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MINIMAL SUBMANIFOLDS OF ALMOST

SEMI-KAHLER MANIFOLDS

BY BILL WATSON

The purpose of this note is to study the minimality of almost Hermitian
submanifolds of codimension 2 in an almost semi-Kahler manifold. Our main
result is Theorem 3.4.

In § 1, we review the various classes of almost Hermitian manifolds, and
prove, in passing, that all four-dimensional almost semi-Kahler manifolds are
almost Kahler. In this manner, the inclusion lattice of almost Hermitian struc-
tures is greatly reduced in the four-dimensional case, (Figure 2). In § 2, we
recall the configuration tensor of an immersed Riemannian submanifold and its
relation to the second fundamental form of the immersion. In § 3, we study the
effect of certain almost Hermitian structures on the configuration tensor, prov-
ing the minimality of codimension 2 almost Hermitian submanifolds of an almost
semi-Kahler manifold.

§ 1. Almost Semi-Kahler Manifolds.

Let (M, g, F) be a smooth, almost Hermitian manifold. That is, M i s a
smooth, connected paracompact manifold F is a smooth tensor field of type
(1, 1) satisfying F2= — 1; g is a smooth Riemannian structure on M; and the
tensors F and g satisfy:

g{X, Y)=g(FX, FY),

for all smooth vector fields, X and Y on M. The Kahler form on M is the
differential 2-form of bidegree (1, 1) given by:

Ω(X, Y)=g(X, FY).

An almost Hermitian manifold is necessarily orientable and of even dimension,
which we shall take to be 2n.

The manifold (M, g, F) is said to be almost semi-Kahler if Ω if coclosed
i. e., if its codifferential, δΩ, vanishes. An almost semi-Kahler space is said to
be semi-Kahler if it is complex, or, equivalently, if the almost complex structure,
F, is integrable. Other classes of almost Hermitian manifolds are defined as
follows. We say that (M, g, F) is :

(QJC) Quasi-Kdhler if the components of bidegree (1, 2) and (2, 1) of the 3-form
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dΩ vanish identically.
(OJC) Almost Kahler if dΩ=0.

(an almost Kahler space has beeen called an H-space [7]).

(OJ) Almost Tachibana if Ω is a Killing form; i. e,. if dΩ=-ψPΩ. (an almost
Tachibana space has been called a if-space [7] and a nearly Kahler
manifold [5]).

(JC) Kahler if FΩ=0. (the Kahler condition implies that F is integrable).

There have been many studies of the differential geometry of the classes
QJC, OJC, OS, and JC, [3], [4], [5], [7], but not many of almost semi-Kahler
spaces, [1], [7].

We cite for future reference, the following well-known facts:

Fact 1: A complex quasi-Kdhler manifold is Kahler.
Fact 2: A semi-Kahler space need not be Kahler, (see the example in [4]).
Fact 3: An almost Hermitian manifold which is both alniost Kahler and almost

Tachibana is Kahler.
Fact 4: Let {Elf •••, En, FElf •••, FEn) be an orthonormal F-basis for the vector

fields on an open subset of the almost Hermitian manifold (M, g, F).
Then the codifferential of the Kahler form of M can be locally expressed
as

δΩ(X)=- Σ {FStΩ(Eif X)+FFBiΩ(FEt, X)} .
1 = 1

when δΩ acts on the vector field, X, of M.

From these, and other well-known facts, we may construct an inclusion
lattice for the principal classes of almost Hermitian structures, in which each
of the inclusion relations is strict.

Almost Complex
Almost

U
Almost

Semi-Kahler

U
Quasi - Kahler

O v3 \
Almost Almost S \
Kahler Tachibana

o o
Kahler =

Complex

• — nermitian

u

— Semi-Kahler

U

\ \
N

\
\

V

Kahler
Figure 1: Lattice of Almost Hermitian Structures.
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In the case of an almost Hermitian manifold of dimension 4, we can sub-
stantially reduce the inclusion lattice of Figure 1. For this, we prove the fol-
lowing theorem on almost semi-Kahler spaces.

THEOREM 1.1: A four-dimensional almost semi-Kahler manifold is almost
Kdhler.

Proof: Let * denote the Hodge star operator induced on the differential
forms of M by g and the orientation of the almost Hermitian manifold of arbi-
tary dimension In. Then it is sufficient to remark that:

* £ = ( n - i ) j ΩA '" A Ω ( n ~ 1 t i m e s )

Therefore, in the 4-dimensional case, we have:

δΩ=-*d*Ω=-*dΩ.

Since * is an isomorphism, δΩ=0 if and only if dΩ=0.

COROLLARY 1.1.1: A four-dimensional semi-Kahler manifold is Kdhler.

Proof: A complex almost Kahler space is Kahler.

REMARK : Theorem 1.1 is a generalization of a lemma of Gray [5] to the
effect that a four-dimensional almost Tachibana manifold is Kahler. Gray's
Lemma is immediate from Theorem 1.1 and Fact 3.

Tachibana and Okumura [8] have shown that the tangent bundle of a non-
flat Riemannian manifold possesses an almost Hermitian structure which is almost
Kahler without being Kahler. Yano and Ishihara [10] have shown the same
result for tangent bundles, and Bhatia and Prakash [2] have constructed
essentially the same structure in the cotangent bundle of a non-flat Riemannian
manifold. In each case, the integrability condition on the almost complex struc-
ture is the flatness of the Riemannian curvature. For instance. T(S2) is a non-
Kahler, almost Kahler manifold. It is not known if there exists a compact,
non-Kahler, almost Kahler manifold.

REMARK: The four-dimensional Hopf space, S1xS3, is a Hermitian mani-
fold [6], but it cannot be Kahler, because compact Kahler manifolds have posi-
tive second Betti numbers.

The above discussion allows us, then, to construct the following strict
inclusion lattice for almost Hermitian manifolds of dimension 4:
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Figure 2: Lattice of Almost Hermitian Structures in Dimension Four.

It is easy to see that a 2-dimensional almost Hermitian manifold is Kahler,
so:

Kahler

Figure 3: Lattice of Almost Hermitian Structures in Dimension Two.

§2. Immersed Submanifolds.

We begin by recalling certain results on the configuration tensor of an
immersed Riemannian manifold, without considering, as yet, any almost Her-
mitian structures.

Let M' be an ̂ -dimensional immersed submanifold of the Riemannian mani-
fold, (M, g) of dimension m. Give Mf the Riemannian structure g' induced by
the immersion map into M. We let y(M') denote the restrictions of the smooth
vector fields of M onto M'. Let g)(M') denote the subspace of such vector
fields which are tangent to the subminifold M', and let ^{M'Y be the subspace
of restricted vector fields which are orthogonal to M' with respect to g. Then,

is decomposed as a direct sum:

We shall denote the tensors and tensor operators associated to the immersed
submanifold, M', by a caret, Λ. For instance, R will denote the Riemannian
curvature tensor on M1 associated to the induced Riemannian connection, V,
arising from the Riemannian structure, g', on M''.

Following [3], we define the configuration tensor of the immersed submani-
fold, M'QM, as the tensor f: £D(M')x&(Mf)-+$(Mf) given by:

(CT1) ?XY=FXY-FXY, for

(CT2) TxZ=π(FxZ), for

and Z<=2){M'Y, where π: Ί£(M')-+β)(M') is orthogonal projection.
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The most important properties of the configuration tensor, T, are contained
in the following proposition:

PROPOSITION 2.1: Let M1 be an immersed submamfold of the Riemannian
manifold, M. For X, Y<ΞS){M'), we have:

(0 ί*x is a skew-symmetric linear operator which reverses the subspaces,
β)(Mf) and β){M')L.

(ii) tXY=tyX.

(iii) π(R(X, Y))=R(X, Y)-[TX, f F ] . (the Gauss equation).

Proof: [3].

From condition CT1, we see that the configuration tensor, f, is essentially
the second fundamental form of the immersion. In fact, we say that Mr is a
totally geodesic submanifold of M, whenever T is identically zero.

Let {Eu •••, Em,} be an orthonormal local basis for S){Mf). From proposition
2.1 (i), we see that the vector field fEi(Ei) is orthogonal to £)(M') for every
2=1, •••, m\ Thus, the mean curvature vector field, H, of Mr in M, defined by:

H=ΣfEi(Et)

is a vector field in the orthogonal subspace, ^(M 7 ) 1 . We say that Mf is a
minimal submanifold of M when the mean curvature vector field is identically
zero. Clearly, totally geodesic implies minimal. There are many examples, how-
ever, of submanifolds of Euclidean n-space, for instance, which are minimally
immersed, but which are minimally immersed, but which are not totally geo-
desic.

Minimal submanifolds have great intrinsic importance since they arise in
the study of Plateau's Problem, and other classical problems of partial differ-
ential equations. Thus, existence or non-existence theorems concerning manimal
submanifolds have substantial interest. We include two facts relating to minimal
submanifolds.

Fact 5: Canonically embedded subspheres of a sphere are totally geodesically,
and therefore, minimally immersed.

Fact 6: There do not exist any compact minimal submanifolds of Euclidean n-
space.

% 3. Submanifolds of Almost Hermitian Manifolds.

We now consider almost complex submanifolds of an almost Hermitian
manifold in order to see how much this additional structure restricts the possi-
bilities for the configuration tensor, t.

If (M', gf, Ff) is an almost Hermitian immersed submanifold of the almost
Hermitian manifold (M, g, F) such that gf is the inherited Riemannian structure
on M' from g, and such that F' is identical to the restriction of F onto M,
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then we say that (Mf, g', Fr) is an almost Hermihan submanifold of (M, g, F).
Since the almost complex structure F' on the submanifold is essentially the
restriction of F to M', it should cause no confusion to denote both almost com-
plex structures by F.

Using the facts that the restriction of the Kahler form Ω of M to M' is
Ωr, and that the immersion mapping commutes with the d-operator on differential
forms, the proof of the following proposition is straightforward [3].

PROPOSITION 3.1: Let Mr be an almost Hermitian submanifold of the almost
Hermitian manifold, M. Then if M is Kahler (resp., almost Kahler; resp., almost
Tachibana resp., quasi-Kahler resp., Hermitian), then M' is Kahler (resp., almost
Kahler; resp., almost Tachibana resp., quasi-Kdhler resp., Hermitian).

REMARK : It is not known if Proposition 3.1 obtains for the more general
classes of almost semi-Kahler and semi-Kahler manifolds.

A classic result in the folk-lore of minimal submanifolds states that any
holomorphically immersed submanifold of a Kahler manifold is minimal. In [3],
Gray extended this statement to apply to any almost Hermitian submanifold of
a quasi-Kahler manifold. Thus,

PROPOSITION 3.2: An almost Hermitian submanifold of a quasi-Kahler mani-
fold is minimal.

Proof: Let M' be an almost Hermitian submanifold of the quasi-Kahler
manifold, M. Then, M' is quasi-Kahler by Proposition 3.1. It is easily checked
that the quasi-Kahler condition (QJC) is equivalent to :

for all tangent vector fields, X and Y. In particular, for X, tangent to M',r we
have:

Γ
and

-
So,

f xX+Ff x(FX)+f FX(FX)-Ff

Since fx(FX)=fFX(X), by Proposition 2.1 (ii), we have,

TχX+TFΛFX)=0.

Now consider an orthonormal F-basis for 2){Mf), {Elt •••, Em., FElf •••, FEm,}.

T h e last identity then implies

It was the attempt to extend Proposition 3.2 to the weaker class of almost
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semi-Kahler manifolds which motivated this study. While we have not been
able to prove such an extension (we conjecture that Proposition 3.2 is false for
almost semi-Kahler spaces), we have been able to prove the minimality of cer-
tain submanifolds of almost semi-Kahler manifolds.

Before stating our result, we define the partial codifferential of the Kahler
from Ω of M, and derive its relationship to the minimality of M'.

Let Mr be an almost Hermitian submanifold of the almost Hermitian mani-
fold, (M,g, F), and let {Elf •••, Em,, FElf •••, FEm,} be an orthonormal F-basis
for £){Mr). We define, as in [3], the partial codifferential of Ω via:

dΩ{X)=-Έχ {FEi(Ω)(Ei9 X)+ΓFEi(Ω)(FEif X)} ,

for all X<EΞW(M').

Note that the summation contains the covariant differentiation operator of M,
but only sums to the dimension of M'. The usefulness of δΩ is derived from
the following:

PROPOSITION 3.3: An almost Hermitian submanifold, M'', of the almost
Hermitian manifold, (M, g, F), is minimal if and only if §Ω(Z)=0, for every
ZtΞ3)(M'y.

Proof: Now Γx(Ω)(Y,Z)=g(ΓAFY)-FΓxY,Z). So,

FEi(Ω)(Eu Z)=g(FEi(FEi)f Z)-g{FVEi{E%\ Z)

=g(tSi(FEi), Z^giFf^FEt), Z)

+g(FEi(FEi), Z)+g{FVEi{Ex), Z)

=g(fEi(FEi), Z)-g{FtEi{Ex\ Z),

because the vector field Z is orthogonal to £}(M')f and so to VEi(FEt ) and
FVEi(Ei). Therefore,

W(Z)=- Σ git^FEJ-Ff^EJ-f^EJ-Ff^iFEi), Z)
1=1

=g(FH,Z).

Thus, δΩ=0 if and only if H=0.
Using Proposition 3.3, we are able to prove the minimality of certain almost

Hermitian submanifolds of an almost semi-Kahler manifold. Notice that we do
know if these submanifolds inherit an almost semi-Kahler structure from the
ambient almost semi-Kahler space.

THEOREM 3.4: Let M2n+2 be an almost semi-Kahler manifold and Mr be an
almost Hermitian submanifold of M of codimension 2. Then M' is a minimal
submanifold of M.
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Proof: Choose an orthonormal F-basis, {Elf •••, En, FElf - , FEn, Z, FZ}, for
ΊD{M) such that {Z, FZ} is a basis for 2){M'Y and {Eu - , £„, FE l f - , F £ J is
a basis for 2)(M'). According to Proposition 3.3, it is enough to show that
δΩ(Z)=0=δΩ(FZ). We know that the usual codifferential, δΩ, of Ω, vanishes
on all vector fields of M, because M is an almost semi-Kahler manifold. So,

Thus,

But,

and,

Therefore,

and similarly,

Q(Z)=- Σ {VEi(Ω)(Eiy Z)+FFEi(Ω)(FEif Z)}
1 = 1

-FZ(Ω)(Z, Z)-FFZ{Ω)(FZ, Z).

δΩ(Z)=FZ(Ω)(Z, Z)+FFZ(Ω)(FZ, Z).

FX(Ω)(Y, W)=—FX(Ω)(W, Y),

FX(Ω)(FY, W)=FX(Ω)(Y, FW).

δΩ(Z)-0,

δΩ(FZ)=0.

REMARK : It is of interest to note the similarity of the two statements:
(a) Proposition 3.2 is true for quasi-Kahler manifolds, but is difficult (or

false ?) for almost semi-Kahler manifolds.
(b) The complexification of a quasi-Kahler space is Kahler, but the corre-

sponding statement for almost semi-Kahler spaces is false. (See Figure 1).
REMARK : In [9], we proved a series of results on almost complex Rie-

mannian submersions between almost Hermitian manifolds. In particular, we
showed that the base space inherits the same structure from the total space,
when the total space is quasi-Kahler or stronger. However, when the total
space is almost semi-Kahler, that result no longer obtains. We found, instead,
that the base space is almost semi-Kahler if and only if the fibres of the Rie-
mannian fibration are minimally immersed. Pereaps this indicates a relationship
between the existence of an almost semi-Kahler structure on the submanifolds
and their minimality.

In this direction, we now prove the orthogonal complement to Proposition
3.3. This is, Proposition 3.3 says that δΩ, when restricted to ^(M')1, gives
information on the minimality of M'. We now show that the same partial co-
differential, δΩ, when restricted to β)(M'), gives information on whether Mι is
almost semi-Kahler or not. Notice that the ambient manifold, Λf, in the follow-
ing theorem and its corollary, is only supposed to be almost Hermitian.

THEOREM 3.5: An almost Hermitian submanifold, Mf, of the almost Her-
mitian manifold, (M, g, F), is almost semi-Kahler if and only if δΩ(W)=0 for
every W<Ξ3){M').
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Proof: It is sufficient to show that δΩ(W)=δΩ(W) for every W^2)(Mf).

But, clearly, as in tne proof of Proposition 3.3, we have δΩ(W)—δΩ(W)=

—g(FH, W). Since FH is orthogonal to W, the theorem obtains.

COROLLARY 3.5.1: // δΩ=0, then M' is a minimal, almost semi-Kdhler sub-
manifold of the almost Hermitian manifold, M.
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