S._YAMAGUCHI
KODAI MATH. SEM. REP.
27 (1976), 432—435

THE AXIOM OF COHOLOMORPHIC 3-SPHERES IN
AN ALMOST TACHIBANA MANIFOLD

By SEINICHI YAMAGUCHI

§1. Introduction. Let M be an almost Hermitian manifold with metric
tensor <,>, Riemannian connection F, and almost complex structure J. A 2-
plane ¢ is called holomorphic (resp. totally real (or called antiholomorphic)) if
Jo=o (resp. if Jo is prependicular to ¢), where we mean an r-dimensional linear
subspace of tangent space by 7-plane. K. Yano and I. Mogi [9] (resp. B. Y.
Chen and K. Ogiue [1]) proved that a Kaehlerian manifold with the axiom of
holomorphic 2-planes (resp. the axiom of totally real 2-planes) is a complex
space form. A 3-plane is called coholomorphic if it contains a holomorphic 2-
planes a holomorphic 2-plane ¢. It is clear that a coholomorphic 3-plane also
contains a totally real 2-plane. Recently, B.Y. Chen and K. Ogiue [2] have
considered the axiom of coholomorphic 3-spheres as follows: For each point of
xeM and each coholomorph 3-plane =, there exists a 3-dimensional, totally um-
bilical submanifold N such that x&N and T, (N)=m=.

The purpose of this is to study an almost Tachibana manifold satisfying
the axiom of coholomorphic 3-spheres and to prove the following:

THEOREM. Let M be an n-dimensional non-Kaehlerian almost Tachibana
manifold satisfying |V x J)Y)|=constant for all orthonormal vectors X and Y
that span a totally real 2-plane. If M admits the axiom of coholomorphic 3-
spheres, then M is 6-dimensional manifold of constant curvature C>0.

§2. Submanifold. Let N be a submanifold of M, and V' and ¥’ be the
covariant differentiations on M and N respectively. Then the second funda-
mental forms B of the immersion is defined by B(X, V)=V yY—F%Y, where X
and Y are vector fields tangent to N. B is a normal bundle valuded symmetric
2-form on N. For a vector field & normal to N we write V yé=—As(X)+ D&,
where —Ag(X) (resp. Dx&) denotes the tangential (resp. normal) component of
V v&€. The submanifold N is said to be totally umbilical if B(X, Y)=<X, Y H,
where H is the mean curvature vector of N.

For the second fundamental form B of N in M we define the covariant

derivative, denoted by 4 xB, to be
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2.1 (FxB)Y, Z)=Dx(B(Y, Z))—B(%Y, Z)—B(Y,V4Z)

Then, for all vector fields X, Y, Z, W tangent to N the equations of Gauss and
Codazzi take the form

(2.2) (R(X, Y)Z, Wy=(R'(X, Y)Z, Wy+<(B(X, Z), B(Y, W)
—<B(Y, Z), BKX, W)y,
(23) (R(X, Y)Z)*=(F xB)(Y, Z)—(PyB)X, Z),

where | in (2.3) means the normal component.

§3. Almost Tachibana manifold. Let M be an n dimensional almost Her-
mitian manifold. Then M is said to be an almost Tachibana manifold (K-space
or nearly Kihler manifold) provided (7 x J)(Y)+F yJ)(X)=0 for any vectors X
and Y of M. It is well known that #=6 for a non-Kéihlerian almost Tachibana
manifold M.

Let R(X,Y) be the curvature tensor of M given by R(X, Y)=[F4, V]
—Vix,yi. We denote R(X,Y;Z W) by R(X,Y; Z W)=(R(X, Y)Z, W). The
sectional curvature of M determined by orthonormal vectors X and Y is given
by K(X,Y)=R(X,Y:Y,X). The holomorphic sectional curvature H(X) for
unit tangent vector X is the sectional curvature K(X, /X). Let x be a point
of M. If H(X) is constant for every x and every unit tangent vector X at x,
then M is said to be of constant holomorphic sectional curvature.

In an almost Tachibana manifold M, the following identities are well known

[4]:
(ERY) (R(X, Y)Y, X>—<R(X, Y)JY, JX>=|F x XY)I*,

(3.2) R(X, Y)Z, W)=<R(JX, JY)]Z, JW> ,
B3 (R(X, JX)JY,Y)=LR(X, Y)Y, X)+<R(X, JY)JY, X>—=2|(F x JXY)II*

for any vector fields X, Y, Z, W of M.
We know [4] that an almost Tachibana manifold M has global constant
type if and only if there exists a constant « such that

17 x DP=all X*IY[*—<X, ¥)*—<X, JY)*]

for any vectors X, Y of M. Moreover a non-Kaehlerian almost Hermitian mani-
fold M is said to be a special almost Tachibana manifold if the associated 2-
form 2(X, Y)=<(JX, Y) is a special Killing 2-form with constant &« (#0). Such
M is an almost Tachibana manifold with global constant type and a 6-dimen-
sional Einstein manifold [8]. One of the examples of almost Tachibana mani-
fold is a 6-dimensional sphere [3].
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§4. Proof of Theorem. Let X and Y be any orthonormal tangent vectors
of M at x€M such that X and Y span a totally real 2-plane. Then X, Y and
JX span a coholomorphic 3-plave #. By the axiom of coholomorphic 3-spheres,
there exists a 3-dimensional totally umbilical submanifold N such that x&N and
T, (N)==. Making use of (2.1) and (2.3), it follows that

(R(X, JX)Y)'=<JX, Y)DyH—<X, Y)D;xH=0,
from which
(4.1) (R(X, JX)Y, JY>=0

for all orthonormal vectors X and Y that span a totally real 2-plane. It is

clear that (X+Y)/+2 and (JX—JY)/+/2 also span a totally real 2.-plane.
Therefore we have by virtue of (3.1), (3.3) and (4.1)

(4.2) K(X+Y, /X—-fY)=%[H(X)+H(Y)+2||(Vx])(Y)||2] .

On the other hand, regarding to (3.3) and (4.1), we get

(4.3) K(X+Y, JX—-]JY)=—K(X+Y, X=Y)+2|(F x J)(Y)|*
=—K(X, Y)+2\ x J)Y)I?

and therefore, by (4.2) we have

(44) K(X, Y):—%[H(X)—}—H(Y)—GII(VX])(Y)|[2].

Taking account of JY in stead of Y in (4.4), it follows that

(45) K(X, ]Y)=—%EH(XH-H(Y)—GII(VxJ)(Y)IIZII-

Adding side by side of (4.4) and (4.5) and using (3.3), it follows that
(4.6) H(X)+H(Y)=2C,

where we put |(Fx/)(Y)|?=C. Since M is a non-Kaehlerian almost Tachibana
manifold, we find n=6. Hence we have H(X)=C, that is, M is of constant
holomorphic sectional curvature C. Our assertion follows the following Theorems :

THEOREM [7]. If a 6-dimensional almost Tachibana manifold is of constant
holomorphic sectional curvature C, then either it 1s Kaehlerian, or it is of con-
stant curvature C>0.

THEOREM [6]. There does not exist any dimensional, except 6-dimensional,
non-Kaehlerian almost Tachibana manifold of constant holomorphic sectional cur-
vature.

By virtue of Theorem, we have immediately
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COROLLARY 1. Let M be a non-Kaehlerian almost Tachibana manifold with
global constant type. If M admits the axiom of coholomorphic 3-spheres, then M
is 6-dimensional manifold of constant curvature C>0.

COROLLARY 2. Let M be a special almost Tachibana manifold. If M admits
the axiom of coholomorphic 3-spheres, then M is 6-dimensional manifold of con-
stant curvature C>0.
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