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ON CONFORMALLY FLAT SPACES WITH

DEFINITE RICCI CURVATURE II

BY SAMUEL I. GOLDBERGI:>

1. Introduction. There is a formal similarity between the theory of hyper-
surfaces and conformally flat d-dimensional spaces of constant scalar curvature
provided d^3. For, then, the symmetric linear transformation field Q defined
by the Ricci tensor satisfies the "Codazzi equation"

(VXQ)Y=(VYQ)X

This observation together with the technique and results in [2] and [3] yields
the following statement.

THEOREM. Let M be a compact conformally flat manifold with definite Ricci
curvature. If the scalar curvature r is constant and tr Q2^r2/d—1, d^3, then M
is a space of constant curvature.

The corresponding result for hypersurfaces is due to M. Okumura [3].

COROLLARY. A 3-dimensional compact conformally flat manifold of constant
scalar curvature whose sectional curvatures are either all negative or all positive
is a space of constant curvature.

Note that, in general tr Q2^r2/d with equality, if and only if, M is an Ein-
stein space.

Examples of compact negatively curved space forms are given in the paper
by A. Borel [1].

2. Definitions and formulas. Let (M, g) be a Riemannian manifold with
metric tensor g. The curvature transformation R(X, Y), X, 7 e M m - the tangent
space at m^M, and g are related by

R(X, Y)=FίX,Y1-ίFx, Fyl,

where Vx is the operation of covariant differentiation with respect to X defined
in terms of the Levi-Civita connection. In terms of a basis Xlf •••, Xd of Mm

we set
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iχ"Ίp ^ \ ^ i i > *** > ip) *

We denote the scalar curvature by r, that is r=tr<3, where Q=(Rιj), Rlj=
gikRjk The manifold (M, g) is conformally flat if g is conformally related to a
locally flat metric. The Weyl conformal curvature tensor defined by

(2.1) Ct

Jkh=Rt

Jkh--^(Rjkδ\-Rjhδ\+g,kR\-gJhR
t

k)

consequently vanishes, so if (M, g) is conformally flat

(2.2) /?»>ikΛ=__l_ {Rjkδ\-Rίhδ\+gjkR\-gihR\)

From (2.1) and the second Bianchi identity

(2.3) PiCι

jkh=(d

where

(2.4) C y ^ ^ - ^ - y ^ . - Γ ^ O - 2(^-1X^-2)

For <ί=3 it can be shown that if (M, ^ ) is conformally flat, then Cijk=0.

3. The Laplacian of the square length of the Ricci tensor. The following
formula may be found in [2] :

(3.1) \ Δ tr Q*=g*Ψ-aR**Pr

bRtJ+R*>g*Ψ'a(P\Rxj-P\RbJ)

where tr Q2=RlJRtJ and

(3.2) K=Rik(R\R

If r=const, the third term on the r. h. s. of (3.1) vanishes. If, furthermore,
M is conformally flat and ύf^3, then from (2.3) and (2.4), the second term on
the r. h. s. of (3.1) also vanishes. Substituting (2.2) into the r. h. s. of (3.2), we
obtain
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where

(3.3) (d-l)(d-2)K=d(d-l) tr Q3-r(2d-l) tr <?2+r3

4. Proof of Theorem. Put

where / is the identity. Since trS 2 ^0,

equality holding if and only if M is an Einstein space. Since the scalar curva-
ture is constant, the Laplacian Δf2 of the function / 2 = t r S2, /^0, satisfies

so that

(4.1) \Δf*=K+g{VQ, FQ).

From the definition of S, we get

(4.2) tr S=0,

(4.3) t r Q 2 = t r S 2 + ^ - ,

(4.4) ^

Substituting (4.3) and (4.4) in (3.3), we obtain

(4.5) (d-l)(d-2)K=d(d-l)(tr S3+^f

L E M M A . Let alf ι = l , •••, d be real numbers such that

d d

Σ p , Έlk2, &=const. ^ 0 .
1 = 1 1=1

Then,

Vd(d-ί) = t t ' Γ t = Vd(d-l) •

Applying the lemma to the eigenvalues of S, (4.5) yields the following
inequality
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Thus, since f^r/ Vd(d—1), J/ 2 ^0, from which since M is compact, /2=const.,
so tr <22=const. It follows from (3.1) that FQ=0. Theorem 1 of [2] then gives
the desired result.

In case the sectional curvatures are all positive the corollary is due to M.
Tani [4].

The condition that the Ricci tensor is definite is essential. For, if M—MxxN
where M1 has constant curvature and N is 1-dimensional, then M is conformally
flat, r is constant, and trQ2=r2/d— 1.
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