the smooth case, use a parametrized
version of the Morse Lemma [1]. But this is not allowed in the Nash setting
since it requires integration along vector fields. However, an elementary proof,
using only the implicit function theorem and the Hadamard division lemma, has
been given in [11]. This method adapts to our case because the implicit function
theorem does hold in the Nash setting [2], whereas the Hadamard division lemma
is no longer necessary since we are working with analytic functions.

Let us state now the central result of this paper.

Theorem 1.5. Let f ; g : ðRd ; 0Þ ! ðR; 0Þ be blow-Nash equivalent Nash
function germs. Then f and g have the same corank and the same index.

Proof. The proof of theorem 1.5 consists in comparing the coe‰cient of T 2

of the zeta functions associated to f and g. Due to the invariance theorem 1.3,
it is su‰cient to compare these coe‰cients for the simpler Nash function germs
given by lemma 1.4, since Nash equivalent germs are automatically blow-Nash
equivalent.

Now, the result follows from proposition 3.1 below, where we compute the
coe‰cient of T 2 for the zeta functions of the polynomial germs given by the
quadratic part of these simpler Nash germs. Actually, the coe‰cient of T 2 of a
quadratic polynomial q is the same as that of qþ F , where F has order at least 3,

by definition of the sets of arcs A2 and AG1
2 . r

Remark 1.6. There exist similar zeta functions that are invariants for
the blow-analytic equivalence between real analytic germs (cf. [9]). These zeta
functions can be derived from the one presented in this paper by evaluating
the indeterminacy u at �1. Unfortunately, they are not su‰cient to obtain the
invariance of the corank for blow-analytic equivalence by using the method
presented here.

2. Computation of some virtual Poincaré polynomials

Let Xm;M be the real algebraic subset of RmþM defined by the equation

Xm
i¼1

x2
i �

XM
j¼1

y2j ¼ 0:

In this section, we compute the value of the virtual Poincaré polynomial bðXm;MÞ
in terms of m and M. This computation is based on the degeneracy of a Leray-
Serre spectral sequence associated to the projectivisation of Xm;M .

Without lost of generality, one may assume that maM.

Proposition 2.1. If mb 1, then bðXm;MÞ ¼ umþM�1 � uM�1 þ um.
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Remark 2.2.
(1) If m ¼ 0, X0;M is reduced to a single point, and therefore bðX0;MÞ ¼ 1.
(2) Note that if m ¼ 1, then the computation of bðX1;MÞ is easy since X1;M

is just a cone based on a sphere. Thus bðX1;MÞ ¼ 1þ ðu� 1Þð1þ uM�1Þ
¼ uM � uM�1 þ u.

(3) In the particular case where m ¼M ¼ 2, the computation can also be
done in a simple way. Indeed X2;2 is isomorphic to the variety given by

XY ¼ UV in R4. Then, for Y 0 0, it defines a family of lines X ¼ U

Y
V ,

whereas for Y ¼ 0 we simply get UV ¼ 0. Thus

bðX2;2Þ ¼ bðR� � R2Þ þ bðfðX ;U ;VÞ jUV ¼ 0gÞ ¼ ðu� 1Þu2 þ uð2u� 1Þ:

Another nice way to compute this Poincaré polynomial is by using the
toric structure of X2;2. Actually, one see that X2;2 is the union of the
orbits under the torus action, that is X2;2 is a disjoint union of ðR�Þ3,
one point, and four copies of ðR�Þ2 and ðR�Þ. Therefore, by additivity
of b:

bðX2;2Þ ¼ ðu� 1Þ3 þ 4ðu� 1Þ2 þ 4ðu� 1Þ þ 1 ¼ u3 þ u2 � u:

Unfortunately, it does not seem possible to generalize this method.

The proof of proposition 2.1 is based on a reduction to the projective case.
As a preliminary step, we compute the virtual Poincaré polynomial of the

projective subset Zm;M of PmþM�1ðRÞ defined by the same equation as that of
Xm;M .

Lemma 2.3. Take Mb 2. Let Zm;M be defined by
Pm

i¼1 x
2
i �

PM
j¼1 y

2
j ¼ 0

in PmþM�1ðRÞ. Then

bðZm;MÞ ¼ ð1þ uM�1Þð1þ uþ � � � þ um�1Þ:

Proof. To begin with, note that Zm;M is nonsingular as a real algebraic set.
Therefore the virtual Betti numbers of Zm;M coincide with its classical Betti
numbers (cf. proposition 1.2).

In order to compute these Betti numbers, consider the projection from Zm;M

onto Pm�1ðRÞ defined by

½x1 : � � � : xm : y1 : � � � : yM � 7! ½x1 : � � � : xm�:

It is a well-defined fibration with fibre isomorphic to the unit sphere SM�1 in RM .
Working with coe‰cients in Z2, the cohomological Leray-Serre spectral sequence
associated with this fibration converges to the cohomology of Zm;M :

E
p;q
2 ¼ HpðPm�1ðRÞ;HqðSM�1;Z2ÞÞ ) HpþqðZm;M ;Z2Þ:
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However HqðSM�1;Z2Þ is isomorphic to Z2 if q ¼ 0 and q ¼M � 1, and is
zero otherwise. Therefore the nonzero terms of E

p;q
2 , all equal to Z2, are

localized in two lines (they are represented by a star in the figure below).

But, since maM by assumption, the spectral sequence degenerates and
gives the Betti numbers of Zm;M (recall that HiðZm;M ;Z2Þ is isomorphic to
HiðZm;M ;Z2Þ). More precisely,

dim HiðZm;M ;Z2Þ ¼
1 if i A f0; . . . ;m� 1;M � 1; . . . ;mþM � 2g;
0 otherwise;

�

if m < M, and in the particular case where m ¼M, then

dim HiðZm;m;Z2Þ ¼
1 if i A f0; . . . ;m� 2;m; . . . ; 2m� 2g;
2 if i ¼ m� 1;

0 otherwise.

8<
:

So in general

bðZm;MÞ ¼ ð1þ uþ � � � þ um�1Þ þ ðuM�1 þ � � � þ umþM�2Þ

¼ ð1þ uM�1Þð1þ uþ � � � þ um�1Þ: r

Remark 2.4. The result of lemma 2.3 can be stated as bðZm;MÞ ¼
bðSM�1ÞbðPm�1ðRÞÞ. This form suggests that the projection from Zm;M onto
Pm�1ðRÞ could be a piecewise algebraically trivial fibration with fibre SM�1,
because of the additivity and multiplicativity of b. However it is not the case in
general, as illustrated by the case m ¼M ¼ 2.

Let us explain now how we carry out the computation of the virtual
Poincaré polynomial of Xm;M in terms of that of Zm;M .
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Proof of proposition 2.1. It su‰ces to notice that the projection from
Xm;Mnf0g onto Zm;M is a piecewise algebraically trivial fibration with fibre
R�. Therefore

bðXm;MÞ ¼ 1þ ðu� 1ÞbðZm;MÞ

by additivity and multiplicativity of the virtual Poincaré polynomial b.

Now, note that bðZm;MÞ ¼ ð1þ uM�1Þ u
m � 1

u� 1
, and so

bðXm;MÞ ¼ 1þ ð1þ uM�1Þðum � 1Þ ¼ umþM�1 � uM�1 þ um: r

The following corollaries, which also specify the virtual Poincaré polynomial
of some algebraic sets, will be useful for computing the zeta functions with sign in
section 3.

Corollary 2.5. Let X 1
s; t be the real algebraic subset of Rsþt defined by the

equation

Xs

i¼1
x2
i �

Xt

j¼1
y2j ¼ 1:

Assume that s; t > 0.
� If sa t, then bðX 1

s; tÞ ¼ ut�1ðus � 1Þ.
� If s > t, then bðX 1

s; tÞ ¼ utðus�1 þ 1Þ.
Moreover bðX 1

0; tÞ ¼ 0 and bðX 1
s;0Þ ¼ 1þ us�1 if sb 1.

Proof. Let us begin with the case sa t. We homogenize the equation
defining X 1

s; t. Then, we obtain a projective subset of PsþtðRÞ, denoted Zs; tþ1 in
lemma 2.3, whose a‰ne part is isomorphic to X 1

s; t, and whose part at infinity is
isomorphic to Zs; t. Therefore

bðX 1
s; tÞ ¼ bðZs; tþ1Þ � bðZs; tÞ ¼ ð1þ utÞð1þ � � � þ us�1Þ � ð1þ ut�1Þð1þ � � � þ us�1Þ

¼ ut�1ðu� 1Þ u
s � 1

u� 1
¼ ut�1ðus � 1Þ:

Now, let us turn to the case s > t. In the same way as above, by
homogenisation of the equation defining X 1

s; t, we obtain a projective subset
of P sþtðRÞ, denoted Ztþ1; s (and not Zs; tþ1 because sb tþ 1), whose a‰ne part
is isomorphic to X 1

s; t. Moreover, the part at infinity is isomorphic to Zt; s,
therefore

bðX 1
s; tÞ ¼ bðZtþ1; sÞ � bðZt; sÞ;

and the second member can be computed thanks to lemma 2.3. More precisely:
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bðX 1
s; tÞ ¼ ð1þ us�1Þð1þ uþ � � � þ utÞ � ð1þ us�1Þð1þ uþ � � � þ ut�1Þ

¼ utð1þ us�1Þ:

Finally, note that the set in consideration is empty in the case s ¼ 0, and
isomorphic to a sphere in the case t ¼ 0. r

We can rewrite corollary 2.5 as follows:

Corollary 2.6. Let X�1s; t be the real algebraic subset of Rsþt defined by the
equation

Xs

i¼1
x2
i �

Xt

j¼1
y2j ¼ �1:

Assume that s; t > 0.
� If sb t, then bðX�1s; t Þ ¼ us�1ðut � 1Þ.
� If s < t, then bðX�1s; t Þ ¼ usðut�1 þ 1Þ.
Moreover bðX�1s;0 Þ ¼ 0 and bðX�10; t Þ ¼ 1þ ut�1 if tb 1.

3. Proof of theorem 1.5

We compute the coe‰cient of T 2 of the zeta functions with sign of a
function germ f : ðRd ; 0Þ ! ðR; 0Þ of the form

f ðx1; . . . ; xs; y1; . . . ; yt; z1; . . . ; zd�s�tÞ ¼
Xs

i¼1
x2
i �

Xt

j¼1
y2j :

Proposition 3.1 below states that the coe‰cients of T 2 of the zeta functions with
sign determine the integers s and t. It completes the proof of theorem 1.5.

Proposition 3.1. For a polynomial germ f : ðRd ; 0Þ ! ðR; 0Þ of the form

f ðx1; . . . ; xs; y1; . . . ; yt; z1; . . . ; zd�s�tÞ ¼
Xs

i¼1
x2
i �

Xt

j¼1
y2j ;

the coe‰cients of T 2 of the zeta functions with sign of f determine s and t.

Proof. The space of truncated arcs Aþ12 ð f Þ is isomorphic to the product

R2ðd�s�tÞ � Rsþt � X 1
s; t:

Actually, for an arc ða1tþ b1t
2; . . . ; adtþ bdt

2Þ in Aþ12 ð f Þ, the first term of the
product corresponds to the choice of the coe‰cients asþtþ1; bsþtþ1; . . . ; ad ; bd , the
second to the choice of b1; . . . ; bsþt and finally X 1

s; t to the choice of a1; . . . ; asþt.
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Due to corollary 2.5, the quotient of bðAþ12 ð f ÞÞ after dividing by the
maximal power of u, is a polynomial of the form uk þ 1 or uk � 1. Now, by
corollary 2.5 again, it follows that s ¼ k þ 1 in the former case, and s ¼ k in the
latter one.

Similarly, A�12 ð f Þ is isomorphic to

R2ðd�s�tÞ � Rsþt � X�1s; t ;

and once more, after dividing bðA�12 ð f ÞÞ by the maximal power of u, we obtain a
polynomial of the type ul þ 1 or ul � 1. In the former case, then t ¼ l þ 1
whereas in the latter one t ¼ l. r

Remark 3.2. The same method, applied to the coe‰cient of T 2 in the naive
zeta function instead of in the zeta functions with sign, no longer gives such a
determination. More precisely, what we still determine is m ¼ minfs; tg and
M ¼ maxfs; tg, unless m ¼ 0 where we can not specify the value of M, or
M ¼ mþ 1 where we can not even specify the value of m and M.
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