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ON A CHARACTERIZATION OF QUATERNION PROJECTIVE

SPACE BY DIFFERENTIAL EQUATIONS

BY YOSHIAKI MAEDA

§ 1. Introduction.

The existence of a non-trivial solution of certain differential equations on
a Riemannian manifold M often determines some geometric and topological
properties of M, For example, in [9] Obata proved the following Theorems 1
and 2.

THEOREM 1. Let M be a complete connected and simply connected Rieman-
nian manifold of dimension n(^2). In order for M to admit a non-trivial solu-
tion f for the system of differential equations

(I) ^ιVjfi+k(2fkgJi+fJgki+f%gkJ)=0, &=const > 0 ,

where fι=Pkf, it is necessary and sufficient that M be isometirc with a sphere Sn

of radius 1/ V& in the Euclidean (n-\-ϊ)-space.
THEOREM 2. Let M be a complete connected and simply connected Kaehler

manifold of dimension 2m(^4). In order for M to admit a non-trivial solution
f for the system of differential equations

(II) Γ4Γ,/<+fe(2Λ^<+/^«+ΛΛ i-/; i//tFM-Fϊ

eΛFΛj)==0, &=const>0,

where F* is the complex structure of M, it is necessary and sufficient that M be
isometric with the complex projective space Pm(C) with Fubini-study metric of
constant holomorphic sectional curvature Ak.

In [1], Blair showed a relation between Theorems 1 and 2 by deducing
Theorem 2 from Theorem 1 in the case where M is a Hodge manifold. The
idea of his proof is to show that the projection of (I) on S2 m + 1 via the Hopf-
fϊbration π: S2 m + 1->Pm(C) gives the equation (II) on Pm(C). In a similar way
we can characterize the quaternion projective space Pm(H) by differential equa-
tions via the Hopf-fibration π: S 4 m + 3-+Pm(//). The purpose of this parer is to
prove the following Theorem 3.

THEOREM 3. Let M be a complete connected quaternion Kaehler manifold of
dimension 4m(^8). In order for M to admit a non-trivial solution f for the
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system of differentirl equations

(III) F^bfa+K2fegba+ftgca+fagct-Aeba
ef€-Aeab

efe)=0 , &=const>0 ,

where Λcba

e is a global tensor field on M defined by (2.3), it is necessary and
sufficient that M be isometric with the quaternion projective space Pm(H) with
constant Q-sectional curvature 4&.

We remark that grad / in Theorem 1 and 2-^are an infinitesimal projective
transformation and an infinitesimal //-projective transformation respectively.
From our case, as an analogue, we can expect that grad/ in Theorem 3 gives
a certain special infinitesimal transformation. Namely, in a quaternion Kaehler
space, the one parameter group generated by grad/, where / is a non-trivial
solution of (III), leaves the family of all curves r whose covariant derivative of
the tangent vector field r of r is contained in the quaternion subspace spanned
by r.

The author thanks Prof. M. Obata for his valuable suggestions and encour-
agement during the preparation of this paper and also thanks Prof. S. Ishihara
and Dr. M. Konishi for giving advices to him for many formulas given in [2]
and [6].

§ 2. Quaternion Kaehler manifolds (See [2].).

Let M be a differentiate manifold of dimension n and there exist a sub-
bundle V of the tensor bundle of type (1, 1) over M satisfying the following
condition:

(a) In any coordinate neighborhood U of M, there is a local basis {F, G, H}
of the bundle V, where {F, G, H} are tensor fields of type (1, 1) in U satisfying

(2.1) F2=G2=H2=-I,

GH=-HG=F, HF=-FH=G, FG=-GF=H,

I being the identity tensor field of type (1, 1) in M. Such a local basis {F, G, H}
of V is called a canonical local basis of V in U.

Thus the bundle V is a 3-dimensional vector bundle. Such a bundle V is
called an almost quaterion structure and the pair (M, V) an almost quaternion
manifold. An almost quaternion manifold is orientable and of dimension n=

For an almost quaternion manifold (M, V), let {F, G, H} and {Fr, G', H'} be
canonical local bases of V in U and in another coordinate neighborhood Uf of
My respectively. Then we have in Ur\U'

F'=snF+s12G+slsH,

(2.2) G'=
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where S=(saβ)eΞSO(3), (α, β=l, 2, 3), because {F,G,H} and {F',G',H'} satisfy
(2.1). Thus, if on U we can put A as following:

(2.3) Λ=F®F+G®G+H®H,

then using (2.2) gives that A determines in M a global tensor field of type (2, 2),
which will be denoted also by A.

Next let there be given an almost quaternion structure V in a Riemannian
manifold (M, g) and assume that for any canonical local basis {F, G, H} of F,
each of F, G and H is almost Hermitian with respect to g. Moreover we sup-
pose that the set (M, g, V) satisfies the following condition:

(b) If φ is a cross-section of the bundle F, then V xφ is also a cross-section
of V for any vector field X on M, where V denotes the Riemannian connection
of the Riemannian manifold (M, g, V).

Such a set (M, £", F) is called a quaternion Kaehler manifold and the set
{g, F} a quaternion Kaehler structure in M. The condition (b) is equivalent to
the following condition:

(bθ For a canonical local basis {F, G, H} of V in U,

FxF=r(X)G-q(X)H,

(2.4) FxG=-r(X)F+p(X)H,

FxH=q(X)F-p(X)G

for any vector field X on M, where p, q and r are local 1-forms in U. Thus,
using (2.4), we easily find

(2.5) FΛ=0.

Here, we can easily verify that condition (2.5) is equivalent to condition (bO
It is known that any quaternion Kaehler manifold is an Einstein space, i. e.,

that the Ricci tensor S of (M, g) has the form

(2.6) S=-1WI,

s being the scalar curvature of (M, g) which is a constant if M is connected,
where dim M=4m (m^2).

We denote by Rdcb

e components of the curvature tensor of (M, g) and put
Rdcba^Rdcbgea Put Fba=Fb

egea, Gba=Gb

egea, Hba=Hb

egea, which are all skew-
symmetric.

Let a function / satisfy the differential equation (III). Then using (III) and
the Ricci identity we get.

Contracting with gba we have from (2.6)
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(s-4m(4m+S)k)fc=0,

where the function / is non-trivial. Then we have

LEMMA 2.2. // M admits a non-trivial solution for (III), then the scalar
curvature s is equal to 4m(4m+8)&>0.

Next the following integral formula is known:

PROPOSITION 2.3 (Ishihara [3].). Let M be a compact quaternion Kaehler
manifold. Then

where Xb is a vector field on M.

Assume that M admits a non-trivial solution / for (III). Contracting (III)
with gcb and using Lemma 2.2, we have

(2.7) FβFβΛ+s/(4m+8) Λ = 0 .

Because of skew-symmetry of F, G and H, we get

(2.8) FcΨbf
c=GcΨbf

c=HcΨbf
c=O.

M is an Einstein space whose scalar curvature is positive, because of Lemma
2.2. Thus M is compact, since M is complete. Substituting Xa by fa in Pro-
position 2.3 and making use of (2.7) and (2.8), we get

(2.9) XstΆάfΛ=0.

From (2.9) and (2.5), we have easily in the coordinate neignborhood U

(2.10) FafcGb

c+FbfcGa

c=0,

§ 3. Fibred space with Sasakian 3-structure (See [4].).

Let M have a Sasakian 3-structure and M be a quaternion Kaehler mani-
fold, and assume that there exists a fibration π: M-»M (See [5].). In such a
case, M is necessarily of dimension n+3=4m+3. We now assume that dim M>7
(i.e. m>l). The fundamental geometry in such a situation has already been
discussed in [4] and [5]. We shall recall some notions and results given in [4]
and [5].

We take coordinate neighborhoods {U, xh} of M such that π(U)=U are
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coordinate neighborhood of M with local coordinates (vα). Then the projection
π: M—>M may be expressed with respect to {U,xh} and {U,va} by certain
equations of the form

va=va(x\ - ,xn+z),

va denoting coordinates in U of the projection P=π(σ) of a point σ with co-
ordinates xh in 0, where v\xx, •••, xn+s) are differentiable functions of variables
xh with Jacobian matrix (dva/dxh) of the maximal rank 4m. We take a fibre F
such that Fr^UΦ&. Then, we may assume that Fr\ϋ is connected. We can
introduce local coordinates (u°) in Fr\U in such a way that (va, ua) is a system
of local coordinates in 0, (va) being coordinates of π(F) in U.

We now put Ei

a=dva/dxt and Ca=d/dua. Denoting by CΛ

α components of
Ca in £7, we put Cia=gihg

aβCh

β, where gjt are components of g in 0, gaβ=
gμC\Cι

β and {gaβ)={gaβ)'\ We next define £ Λ by ( £ \ , C Λ

α ) = ( £ i

α , C^)"1. We
now define three tensor fields φ, ψ and Θ of type (1, 1) by

φ=Pξ, φ—Prj, θ=Vζ.

Then we can put in U, denoting Eb and Ea a vector field and a 1-form whose
components are Eb and Eι

a respectively,

(3.3) φH=φb

aEb®Ea, ψH=ψb

aEb<g)Ea, θH=θb

aEb(g>Ea,

where φH denotes the horizontal part of φ and so forth, φb

a, ψb

a, θb

a being local
functions in U and φH, ψH, ΘH satisfy (2.1) (See [5].). We easily have

(3.4) δ α ~ ~ α δ ~

where gab=gjiE
J

aE\ which is a Riemannian metric of M. We get the Co-Gauss
formulas (See [5], [6].)

(3.5)

V £ « = -hcb«EJ

cEi

b-Pcβ«EJ

cC/-{lϊr}c/Cir,

where hb

a

β, Pcβ

a, j αΛ and { Λ J are local functions defined in 0 respectively.

In particular, { a Λ and {^} are ChristoffeΓs symbols formed with gab, and

gaβ respectively. Furthermore we get

(3.6) hb*β=-(aβφ

where we put ζ=aaCa, η=baCa, ζ=caCa and aβ=gβaa
a, bβ=gβab

a, cβ=gβocc
a in 0.

The following structure equation for π is satisfied (See [6], Chapter I, 6.):

(3.7) Kkji

hEk

dE>cE\Ch«=>Vdhcb«-'Vchdb«,
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(3.8) Kkli

hEk

dC'βE\Ch

a=-"Vβhdb

a+hd

e

βheb

a,

Kkjt

h being curvature tensor of M and

"Fβhdb

a=dβhdb

a+{^}hb/-hd

e

βheb

a-hb

e

βhde

a.

Using the Ricci identity for ξ, η, ζ and (3.6), (3.7), (3.8), we have

(3.9) dβha

e

afe-{£β}ha

erfe+fehd

e

aha

d

β+fagaβ=O,

(3.10) 3eAΛ/.

and

(3.11) f.ht

eJicΛβ+f,hd'βhe

a

a+2fegap=0.

Let / be a function on M. We now consider a tensor Lkji given by

where / denotes the lift of / (i.e., f(σ)=foπ(σ).). Now we have

VJ=f-EiΨJ,

in 0, Va being a formal covariant derivative with respect to •{ Λ. Using

(3.15), we get

(3.12) P/ιf=(Paft,)EJ

aEi

t+fahb

a

a(E;ci

a+CJ

aEi

t).

Moreover differentiating (3.12) covariantly and using (3.15), we have

P / fί?=(PcP<,fa-hb

e

afehca

a-ha

e

afehcb

a)Ek

cEJ

bEi*

+(PafΛhb<
ι

a+Γbfdha

t'a)Ck

aE]'>Ei

a

(3.13) + WeaaEk

eEt

aC«+ WttΛEh*E*Ct*

+(fehd

e

ahc

d

β+fehd

e

βh/n)Ek

cC/Ci

a

where Wcaa and Zaβa are defined respectively by

{?a}fthd'a-PtJ>ha<βfd,
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Thus, substituting (3.13) in Lkji from (3.9), (3.10) and (3.11), we have

Lkji=(FcPJa-hb

e

ahca

afe-ha

e

ahcb

afe+2fcgι,a+fbgca+fagc!>)Ek'
:E]

bEi

a

(3.14)
+(PafΛhc<

t

a+Fcfdha

a

a)Ek

cCJ

aEi

a

§4. The construction of Hopf-fibration from the Sasakian 3-structure.

In this section we construct the Hopf-fibration S3-^S4 m + s-^Fm(//) by using
the given Sasakian 3-structure on the sphere Sim+S. The construction of the
Hopf-fibration S 1 -^ 2 "^ 1 —P m (C) is studied by Yano and Ishihara [11].

First suppose that i: Sim+s(ί)^R4m+i is an imbedding given by the equation
4 l T ; y / = l . Setting yι=uι, ( l ^ t ^ 4 m + 3 ) , we get J 4 m + 4 = ± [ 1 - 4 Σ V ] 1 / 2 Then
Λ-l t=l

the differential i* of the imbedding is given by

δt>, G4=/=l , - , 4 m + 3 )

where we have set [1— Σ u2fl2—λ (resp. ~—λ) for the hemisphere j>4m+4>0

(resp. for 3>4m+4<0). The induced metric g is given by gji^δji+Uiiij/λ2. We take
the outer normal vector N, i. e v the components NΛ of N is yA. Let va denote
the components of vector field on i?4m+4. Then the components of its projection

on S 4 m + 3 are v%— Σ vA(i*)τ

Ai where

-utuJf A=j,

ιt, A—4m+4.

We denote { ••} the ChristoffeΓs symbol formed with g. Then we have

(4.1)

Since the imbedding is totally umbilical whose principal curvature is equal to 1,
we get

where P'3 is the van der Waerden-Bortolloti covariant derivative. Let £ =

Σ ξi'dldux be a Sasakian strncture on S4 m + 3. We define a vector field | =



428 YOSHIAKI MAEDA

4m+4 4m+3

Σ ξΛd/dyA by ξΛ= Σ £*(i*)Λ From (3.1) and (4.2), we have
A=l 1=1

By Obata [9], the function ξΛ can be written on 547r ι+3 as

(4.3) ξA=£aΛByBί

where A=(aAB) is a constant matrix. Extending ξA to J?4m+4 by homotheties
centered at the origin, we can make it a vector field I on the R*m+ά and denote
it by the same letter. In fact, the components of I has the same form as given
by (4.3). Because of the above constructure, ξ is orthogonal to the Normal
vector N:

4m+4 4m+4

Σ aΛByΛyB= Σ ξANΛ=0.
A,B=1 A=\

from which we have
(4.4) aΛB+aBΛ=0.

4m+4

Since ξ is unit vector, Σ ξAξA=l on S4 m + 3. In particular at ut=0f ( l ^ i
A=l

we have
4m+3

(4.5) Σ a%m+i=l.
t=l

On the other hand
4m+4

£'= Σ ξA(i*)\
Λ=l

4m+3 4W+4

= Σ (ΈajByB)(δ;-UjUι)+( Σ aim+iByB)(-λUι).
J=1 β = 1

Using (4.4), we get
4m+3

(4.6) ζι= Σ aijUj+λaun+t.

Differentiating (4.6) covariantly and using (4.1) and (4.4), we have

α ^^+4 + Σ W i ( δ ^ + -j2-W)feWί)(

= aik j-fl + ( Σ α ^ ) M + ^ f l M +

Then we have from (4.4)

4m+3

Φkj= Σ
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Since 4Σ*φkJξ
J=0, we get by (4.6)

(4.7)

4W + 3 4m+3

1 = 1 l 1 = 1

At Ui=O, (l^z^4m+3), we have

4m+3

(4.8) Σ atJaiim+i=O.
1 = 1

Because of (4.5) and (4.8), (4.7) is reduced to

4m+3
(4.9) Σ ^kiaιjJΓaUm+ia4m+άj— — δkj -

ι = l

By (4.8) and (4.9), we have A2=—I, where /is the identity matrix. Let {£, η, ζ)
be the natural Sasakian 3-structure on S4m+3(1). From the above construction
the extended vector fields ξ, η and ζ on i?4 m + 4 can be written as

ξ=AN, y=BN, ζ=CN,

where the matrices A—{aAB), B=(bΛB), C = (cAB) are constant and skew-
symmetric. They satisfy A2=B2=C2= — I. Since I, rj and ζ are mutually
orthogonal,

Σ aΛBbACyByc= Σ aABcACyByc= Σ bABcACyByc=0,
A,B,C A,B,C A,B,C

from which we have

= Σ,(cABaBc+CcBaBA)=O.

By the definition (3.2) of the Sasakian 3-structure, we get

] = 2 ζ 1,54771+3

From the above equation, using (4.10), we have

A,C

This means that BA=-AB=C. Similarly, we have CB^-BC—A and AC=
—CA—B. Then {A, B, C} defines a quaternion structure on i?4 m + 4. We con-
sider the distribution D spanned by ξ, η and ζ. Then the projection π: S 4 m + 3

-*S*m+*/D is the Hopf-fibration. So we get

PROPSSITION 4.1. Let S4m+3(1) be a shere of radius 1 and have the natural
Sasakian 3-structure {ξ,η,ζ\. Then S4m+2/D is a quaternion projective space
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Pm(H).

YOSHIAKI MAEDA

§5. Proof of Theorem 3.

We first note that it suffices to prove the theorem for k=l. For, if kΦl,
the homothetic change g-*g—kg of metric transforms the differential equation
given in Theorem 3 into the corresponding one with k=l. We are now going
to give a proof of Theorem 3.

Sufficiency. Let S4m+3(1) be the sphere in R4m+* with its natural Sasakian
3-structure {ξ, η, ζ}. i. e., according to the notation of § 4, we may put

ξ=FN, η=GN, ζ=HN,

where F, G, H are matrices defined by the following:

F=

We define a function /on 5 4 m + 3 by f=(l/2)(u1

2+u2

2+uz

2+u4

2). Then it is easily
checked that / is a solution of the differential equation (I) and -£ξf=J:vf=-£ζf
=0. We now consider the Hopf-fibration π: Sim+3->Pm(H). Then / is project-
able with respect to π. We can define a function / on M by /°7r=/. From
(3.13), we get

01
- 1 0

0

0

01
- 1 0

• i

, G =

1 o
10

0-1

\

10
01

0

1 o
0-1
10

01
10

0

\

Thus, by (3.6), / satisfies (III).

Necessity. Let M satisfy the assumption of Theorem 3. The following pro-
position is known in [7] and [10],

PROPOSITION 5.1. Let (M,g,V) be a quaternion Kaehler manifold. Then
there exists a PRz-bundle M over M which is canonically associated to M. More-
over if the scalar curvature s of M is positive, M has a Sasakian 3-structure.

From the above proposition and Lemma 2.1, we get

PROPOSITION 5.2. // M admits a non-trivial solution f for (III), then there
exists a PRB-bundle M over M which is canonically associated to M and admits
a Sasakian 3-structure.

We denete by π the projection π: M^M. We consider a solution / of the
differential equation (III). Then the lift / of / with respect to π satisfies (3.14).
From (2.10) and (3.6), we have
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(5.1) Γ β / c V«+Γ 6 / β A β

β «=0,

(5.1) PcPJa-hb

e

afehca«-ha

eJX

Thus, from (5.1) and (5.2), we get Lkji—0 (defined in § 3.). This implies that the
function / is a non-trivial solution of the differential equation (II). Then M is
isometric to a space of constant curvature 1 by Theorem 2. If we take a
universal covering M* of M, then M* is isometric to S4m+3(1). And the natural
Sasakian 3-structure can be induced on M* from that defined in M. Then from
Proposition 4.1, M is isometric to Pm(H).

Thus Theorem 3 is completely proved.

REFERENCES

[ 1 ] D. BLAIR, On the characterization of complex projective space by differential
equations, to appear.

[ 2 ] S. ISHIHARA, Notes on quaternion Kaehler manifolds, to appear.
[ 3 ] S. ISHIHARA, Integral formulas and their applications in quaternion Kaehler

manifolds, to appear.
[ 4 ] S. ISHIHARA, Quaternion Kaehler manifolds and Fibred Riemannian space

with Sasakian 3-structure, Kodai. Math. Sem. Rep. 1973, p. 321-329.
[ δ ] S. ISHIHARA AND M. KONISHI, Fibred Riemannian spaces with Sasakian 3-

structure, Diff. Geo. in honor of K. Yano, Kinokuniya, Tokyo, 1972, p. 179-194.
[ 6 ] S. ISHIHARA AND M. KONISHI, Differential geometry of fibred space, Publ.

S.G.G. 9, 1973.
[ 7 ] M. KONISHI, On manifolds with Sasakian 3-structure over quaternion Kaehler

manifolds, to appear.
[ 8 ] B. O'NEILL, The fundamental equations of a submersion, Michigan Math. J.

13, 1966.
[ 9 ] M. OBATA, Riemannian manifolds admitting a solution of a certain system

of differential equation, Proc. U.S.-Japan seminar in Diff. Geom., Kyoto,
Japan, 1965, p. 101-114.

[10] K. SAKAMOTO, On the topology of quaternion Kaehler manifolds, Tδhoku
Math. Journ. 26, 1974, p. 389-405.

[11] K. YANO AND S. ISHIHARA, Fibred spaces with invariant Riemannian metric,
Kδdai. Math. Sem. Rep. 19, 1967, p. 317-360.

DEPARTMENT OF MATHEMATICS

TOKYO METROPOLITAN UNIVERSITY

FUKAZAWA, SETAGAYA-KU, TOKYO

JAPAN




