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MEROMORPHIC FUNCTIONS THAT WEIGHTED SHARING

THREE VALUES AND ONE PAIR

Thamir C. Alzahary and Hong-Xun Yi

Abstract

G. Brosch improved the theorem of Nevanlinna for four values theorem and proved

that let f and g be two nonconstant meromorphic functions sharing 0, 1, y CM, and let

a and b be two finite complex numbers such that a; b B f0; 1g. If f ¼ a , g ¼ b, then

f is a fractional linear transformation of g. In this paper we extend this theorem by

using the idea of weighted sharing.

1. Introduction, definitions and main results

Let f and g be two nonconstant meromorphic functions on the open com-
plex C, and let a be a finite value in the complex plane. We say that f and g
share the value a CM (IM) provided that f � a and g� a have the same zeros
counting multiplicities (ignoring multiplicities), and f , g share y CM (IM) pro-
vided that 1=f , 1=g share 0 CM (IM). Let a; b A CU fyg, if f ðzÞ ¼ a when
gðzÞ ¼ b, then we denote it by gðzÞ ¼ b ) f ðzÞ ¼ a. We write f ðzÞ ¼ a , gðzÞ
¼ b to mean that f ðzÞ ¼ a if and only if gðzÞ ¼ b. For standard notations and
definitions of value distribution theory we refer [3].

We denote by Sðr; f Þ any function satisfying Sðr; f Þ ¼ oðTðr; f ÞÞ as r ! þy
possibly outside a set E of finite Lebesgue measure. A meromorphic function
aðzÞ is said to be a small function of f , if Tðr; aÞ ¼ Sðr; f Þ:

Throughout the paper we denote by f , g two nonconstant meromorphic
functions defined on the open complex plane and we use N0ðrÞ to denote the
counting function of the zeros of f � g that are not zeros of f ð f � 1Þ, gðg� 1Þ,
1

f
and

1

g
, unless the contrary is explicitly stated.

Definition 1 (see [6, p. 189]). Let p be a positive integer, we denote by
NpÞðr; f Þ (or NpÞðr; f Þ) the counting function of poles of f with multiplicitiesa p
(ignoring multiplicities). We further define
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Nðpþ1ðr; f Þ ¼ Nðr; f Þ �NpÞðr; f Þ; Nðpþ1ðr; f Þ ¼ Nðr; f Þ �NpÞðr; f Þ:

R. Nevanlinna proved the following well-known theorem (see [6, p. 240]):

Theorem A. Let f and g be two nonconstant meromorphic functions, and
let aj ð j ¼ 1; 2; 3; 4Þ be four distanct shared values CM by f and g. Then f is a
Möbius transformation ( fractional linear transformation) of g.

The condition ‘‘f and g share four values CM’’ has been weakened to ‘‘f and
g share two values CM and two values IM’’ by Gundersen (see [6, p. 262]). The
following example which was found by G. Gundersen [4] in 1979:

Example 1. Let f ¼ ez þ 1

ðez � 1Þ2
, g ¼ 1

8

ðez þ 1Þ2

ez � 1
. Then f , g share 0, 1, y

IM and f ¼ � 1

8
, g ¼ � 1

8
. It easy to verify that f is not any fractional linear

transformation of g.

From Theorem A, it is reasonable to ask whether the conclusion of Theorem
A is still true if we relax the condition of sharing four values CM to sharing
three values IM and another one CM. This conjecture appears to be quite
di‰cult. In 1989, Brosch [2] proved the following which is an improvement of
Theorem A:

Theorem B. Let f and g be two nonconstant meromorphic functions sharing
0, 1, y CM, and let a and b be two finite complex numbers such that a; b B
f0; 1g. If f ¼ a , g ¼ b, then f is a fractional linear transformation of g.

Now one may ask the following question: Can one be extended Theorem B
by relaxing the nature of sharing the values 0, 1 and y?

We can answer this question in the negative by Example 1. In this paper
we will investigate this problem by using the following definition, which is called
weighted sharing.

Definition 2 (see [1, 5]). Let k be a nonnegative integer or infinity. For
any a A CU fyg, we denote by Ekða; f Þ the set of all a-points of f , where an a-
point of multiplicity m is counted m times if ma k and k þ 1 times if m > k. If
Ekða; f Þ ¼ Ekða; gÞ, we say that f , g share the value a with weight k.

The definition implies that if f , g share a value a with weight k then z0 is a
zero of f � a with multiplicity mða kÞ if and only if it is a zero of g� a with
multiplicity mða kÞ and z0 is a zero of f � a with multiplicity mð> kÞ if and only
if it is a zero of g� a with multiplicity nð> kÞ, where m is not necessarily equal
to n.
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We write f , g share ða; kÞ to mean that f , g share the value a with weight k.
Clearly if f , g share ða; kÞ, then f , g share ða; pÞ for all integer p, 0a p < k.
Also we note that f , g share a value a IM or CM if and only if f , g share ða; 0Þ
or ða;yÞ respectively.

Remark 1 (see [6, Theorem 2.18]). Let f and g be two meromorphic func-
tions sharing 0, 1,y IM, then Tðr; f Þa 3Tðr; gÞ þ Sðr; f Þ and Tðr; gÞa 3Tðr; f Þþ
Sðr; gÞ. This shows that Sðr; f Þ ¼ Sðr; gÞ. So that, in this paper we use SðrÞ to
denote Sðr; f Þ and Sðr; gÞ, unless otherwise stated.

In this paper we improve Theorem B and obtain the following theorem:

Theorem 1. Let f and g be two nonconstant meromorphic functions sharing
ða1; 1Þ, ða2;yÞ and ða3;yÞ, where fa1; a2; a3g ¼ f0; 1;yg, and let a and b be
two finite complex numbers such that a; b B f0; 1g. If f ¼ a , g ¼ b, then f is a
fractional linear transformation of g. Moreover, f and g satisfy exactly one of the
following relations:

(i) f 1 g; (ii) f :g1 1; (iii) f 1
a

b
g; (iv) f þ g1 1; (v) f 1 ag; (vi)

f 1 ð1� aÞgþ a; (vii) f 1
1� a

1� b
gþ b� a

b� 1
; (viii) f 1

ag

a� 1þ g
; (ix) f ¼

aðb� 1Þg
ðb� aÞgþ ða� 1Þb ; (x) f 1

g

g� 1
.

The cases (ii) and (v) may occur if ab ¼ 1, cases (iv) and (viii) may occur if
aþ b ¼ 1, case (vi) and (x) may occur if ab ¼ aþ b.

Example 2. Let f ¼ e2g þ eg þ 1, g ¼ e�2g þ e�g þ 1, a ¼ 3

4
and b ¼ 3.

Then it is easily verified that f and g share 0, 1, y CM, and f ¼ a ) g ¼ b,
g ¼ b 6) f ¼ a, but f is not any fractional linear transformation of g. This
shows that the condition f ¼ a , g ¼ b in Theorem 1 is necessary.

Remark 2. The condition a; b B f0; 1g in the theorem 1 is necessary, as
shown by the following example:

Example 3. Let f ¼ ez þ 1

e2z þ 1
and g ¼ e�z þ 1

e�2z þ 1
. Obviously f and g share

0, 1, y CM and f is not any fractional linear transformation of g. We see that

N1Þðr; f Þ þ Sðr; f Þ ¼ 2N1Þ r;
1

f

� �
þ Sðr; f Þ ¼ 2N1Þ r;

1

f � 1

� �
þ Sðr; f Þ ¼ Tðr; f Þ.

2. Some lemmas

For the proof of our result we need the following lemmas:
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Lemma 2.1 (see [1, Theorem 3]). Let f and g be two distinct nonconstant
meromorphic functions sharing ða1; 1Þ, ða2;yÞ and ða3;yÞ, where fa1; a2; a3g ¼
f0; 1;yg. If f is not a fractional linear transformation of g, then for any a A
Cnf0; 1g

(i) N0 r;
1

f 0

� �
¼ N0 r;

1

f 0

� �
þ Sðr; f Þ, N r;

1

f 0

� �
¼ N0 r;

1

f 0

� �
þ Sðr; f Þ, the

same identities hold for g;

(ii) Nð3 r;
1

f � a

� �
¼ Sðr; f Þ, Nð3 r;

1

g� a

� �
¼ Sðr; gÞ;

(iii) Tðr; f Þ ¼ N r;
1

g 0

� �
þN0ðrÞ þ Sðr; f Þ, Tðr; gÞ ¼ N r;

1

f 0

� �
þN0ðrÞþ

Sðr; f Þ, N0ðrÞ ¼ N0ðrÞ þ Sðr; f Þ;

(iv) Tðr; f Þ ¼ N r;
1

f � a

� �
þ Sðr; f Þ, Tðr; gÞ ¼ N r;

1

g� a

� �
þ Sðr; f Þ;

(v) Tðr; f Þ þ Tðr; gÞ ¼ N r;
1

f

� �
þN r;

1

f � 1

� �
þNðr; f Þ þN0ðrÞ þ Sðr; f Þ;

(vi) N r;
1

f � g

� �
¼ N r;

1

f � g

� �
þ Sðr; f Þ,

where N0 r;
1

f 0

� �
N0 r;

1

f 0

� �� �
denotes the counting function corresponding to the

zeros of f 0 that are not zeros of f and f � 1 (ignoring multiplicities) and N0ðrÞ is
the reduced form of N0ðrÞ.

Lemma 2.2. Let f and g be nonconstant meromorphic functions. Suppose
that f satisfies the Riccati di¤erential equation

f 0 ¼ aþ bf þ cf 2;ð2:1Þ
where a, b and c ðD 0Þ are meromorphic small functions of g. Furthermore, let
r ðD f Þ be a meromorphic small function of g.

(i) mðr; f Þ ¼ Sðr; f Þ þ Sðr; gÞ;
(ii) If r is a solution of (2.1), then N r;

1

f � r

� �
¼ Sðr; f Þ þ Sðr; gÞ;

(iii) If r is not any solution of (2.1), then N r;
1

f � r

� �
¼ Tðr; f Þ þ Sðr; f Þþ

Sðr; gÞ;
(iv) If aD 0, then m r;

1

f

� �
¼ Sðr; f Þ þ Sðr; gÞ.

Proof. From the assumption of Lemma 2.2,

f ¼ 1

c

f 0

f
� a

c

1

f
� b

c
:

When j f jb 1, then we have

j f ja 1

jcj
f 0

f

����
����þ a

c

����
����þ b

c

����
����:

16 thamir c. alzahary and hong-xun yi



It is required to show that mðr; f Þ ¼ Sðr; f Þ þ Sðr; gÞ, by using the definition

of mðr; f Þ. If aD 0, then from the last equation, we get m r;
1

f

� �
¼ mðr; f Þþ

Sðr; f Þ þ Sðr; gÞ, which gives (iv), by using (i).
Set h ¼ f � r, then from (2.1), we have

h 0 ¼ lþ ðbþ 2crÞhþ ch2;

where l ¼ �r 0 þ aþ cr2 þ br.
If r is not any solution of (2.1), then lD 0 and by utilizing (iv), we get

m r;
1

f � r

� �
¼ m r;

1

h

� �
¼ Sðr; hÞ þ Sðr; gÞ;

which gives (iii).
If r is a solution of (2.1), then l1 0, and hence

h 0

h
¼ ðbþ 2crÞ þ ch, this

shows that N r;
1

h

� �
aNðr; bþ 2cpÞ þ Sðr; gÞ ¼ Sðr; gÞ, which gives (ii). This

proves Lemma 2.2.

Lemma 2.3 (see [6, p. 220]). Let f and g be two nonconstant meromorphic

functions such that N r;
1

f

� �
þNðr; f Þ ¼ Sðr; f Þ and N r;

1

g

� �
þNðr; gÞ ¼ Sðr; gÞ.

If f and g share a finite complex number að00Þ IM, then either f 1 g or f :g1 a2.

Lemma 2.4 (see [5, Lemma 4]). If f and g share ð0; 1Þ, ð1;yÞ, ðy;yÞ and
f D g then

f � 1

g� 1
¼ eað2:2Þ

and

f

g
¼ H;ð2:3Þ

where a is an entire function and H is a meromorphic function with N r;
1

H

� �
¼

SðrÞ and Nðr;HÞ ¼ SðrÞ, and SðrÞ is the same as in Remark 1.

Remark 3. Set

H0 ¼
ea

H
:ð2:4Þ

Suppose that H0 and H are not constants. According to Lemma 2.4, we
have

T r;
H 0

H

� �
þ T r;

H 0
0

H0

� �
¼ SðrÞ:ð2:5Þ
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It is clear from the assumptions of Lemma 2.4 that H0 and ea are not identically
1, and from (2.2) and (2.3) we have

f ¼ ea � 1

H0 � 1
; g ¼ e�a � 1

H�1
0 � 1

:ð2:6Þ

Lemma 2.5 (see [1, Proof of Theorem 1]). Suppose that f and g share ð0; 1Þ,
ð1;yÞ, ðy;yÞ, and suppose that f is not any fractional linear transformation of g.
Set

h ¼ a 0

H 0
0=H0

¼ a 0

a 0 �H 0=H
;ð2:7Þ

where H, H0 and ea are given in Lemma 2.4 and Remark 3. Then

�H 0
0

H0
ð f � hÞ ¼ g 0

g

f � g

g� 1
ð2:8Þ

and

H 0
0 ¼

a 0

h
H0:ð2:9Þ

Remark 4. Suppose that f and g satisfy the conditions of Lemma 2.5. If
f and g are interchanged with one another, then we easily deduce from (2.2)–
(2.8) the following equation:

H 0
0

H0
ðg� hÞ ¼ f 0

f

g� f

f � 1
:ð2:10Þ

Consequently, from (2.9)

H 00
0 ¼ lH0;ð2:11Þ

where

l ¼ a 0

h

� �0
þ a 0

h

� �2

:ð2:12Þ

Of course, by (2.5) and (2.7), we deduce that h is a small function of f and so g,
and hence that l is also a small function of f and g.

Lemma 2.6 (see [5, Lemma 2]). If f and g share ð0; 1Þ, ð1;yÞ, ðy;yÞ and

suppose that f D g, then Nð2 r;
1

f

� �
þNð2 r;

1

f � 1

� �
þNð2ðr; f Þ ¼ SðrÞ.

If in addition that f and g share 0 CM, then Nð2 r;
1

f

� �
¼ SðrÞ.

Lemma 2.7. Let f and g be two nonconstant meromorphic functions. If
a1, a2, a3 are three distinct small meromorphic functions of g and f B fa1; a2; a3g,
then
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Tðr; f ÞaN r;
1

f � a1

� �
þN r;

1

f � a2

� �
þN r;

1

f � a3

� �
þ Sðr; f Þ þ Sðr; gÞ:

Proof. Set

FðzÞ ¼ f ðzÞ � a1ðzÞ
f ðzÞ � a3ðzÞ

AðzÞ;ð2:13Þ

where AðzÞ ¼ a2ðzÞ � a3ðzÞ
a2ðzÞ � a1ðzÞ

.

Since F ¼ A 1þ a3 � a1

f � a3

� �
, then

Tðr;FÞaTðr; f Þ þ Sðr; gÞ:ð2:14Þ
From (2.13) we have

f ¼ a3BF � a1

BF � 1
;ð2:15Þ

where B ¼ 1

A
.

Suppose a3 1 0. Then from (2.15), we get

Tðr; f ÞaTðr;FÞ þ Sðr; gÞ;ð2:16Þ

if a3 D 0, then f ¼ a3

F � a1

a3B

F � 1

B

, from this we have (2.16).

We note that (2.14) and (2.16) imply that

Tðr;F Þ ¼ Tðr; f Þ þ Sðr; gÞ:ð2:17Þ
By the second fundamental theorem of Nevanlinna

Tðr;FÞaNðr;FÞ þN r;
1

F

� �
þN r;

1

F � 1

� �
þ Sðr;FÞ

aN r;
1

f � a1

� �
þN r;

1

f � a2

� �
þN r;

1

f � a3

� �
þ Sðr; f Þ þ Sðr; gÞ;

the lemma 2.7 follows from this inequality and (2.17).

3. Proof of Theorem 1

First we prove the first part of Theorem 1, that f is a fractional linear
transformation of g.

Now, if a ¼ b, by the assumptions of Theorem 1 and Gundersen’s theorem
(see [6, p. 262]), we get that f and g share 0, 1, a, y CM, then from Theorem
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A, we deduce that f is a fractional linear transformation of g. Therefore, it is
enough to prove Theorem 1 when a0 b.

We will assume that f and g share ð0; 1Þ, ð1;yÞ, ðy;yÞ and f is not any
fractional linear transformation of g. It is clear from (2.2)–(2.4) that a, H and
H0 are not constants, otherwise, we get that f is a fractional linear transfor-
mation of g.

If h1 c; where c is a nonzero constant, by integration (2.7), we find
that

eððc�1Þ=cÞa ¼ AH;

where A is a nonzero constant. From this equation and (2.3), we deduce that f
and g share 0, 1, y CM, it follows from Theorem B that f is a fractional linear
transformation of g. Therefore, we may suppose that

hD a; b:ð3:1Þ
Let z0 be a double zero of g� b, which is neither zero or pole of

H 0
0

H0
, it

follows from (2.8) and the assumptions of Theorem 1 that f ðz0Þ ¼ hðz0Þ ¼ a,
since h is a small of f and g (see Remark 4) then by (2.5), (3.1) and by using (ii)
of Lemma 2.1, we get

Nð2 r;
1

g� b

� �
aN r;

1

h� a

� �
þ SðrÞ ¼ SðrÞ;

here SðrÞ is the same as in Remark 1. Similarly, we have

Nð2 r;
1

f � a

� �
aN r;

1

h� b

� �
þ SðrÞ ¼ SðrÞ:

Hence,

Nð2 r;
1

f � a

� �
þNð2 r;

1

g� b

� �
¼ SðrÞ:ð3:2Þ

By (2.6), we may define the following:

Fa ¼ ð f � aÞðH0 � 1Þ ¼ ea � aH0 þ a� 1;ð3:3Þ
Gb ¼ ðg� bÞðH�1

0 � 1Þ ¼ e�a � bH�1
0 þ b� 1;

oa ¼
F 0
a

Fa

and ob ¼
G 0

b

Gb

:ð3:4Þ

It is clear from (iv) of Lemma 2.1, (2.5) and (3.2) that Fa is not a constant.
Moreover, if oa is a constant, then Fa ¼ AezB, where A and B are nonzero
constants. If z0 is a simple zero of f � a, then z0 is not a zero of Fa, from (3.3),
z0 must be a pole of H0, again by (iv) of Lemma 2.1, (2.5) and (3.2), we obtain
Tðr; f Þ ¼ Sðr; f Þ, which is a contradiction. Therefore, oa is not a constant.
Similarly, ob is not a constant.
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From Lemma 2.4 and (3.3), it is true that

Nðr;FaÞaNðr;H0Þ þ SðrÞ ¼ SðrÞ:
It follows from this inequality and (3.2)–(3.4), and by using (iv) of Lemma 2.1
that

Tðr;oaÞ ¼ Nðr;oaÞ þ SðrÞð3:5Þ

¼ N r;
1

Fa

� �
þ SðrÞ

¼ N r;
1

f � a

� �
þN0ðrÞ þ SðrÞ

¼ Tðr; f Þ þN0ðrÞ þ SðrÞ:

Let z0 be a simple zero of f � a such that hðz0Þ0 0;y and a 0ðz0Þ0 0.

Then from (2.2)–(2.4), we get gðz0Þ ¼ b, eaðz0Þ ¼ a� 1

b� 1
and H0ðz0Þ ¼

b

a

a� 1

b� 1
. By

(3.3), (2.9), (2.11), (2.12) and by using the Taylor expansion of Fa in a neigh-
borhood of z0, we get

Fa ¼ t1ðz0Þðz� z0Þ þ t2ðz0Þðz� z0Þ2 þ t3ðz0Þðz� z0Þ3 þOððz� z0Þ4Þ;ð3:6Þ
where

t1ðzÞ ¼ a 0 � b
H 0

0

H0

� �
a� 1

b� 1
; t2ðzÞ ¼ ða 0Þ2 þ a 00 � b

H 00
0

H 0
0

a 0

h

� �
a� 1

2ðb� 1Þ
and

t3ðzÞ ¼
1

2

a� 1

b� 1
a 0a 00 þ a� 1

6ðb� 1Þ ða
0Þ3 þ a� 1

6ðb� 1Þ a
000 � a

6
l 0 b

a

a� 1

b� 1
þ l

a 0

h

b

a

a� 1

b� 1

� �
:

If t1 1 0, then
a 0

b
¼ H 0

0

H0
, it is obvious from (2.7) that h1 b, which contradicts

to (3.1). Thus t1 D 0. It seems from Lemma 2.4 that t1, t2 and t3 are small
meromorphic functions of f and so g. By (3.4) and (3.6), and by using ele-
mentary techniques, we can easily show that

oa ¼
1

z� z0
þ Bðz0Þ

2
þ Cðz0Þðz� z0Þ þOððz� z0Þ2Þ;ð3:7Þ

where B ¼ 2
t2

t1
and C ¼ 2

t3

t1
� t2

t1

� �2

.

Let us put

Ha ¼ o 0
a þ o2

a � Boa � A;ð3:8Þ
where A ¼ 3C � 1

4
B2 � B 0: Evidently, A, B and C are small functions of f and g.

By using (3.7) and (3.8), it is not too di‰cult to verify that
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HaðzÞ ¼ Oðz� z0Þ:ð3:9Þ
Suppose Ha D 0. Therefore, from (3.2) and (3.9), we see that

N r;
1

f � a

� �
aN r;

1

Ha

� �
þ SðrÞaNðr;HaÞ þ SðrÞ:ð3:10Þ

Of course, from (3.2), (3.3) and (iii) of Lemma 2.1

N r;
1

Fa

� �
¼ N1Þ r;

1

Fa

� �
þ SðrÞ:ð3:11Þ

Let z� be a simple zero of Fa. Therefore oa ¼
1

z� z�
þ C� þOðz� z0Þ,

where C� is a certain constant. Since Nð2 r;
1

H0 � 1

� �
¼ SðrÞ. Then it is obvious

from (3.2)–(3.4), (3.8), (3.10) and (3.11) that

Nðr;HaÞ ¼ Nðr;HaÞ þ SðrÞ:ð3:12Þ
From the above, we can easily verify that possible poles of Ha occur at zeros of
Fa, as noted that if z0 is a simple zero of f � a, which is neither zero of h or a 0,
nor the pole of h, then z0 must be a zero of Ha. Therefore the poles of Ha occur
at the zeros of H0 � 1. It follows from (2.2)–(2.4) that the poles of Ha occur at

the zeros of f � g but not zeros of f ð f � 1Þ and
1

f
. Thus

Nðr;HaÞaN0ðrÞ þ SðrÞ:
From this, (3.10), (3.12) and (iv) of Lemma 2.1, we get

Tðr; f ÞaN0ðrÞ þ SðrÞ:
Therefore, from this and (iii) of Lemma 2.1 that

N r;
1

g 0

� �
¼ SðrÞ:

The same lines as the above, and by using (3.3) and (3.4), one can
define

Hb ¼ o 0
b þ o2

b � B1ob � A1;

where A1 and B1 are small functions of f and g. If Hb D 0, by using the same
techniques as the above, we obtain that

Tðr; gÞaN0ðrÞ þ SðrÞ; and N r;
1

f 0

� �
¼ SðrÞ:

Suppose that Ha D 0 and Hb D 0. We define the following:

j1 ¼
f 00

f 0 �
g 00

g 0
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and

j2 ¼
f 00

f 0 � 2
f 0

f � 1

� �
� g 00

g 0 � 2
g 0

g� 1

� �
:

Since f is not a fractional linear transformation of g, we get that j1 and j2 are
not identically zeros, also we note that if z0 is a simple pole of f (or z0 a simple
zero of f � 1), then z0 is also a zero of j1 (or j2). Therefore, from the above
and Lemma 2.6, we see that

Nðr; f Þ þN r;
1

f � 1

� �
aN r;

1

j1

� �
þN r;

1

j2

� �
þ SðrÞ

aNðr; j1Þ þNðr; j2Þ þ SðrÞ

a 2N r;
1

f 0

� �
þ 2N r;

1

g 0

� �
þ SðrÞ ¼ SðrÞ:

From this and Lemma 2.3, we will reach a contradiction. Therefore, at least one
of Ha and Hb is identically zero. Without loss of generality we will assume that
Ha 1 0.

By (3.8) we have

o 0
a ¼ Aþ Boa � o2

a :ð3:13Þ

From (3.3) and (3.4), we obtain

Fa oa �
H 0

0

H0

� �
¼ a 0 �H 0

0

H0

� �
ðea � z1Þ;ð3:14Þ

where z1 ¼
ða� 1ÞH 0

0

a 0H0 �H 0
0

. If oa 1
H 0

0

H0
, then from this, (2.5) and (3.5), we have

Tðr; f Þ ¼ Sðr; f Þ, which is impossible. Therefore, from (2.5), (3.3) and (3.14), we
deduce ea D z1. It follows from (3.11) and (3.14) that

N r;
1

oa �
H 0

0

H0

0
BB@

1
CCAaN r;

1

a 0 �H 0
0

H0

0
BB@

1
CCAþN r;

1

ea � z1

� �
þNðr;FaÞ þ SðrÞ

¼ N r;
1

ea � z1

� �
þ SðrÞ

aN r;
1

Fa oa �
H 0

0

H0

� �
0
BB@

1
CCAþ SðrÞ
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aN r;
1

oa �
H 0

0

H0

0
BB@

1
CCAþNð2 r;

1

Fa

� �
þ SðrÞ

¼ N r;
1

o0 �
H 0

0

H0

0
BB@

1
CCAþ SðrÞ;

which gives

N r;
1

oa �
H 0

0

H0

0
BB@

1
CCA¼ N r;

1

ea � z1

� �
þ SðrÞaTðr; eaÞ þ SðrÞ:

Applying Lemma 2.7 to a1 ¼ 0, a2 ¼ y and a3 ¼ z1, we get

Tðr; eaÞaN r;
1

ea � z1

� �
þ SðrÞ:

This and the above inequality imply that

N r;
1

oa �
H 0

0

H0

0
BB@

1
CCA¼ N r;

1

ea � z1

� �
þ SðrÞ ¼ Tðr; eaÞ þ SðrÞ:ð3:15Þ

By (2.2), we have

f � g

g� 1
¼ ea � 1:ð3:16Þ

From ð3:16Þ we obtain

Tðr; eaÞ ¼ N r;
1

ea � 1

� �
þ SðrÞ ¼ N0ðrÞ þN r;

1

g

� �
þ SðrÞ:ð3:17Þ

From (3.15) and (3.17) we get

N r;
1

oa �
H 0

0

H0

0
BB@

1
CCA¼ N0ðrÞ þN r;

1

g

� �
þ SðrÞ:ð3:18Þ

Also, from (3.14), we see that
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N r;
1

oa �
H 0

0

H0

0
BB@

1
CCA�N r;oa �

H 0
0

H0

� �
þ SðrÞ

¼ Nðr;FaÞ þN r;
1

ea � z1

� �
�N r;

1

Fa

� �
�Nðr; ea � z1Þ:

From this, (2.5), (3.3)–(3.5), (3.11) and Lemma 2.4, we get

N r;
1

oa �
H 0

0

H0

0
BB@

1
CCA¼ Nðr;H0Þ þN r;

1

ea � z1

� �
þ SðrÞ:ð3:19Þ

Since

N r;
1

ea � z1

� �
aTðr; eaÞ þ SðrÞ;ð3:20Þ

therefore, from (2.4), (3.15), (3.17), (3.19) and (3.20), we obtain

N r;
1

oa �
H 0

0

H0

0
BB@

1
CCA¼ N r;

1

H

� �
þN0ðrÞ þN r;

1

g

� �
þ SðrÞ:ð3:21Þ

From (3.3) and (3.4), we have

Faðoa � a 0Þ ¼ a a 0 �H 0
0

H0

� �
H0 �

a 0ða� 1Þ
z2

� �
;ð3:22Þ

where z2 ¼ a a 0 �H 0
0

H0

� �
.

If oa 1 a 0, then from (3.4), we have Fa ¼ Aea, where A is a nonzero

constant, from this, (3.2), (3.3) and Lemma 2.4, we get N r;
1

f � a

� �
¼ SðrÞ,

which contradicts to (iv) of Lemma 2.1. Therefore, oa D a 0, that is H0 D
a 0ða� 1Þ

z2
.

In the same manner as the above and by using (3.22), we can get

N r;
1

oa � a 0

� �
¼ N r;

1

oa � a 0

� �
þ SðrÞ ¼ N0ðrÞ þNðr; gÞ þ SðrÞ:ð3:23Þ

Similarly, we can obtain the following

N r;
1

oa

� �
¼ N r;

1

oa

� �
þ SðrÞ ¼ N0ðrÞ þN r;

1

g� 1

� �
þ SðrÞ:ð3:24Þ
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Assume that the zero is a solution of the di¤erential equation (3.13). Since
Tðr;oaÞ ¼ OðTðr; f ÞÞ, then by using (ii) of Lemma 2.2, we obtain that

N r;
1

oa

� �
¼ SðrÞ:ð3:25Þ

We see that (2.3) implies that
f � g

g
¼ H � 1, and hence that

N r;
1

H � 1

� �
¼ N0ðrÞ þN r;

1

g� 1

� �
¼ SðrÞ;

by (3.24) and (3.25). From Lemma 2.4 and by applying Lemma 2.7, we get
Tðr;HÞ ¼ SðrÞ. However, if z0 be a simple zero of f � a, then z0 is a zero of

g� b, which implies that z0 is also a zero of H � a

b
, by (2.3). Since f is not any

fractional linear transformation of g, then HD
a

b
, it follows from this and (3.2)

that

N r;
1

f � a

� �
aN r;

1

H � a

b

0
B@

1
CAaTðr;HÞ þ SðrÞ ¼ Sðr; f Þ;

which is a contradiction with (iv) of Lemma 2.1. This proves that the zero is not
a solution of (3.13). It follows from (iii) of Lemma 2.2, (3.24) that

Tðr;oaÞ ¼ N r;
1

oa

� �
þ SðrÞ ¼ N0ðrÞ þN r;

1

f � 1

� �
þ SðrÞ:ð3:26Þ

Assume that a 0 is a solution of the di¤erential equation (3.13). By (ii) of
Lemma 2.2 and (3.23), we get

N0ðrÞ þNðr; gÞ ¼ SðrÞ:ð3:27Þ

From (2.4), we see that H0 � 1 ¼ f � g

f ðg� 1Þ , this and (3.27) yield

N r;
1

H0 � 1

� �
¼ N0ðrÞ þNðr; gÞ þ SðrÞ ¼ SðrÞ:

Therefore, from this, Lemma 2.4 and applying Lemma 2.7, we get

Tðr;H0Þ ¼ SðrÞ:ð3:28Þ
If z0 be a simple zero of f � a, then z0 is a zero of g� b, which implies that z0

is also a zero of H0 �
a� 1

b� 1

b

a
, by (2.4). Since f is not any fractional linear

transformation of g, then H0 D
a� 1

b� 1

b

a
, it follows from this and (3.2) that
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N r;
1

f � a

� �
aN r;

1

H0 �
a� 1

b� 1

b

a

0
B@

1
CAaTðr;H0Þ þ SðrÞ ¼ Sðr; f Þ;

which is a contradiction with (iv) of Lemma 2.1. This proves that a 0 is not a
solution of (3.13). It follows from (iii) of Lemma 2.2, (3.23) that

Tðr;oaÞ ¼ N r;
1

oa � a 0

� �
þ SðrÞ ¼ N0ðrÞ þNðr; f Þ þ SðrÞð3:29Þ

Similarly, if
H 0

0

H0
is a solution of (3.13), then from (2.2), (3.18) and by using

Lemma 2.7, we find that Tðr; eaÞ ¼ SðrÞ, from this, (2.2) and (3.2), we conclude

N r;
1

f � a

� �
¼ SðrÞ, which is a contradiction with (iv) of Lemma 2.1. There-

fore,
H 0

0

H0
is not a solution of (3.13). It follows from (iii) of Lemma 2.2 and (3.21)

that

Tðr;oaÞ ¼ N r;
1

oa �
H 0

0

H0

0
BB@

1
CCAþ SðrÞ ¼ N r;

1

H

� �
þN0ðrÞ þN r;

1

f

� �
þ SðrÞ;ð3:30Þ

From (3.5), (3.26), (3.29) and (3.30) we obtain

Tðr; f Þ ¼ N r;
1

H

� �
þN r;

1

f

� �
þ SðrÞ;ð3:31Þ

Tðr; f Þ ¼ Nðr; f Þ þ SðrÞð3:32Þ
and

Tðr; f Þ ¼ N r;
1

f � 1

� �
þ SðrÞ:ð3:33Þ

It follows from (3.31)–(3.33)

3Tðr; f Þ ¼ N r;
1

H

� �
þN r;

1

f

� �
þNðr; f Þ þN r;

1

f � 1

� �
þ SðrÞ:ð3:34Þ

It is clear from (3.34) and (v) of Lemma 2.1 that

2Tðr; f Þ þN0ðrÞ ¼ Tðr; gÞ þN r;
1

H

� �
þ SðrÞ:ð3:35Þ

Assume that Hb D 0. Then, we have

Tðr; gÞaN0ðrÞ þ SðrÞ; and N r;
1

f 0

� �
¼ SðrÞ:
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From this we obtain
Tðr; gÞ ¼ N0ðrÞ þ SðrÞ;

by using (iii) of lemma 2.1. Substituting this into (3.35), we get 2Tðr; f Þ ¼

N r;
1

H

� �
þ SðrÞ, from this and (3.31), we immediately obtain Tðr; f Þ ¼ SðrÞ,

which is impossible. This shows that Hb 1 0. In the same manner as the
proof (3.32), we can obtain Tðr; gÞ ¼ Nðr; gÞ þ SðrÞ, from this and (3.32), we get
Tðr; gÞ ¼ Tðr; f Þ þ SðrÞ. From this, (3.31) and (3.35) we have

N0ðrÞ þN r;
1

f

� �
¼ SðrÞ:

This and (2.2) yield that Tðr; eaÞ ¼ SðrÞ. If z0 be a simple zero of f � a, then

z0 is a zero of g� b, which implies that z0 is also a zero of ea ¼ a� 1

b� 1
, by using

(2.2). So that from this and (3.2) imply that

N r;
1

f � a

� �
aN r;

1

ea � a� 1

b� 1

0
B@

1
CAþ SðrÞaTðr; eaÞ þ SðrÞ ¼ SðrÞ;

this is a contradiction with (iv) of Lemma 2.1. This proves the first part of
Theorem 1, when f and g share ð0; 1Þ, ð1;yÞ, ðy;yÞ.

Now if f and g share ð0;yÞ, ð1; 1Þ, ðy;yÞ (or ðy; 1Þ, ð0;yÞ, ð1;yÞ), then
F ¼ 1� f and G ¼ 1� g (or F ¼ 1=f and G ¼ 1=g) share ð0; 1Þ, ð1;yÞ, ðy;yÞ,

and F ¼ 1� a , G ¼ 1� b (or F ¼ 1

a
, G ¼ 1

a
), from the last part of the above

proof, we have that F is a fractional linear transformation of G, which leads
that f is a fractional linear transformation of g. This proves the first part of
Theorem 1.

In order to prove the second part of Theorem 1, we assume that f is a
fractional linear transformation of g. Therefore

f ¼ Agþ B

CgþD
;ð3:36Þ

where A, B, C and D are constants and AD� BC0 0. We see ABCD ¼ 0,
otherwise, we have three distinct values of Picard exceptional of g.

Case 1. Suppose that A ¼ 0. Then D ¼ 0 (otherwise, 0, y, �D

C
are Picard

exceptional values of g). So that f :g1 1, which is (ii).

Case 2. Suppose that C ¼ 0. Assume that B ¼ 0, then f ¼ A

D
g. If

A

D
¼ 1,

then we deduce (i). If
A

D
0 1, then 1 and

A

D
are Picard exceptional values of
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f . If
A

D
¼ a, then we have (v), otherwise

A

D
¼ a

b
, which is (iii). Assume that

B0 0, then from (3.36), we have f ¼ A

D
gþ B

D
. If

B

D
¼ 1, then f ¼ A

D
gþ 1, and

hence that 0 and 1 are Picard exceptional values of f and g, so that
D

A
¼ �1,

which implies (iv). If
B

D
0 1, then 0 and

B

D
are Picard exceptional values of f ,

and 0 and �B

A
are Picard exceptional values of g. If

B

D
¼ a, then f ¼ A

D
gþ a,

since 1 is not a Picard exceptional value of f and g then
A

D
¼ 1� a, which is

(vi). If
B

D
0 a, hence that there are z0 and z1 such that f ðz0Þ ¼ a, gðz0Þ ¼ b and

f ðz1Þ ¼ gðz1Þ ¼ 1, from these, we have (vii).

Case 3. Suppose that D ¼ 0. If A0 0, then ABC0 0, and we have 0, y,

�B

A
are Picard exceptional of g, which is impossible. Thus, A ¼ 0, and hence

we will deduce (ii).

Case 4. Suppose that B ¼ 0 and ACD0 0. Therefore, (3.36) gives

f ¼ xg

g� y
;ð3:37Þ

where x ¼ A=C, y ¼ �D=C. If x ¼ 1, then y and 1 are Picard exceptional
values of f and g, so that y ¼ 1, which implies the case ðxÞ in Theorem 1.
Suppose that x0 1. Then from (3.37), 1 is not a Picard exceptional value of f
and g. Therefore, by (3.37) we get

xþ y ¼ 1:ð3:38Þ
If x ¼ a, then from (3.37) and (3.38), we get (viii). If x0 a, then a is not a
Picard exceptional value of f , so that there is z0 such that f ðz0Þ ¼ a, gðz0Þ ¼ b,
it follows from (3.37) that bxþ ay ¼ ab, from this and (3.38), we get (ix). This
proves Theorem 1.
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