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Abstract

It is shown that there exist infinitely many PSL(2,5) sextic fields with a power
basis.

1. Introduction

Let K be an algebraic number field of degree n. We denote the ring of
integers of K by Og. The field K is said to possess a power basis if there
exists an element 0 € Ok such that Ox = Z + Z0 + --- + Z0"'. A field having a
power basis is called monogenic. Every quadratic field is monogenic. Dedekind
[5] gave an example of a cubic field which is not monogenic. If K is a cyclic
cubic field, Gras [9], [10] and Archinard [3] have given necessary and sufficient
conditions for K to be monogenic. Dummit and Kisilevsky [6] have shown that
there exist infinitely many cyclic cubic fields which are monogenic. The same
has been shown for non-cyclic cubic fields, pure quartic fields, bicyclic quartic
fields, dihedral quartic fields by Spearman and Williams [17], Funakura [8],
Nakahara [16], Huard, Spearman and Williams [13] respectively. It is not
known if there are infinitely many monogenic cyclic quartic fields. If K is a
cyclic field of prime degree p > 5 then Gras [11] has proved that K is monogenic
if and only if K is the maximal real subfield of a cyclotomic field. In particular
there is only one monogenic cyclic quintic field. Lavallee, Spearman, Williams
and Yang [15] have shown that there exist infinitely many dihedral quintic fields
with a power basis.

In this paper we exhibit infinitely many monogenic PSL(2,5) sextic fields.

THEOREM. There are infinitely many integers t such that the PSL(2,5) sextic
fields
Q(0), 0°—40° +20* —310° + 0> +20+1 =0,
are distinct and monogenic.
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2. A parametric family of PSL(2,5) sextics
Let b,c,d € Q. The parametric family of sextics
f(x;b,c,d) = x° +2ex” + Ax* + Bx* + Cx* + (3b + 2c + 6)x + (b + 1),
where
A=—bd+c*+2c+2,
B=b—2bd+2c*+2c—4d +2,
C=3b—bd+c*+4c+5,

was studied by Anai and Kondo [2]. It is known that the Galois group of f is
usually PSL(2,5)(=~ As) but not always. A good source of families of poly-
nomials with given Galois group is [14]. For our purposes we set

F(x) = f(x;0,-2,(3t+6)/4), telZ.
We have
Fi(x) = x% —4x> +2x* =30 + X2+ 2x + 1.

LemMa 2.1.  F,(x) is irreducible in Z[x] for all t(#1) e Z.

Proof. Let t(#1)eZ. We have
(2.1) F(x) = (x +2)(x° +2x* +2x* +2) (mod 3),

where x3 + 2x3 + 2x? + 2 is irreducible (mod 3). Thus if F,(x) is reducible in
Z[x], it must have the factorization

Fi(x) = [(x)m(x),

where /(x) is a monic linear polynomial and m(x) is a monic irreducible quintic
polynomial. Since F;(0) =1 we must have /(x) =x + 1. If /(x) =x—1, then
0= F,(1) =3 — 3¢, contradicting t # 1. If /(x) =x+ 1 then 0= F,(—1) =7+ 3,
contradicting ¢ € Z. This completes the proof of the irreducibility of F,(x). [

We remark that Fi(x) = x® —4x> + 2x* — 3x% + x2 + 2x + 1 is reducible as
it is divisible by x — 1. Using MAPLE we find

LEMMA 2.2. For teZ, disc(Fy(x)) = (7293 + 52212 + 17881 + 2648)°.

LemMa 2.3. If t(# 1) € Z then Gal(F,(x)) =~ PSL(2,5).

Proof. Let t(#1)eZ. By Lemma 2.1 F,(x) is irreducible in Z[x]. From
(2.1) we see that Gal(F;(x)) contains a 5-cycle so that 5 divides the order of

Gal(F;(x)). The only possible Galois groups of an irreducible sextic polynomial
€ Z[x] up to conjugation are the fifteen groups
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Co, S3, D, As, C3>xCp=Cs3xDs,
Ay x Gy, Sy, CIXC}=D3yx Dy, CixCy Syx Gy,
PSL(2,5) =~ As, C; > D4, PGL(2,5)=Ss5, As, Se,

see [4, pp. 329-331], whose orders are respectively 6, 6, 12, 12, 18, 24, 24, 36,
36, 48, 60, 72, 120, 360, 720. The only groups having order divisible by 5 are
PSL(2,5), PGL(2,5), Ags, Ss.

By Lemma 2.2 the discriminant of F,(x) is a perfect square so Gal(F,(x)) 2

PGL(2,5), Se. Hence Gal(F;(x)) = PSL(2,5) or Ag.
Let ¢y, ¢y, ¢35, da, &5, P be the six complex roots of F,(x).
the polynomial in Z[x] of degree 15 whose roots are

Let fis(x) be

102+ G3hs + Dsds, D19y + D305 + bads, D192 + D306 + Pads,
D103+ $rbs + st D193+ D5 + bads, D193 + Prde + Pads,
104+ 9203 + st D194+ D295 + P3ds,  D1b4 + rd6 + P3ds,
105+ 9293 + Dads,  D1Ds + D194 + P3ds, D15 + Prd6 + D3,
D106 + 9203 + adbs,  G1Ps + Drgs + b3ds. G + Prds + P3dy.

Using MAPLE we find

fis(x) = x — 6xM + (361 + 6)x'3 + (—271% — 1441 — 114)x"?
+ (5401 — 301 4 255)x!! 4 (—6487% — 8641> — 29761 + 612)x°
+ (2431* 4 30241% 4 513> + 16261 + 5473)x°
+ (—43741* + 13501 — 256771 + 105661 + 5726)x°
+ (29161 — 4861* + 3045613 — 235441> + 1098361 — 9589)x7
+ (=729¢% — 14013¢* — 24894+ — 834661% + 234012 — 115054) x5
4 (1944 +790561* + 63558° + 1608841> + 2987281 — 443860)x°
+ (—690127° — 57834¢* — 1832761 + 6246811% 4- 98616t — 957110)x*
+ (196837% + 179827 + 83106r* — 6602041> + 1625761
— 12507181 — 1735331)x3
+ (—262441° + 4706917* + 2100067° — 1771021> — 35435641 — 3305952)x>
+ (—131220¢° + 59454¢* + 7230067 + 1004607¢* — 29212387 — 4182059)x
+ (—524881° — 156492¢* + 166861 + 469719¢> — 2854381 — 2317862).
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As PSL(2,5) ~ As and Ag are non-solvable groups, F,(x) is a non-solvable,
irreducible sextic, which has a square discriminant (by Lemma 2.2), and we can
apply [12, Prop. 5, p. 717] to deduce that

Gal(F,(x)) = PSL(2,5) if fis(x) is reducible in Z[x]
and
Gal(Fi(x)) = A¢ if fis5(x) is irreducible in Z[x].

It follows from [2] that fis(x) factors into a product of two polynomials in Z[x],
one of degree 5, and the other of degree 10. The two factors are

¥ = 2x 4 (12 = 2)x + (=92 + 61 — 72)x*
+ (=27¢ 4+ 12t — 107)x + (—81¢> — 2821 — 446)
and
x10 —4x? 4+ 241x® + (—181% — 541 — 50)x7 + (2077* — 781 — 26)x°
+ (=2167° — 91> — 5821 4 478)x> + (81¢* + 3784 — 1891% — 15307 + 993)x*
+ (=2431* + 54017 + 18912 + 6721 + 1446)x°
+ (—216£% — 296112 4 52141 + 4623 ) x>
+ (14047° — 54181 + 21841 + 8130)x + (64813 — 324> — 26461 + 5197).
Thus Gal(F;(x)) = PSL(2,5) for t(# 1) in Z. O

3. Field discriminant calculations

Let t(# 1) e Z. Let 0, be a root of F,(x), so that 0, € {¢,, Py, $3, P4, P5, Pg }-
Set K, = Q(#,) so that, by Lemma 2.3, K, is a sextic field with Galois group
PSL(2,5). Set g(t) := 729¢3 + 522¢> + 1788t + 2648. 1In this section we deter-
mine the discriminant d(K;) of K; when either g(¢) or g(¢)/8 is squarefree and
odd. The former possibility can only occur when =1 (mod 2) and the latter
when t =0 (mod4). First we prove a general lemma.

LemMa 3.1, Let f(x) = x" + a,1x" '+ -+ ajx + ay € Z[x] be irreducible.
Suppose that 0 is a root of f(x) and K = Q(0). If p is a prime number such that
pllao and play then the ideal {p) ramifies in K.

Proof. Suppose that {p)» does not ramify in K. Then there exist distinct
prime ideals @i,...,p, of Ok such that

p> =91 pr

As pllap we have {ayp) = g - p,<b) for some b e Z with pyb. Thus p; f{b)
for i=1,...,r. Since N(0) = +ap =0 (mod p) the ideal {f) must be divisible
by at least one g;, say . As p|a; we have
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ay=ay— f(0) =—-a0—-- —a,_10"" —0"=0 (mod p?),
contradicting pllap. Thus <{p) ramifies in K. O

Returning to the sextic fields defined at the beginning of this section, we
prove the following result.

LemmA 3.2. Let t(# 1) € Z be such that either g(t) or ¢(t)/8 is squarefree
and odd. Let p be an odd prime such that p|g(t). Then p|d(K,).

Proof. Let
o0 =07 — 407 + 50, — 3 € O,
MAPLE shows that o; is a root of
hy(x) = x° + (6 — 91)x° 4 (271 — 63t — 26)x*
+ (=27£% 4 2161 — 601 — 240)x*
+ (24313 + 41477 + 1921 — 416)x>
—g()x —g(1).
As K; = Q(0,) is a primitive sextic field, the degree of the minimal polynomial
of o, over Q is 6. Hence /,(x) is the minimal polynomial of o, over Q. Thus

the conditions of Lemma 3.1 are satisfied and so {p) ramifies in K;, proving
pld(Ky). 0

Lemma 3.3. Let ((#1)€eZ be such that ¢(t)/8 is squarefree and odd.
Then 2°| d(K,).

Proof. Using MAPLE we show that none of the 32 elements of K, given by

1
E(ao + a0, —|—a29,2 + a3013 —|—a40;‘ + 0,5), a;=0,1,

is an integer of K;. We just provide the details in one typical case. We consider
Bi=0,+0+0+0.

As ¢g(t)/8 is squarefreee and odd, we have ¢ =4k, k€ Z. The minimal poly-
nomial of f, over Q is

q(x) = x° 4 (=1068k — 610)x° 4 (—39744k> + 66672k> — 20976k + 7536)x*
+ (—248832Kk° + 82944k* — 198720k> + 70560k> — 38736k — 2584)x>
+ (82944k* + 20736k> + 63504k> + 8736k — 2548)x>
+ (41472k* + 22464k> 4 32544k + 11664k + 600)x
+ (20736k* + 5184k> + 15840k? + 3312k + 1592).
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Suppose that f,/2 is an integer of K,. Then from ¢(x) we see that
26120736k + 5184k> + 15840k? + 3312k + 1592.

This is clearly impossible as 2%|20736k* 4 5184k> + 15840k> 4- 3312k but
23||1592. Hence f,/2 ¢ Ok,.

For /1€{0,1,2,3,4,5} let o; be a minimal integer in 6, of degree /, see [1,
Definition 7.2.1, p. 164]. Then ay =1 and {a, 0,00, 03,04,0s5} is an integral
basis for K; [1, Theorem 7.2.7, p. 168]. Each o; is of the form

_aotal 4+ 611.,1—19,1_1 + Htl
- " |

where a;0,a;1,...,a;;-1 € Z and d; € N, so that dy = 1 [1, Theorem 7.2.6, p. 166].
Moreover dyd drdzdsds =ind 0, [1, Theorem 7.2.8, p. 169]. If 2|d; for some
1€{0,1,2,3,4,5} then

&

d Ol 0
510?71061=al’0’ J; % e oy,

which is a contradiction in view of what we proved first. Hence 2/t d;
(1=0,1,2,3,4,5). Thus 2 tfind §,. But 23| g(¢) and

g(1)* = disc(F,(x)) = (ind 0,)%d(K,)
so 20|l d(K,). O

4. Proof of Theorem

By a theorem of Erdds [7] there are infinitely many integers ¢ such that g(¢)
is squarefree. These integers are necessarily odd, as is g(#). Let p be any prime
number dividing disc(F,(x)). By Lemma 2.2 we have disc(F;(x)) = g(r)>. Thus,
as g(t) is odd and squarefree, we have p # 2 and p? || disc(F;(x)). From Lemma
3.2 we deduce that p|d(K,). Then, from disc(F;(x)) = ind(0,)*d(K,), we see that
p2|d(K,). Thus disc(F,(x)) = d(K,) and ind(0,) = 1 so {1,6,,0%,67,6,0°} is a
power basis for Ok,.

Again, by Erdos’ theorem, there are infinitely many integers k& such that
w(k) =729 - 23k 4 522 - 2k* + 894k + 331 is squarefree and necessarily odd.

Hence there are infinitely many integers ¢ = 4k such that % = @ =w(k) is
squarefree and odd. Exactly as in the previous case, the powers of any odd
prime p in disc(F;(x)) and d(K;) are both 2. By Lemmas 2.2 and 3.3 we have
20 || disc(F;(x)) and 2°|d(K;). Hence disc(F;(x)) =d(K;) and ind(6,) =1 so
{1,0,,0%,07,0},0°} is a power basis for Ox..

Finally, as g(¢) = +g(u) has at most six solutions u for a given integer ¢, we
can pick an infinite subsequence of the original sequence of #’s for which g(z) or
g(t)/8 is squarefree and odd in such a way that the sextic fields K, are distinct.
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5. Other power bases

Let t(#£1) e Z. 1If g(¢) or g(t)/8 is squarefree and odd then K, = Q(6,) has
an additional power basis, namely {1,8,,...,5’}, where

B, = 0, — 307 +20° — 407 + 0,
since the minimial polynomial of f, is
X0 4 10x° 4 41x* 4 (88 4 31)x® + (106 4 18£)x? + (76 4 36¢)x + (33 + 241),

whose discriminant is g(¢)%.
In the case t = —1, we have, setting § = 0_;, additional power basis gen-
erators y,,...,)yg given by

50 4+ 50° — 20° — 30* + 0°,

7y = —0+76% +100° — 130* + 36°,
y3 =0 —30% + 6,

ya = 0— 40> —20° + 40* — 0°,

7s = 0% —40° +70% —20°,

76 = —60° + 50 — 0°,

7, =20° - 0",

v =0+ 0% +20° +20* — 0°.

71

If t= -2 we have, setting 8 = 6_,, an additional power basis generator y
given by

y=20—0>+76° — 50" +0°.

We do not know if there are any further power bases.
The authors would like to thank an unknown referee for his/her valuable
comments on this paper.
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