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ON A CHARACTERIZATION OF QUATERNION PROJECTIVE
SPACE BY DIFFERENTIAL EQUATIONS

BY YOSHIAKI MAEDA

§ 1. Introduction.

The existence of a non-trivial solution of certain differential equations on
a Riemannian manifold M often determines some geometric and topological
properties of M. For example, in [9] Obata proved the following Theorems 1
and 2.

THEOREM 1. Let M be a complete connected and simply connected Rieman-
nian manifold of dimension n(=2). In order for M to admit a non-trivial solu-
tion f for the system of differential equations

(I) VkVin+k(2fkgji+f]gki+f1,gk]):0 , k=const >0,

where f,=V .f, it is necessary and sufficient that M be isometirc with a sphere S™
of radius 1/ vk in the Euclidean (n+1)-space.

THEOREM 2. Let M be a complete connected and simply connected Kaehler
manifold of dimension 2m(=4). In order for M to admit a non-trivial solution
f for the system of differential equations

(In VkV]fi+k(2fkgji+f]gki+f1gkj—FJlftFki_FzzftFkJ)——‘O; k=const>0,

where F* is the complex structure of M, it is necessary and sufficient that M be
1sometric with the complex projective space P™C) with Fubini-study metric of
constant holomorphic sectional curvature 4k.

In [1], Blair showed a relation between Theorems 1 and 2 by deducing
Theorem 2 from Theorem 1 in the case where M is a Hodge manifold. The
idea of his proof is to show that the projection of (I) on S*™*! via the Hopf-
fibration = : S*™*'—P™(C) gives the equation (II) on P™(C). In a similar way
we can characterize the quaternion projective space P™(H) by differential equa-
tions via the Hopf-fibration #: S*™**—>P™H). The purpose of this parer is to
prove the following Theorem 3.

THEOREM 3. Let M be a complete connected quaternion Kaehler manifold of
dimension 4m(=8). In order for M to admit a non-trivial solution f for the
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system of differentirl equations
(IH) Vchfa+k(2fc gba+fbgca+fagcb_/lcbaefe_Acabefc):O , k=const>0,

where At is a global tensor field on M defined by (2.3), it is necessary and
sufficient that M be 1sometric with the quaternion projective space P™H) with
constant Q-sectional curvature 4k.

We remark that grad f in Theorem 1 and 2—are an infinitesimal projective
transformation and an infinitesimal H-projective transformation respectively.
From our case, as an analogue, we can expect that grad / in Theorem 3 gives
a certain special infinitesimal transformation. Namely, in a quaternion Kaehler
space, the one parameter group generated by grad f, where f is a non-trivial
solution of (III), leaves the family of all curves » whose covariant derivative of
the tangent vector field # of 7 is contained in the quaternion subspace spanned
by 7.

The author thanks Prof. M. Obata for his valuable suggestions and encour-
agement during the preparation of this paper and also thanks Prof. S. Ishihara

and Dr. M. Konishi for giving advices to him for many formulas given in [2]
and [6].

§2. Quaternion Kaehler manifolds (See [2].).

Let M be a differentiable manifold of dimension 7 and there exist a sub-
bundle V of the tensor bundle of type (1,1) over M satisfying the following
condition :

(a) In any coordinale neighborhood U of M, there is a local basis {F, G, H}
of the bundle V, where {F, G, H} are tensor fields of type (1,1) in U satisfying

(2.1) F*=G’=H’=—-1,
GH=—HG=F, HF=—FH=G, FG=—GF=H,

I being the identity tensor field of type (1, 1) in M. Such a local basis {F, G, H}
of V is called a canonical local basis of V in U.

Thus the bundle V is a 3-dimensional vector bundle. Such a bundle V is
called an almost quaterion structure and the pair (M, V) an almost quaternion
manifold. An almost quaternion manifold is orientable and of dimension n=
4m(m=1).

For an almost quaternion manifold (M, V), let {F, G, H} and {F’, G’, H'} be
canonical local bases of V in U and in another coordinate neighborhood U’ of
M, respectively. Then we have in UNU’

F'=s,,F+5s,G+s,,H,
2.2) G/ =55 F+85,G+s55H
H' =54, F+53,G+5:.H ,
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where S=(s,5)€S0(3), (a, 8=1, 2, 3), because {F, G, H} and {F’,G’, H'} satisfy
(2.1). Thus, if on U we can put 4 as following:

(23) A=FQF+GQGCG+HRQH,

then using (2.2) gives that 4 determines in M a global tensor field of type (2, 2),
which will be denoted also by 4.

Next let there be given an almost quaternion structure V in a Riemannian
manifold (M, g) and assume that for any canonical local basis {F, G, H} of V,
each of F, G and H is almost Hermitian with respect to g. Moreover we sup-
pose that the set (M, g, V) satisfies the following condition :

(b) If ¢ is a cross-section of the bundle V, then ¥V x¢ is also a cross-section
of V for any vector field X on M, where ' denotes the Riemannian connection
of the Riemannian manifold (M, g, V).

Such a set (M, g, V) is called a quaternion Kaehler manifold and the set
{g, V} a quaternion Kaehler structure in M. The condition (b) is equivalent to
the following condition :

(b’) For a canonical local basis {F, G, H} of V in U,

VxF=r(X)G—q(X)H,
(24) VxG=—r(X)F+p(X)H,
V yH=q(X)F—p(X)G

for any vector field X on M, where p, ¢ and » are local 1l-forms in U. Thus,
using (2.4), we easily find

(25) VA=0.

Here, we can easily verify that condition (2.5) is equivalent to condition (b”).
It is known that any quaternion Kaehler manifold is an Einstein space, i.e.,
that the Ricci tensor S of (M, g) has the form

__S_
(2.6) S=—pr1,

s being the scalar curvature of (M, g) which is a constant if M is connected,
where dim M=4m (m=2).

We denote by Rg.,* components of the curvature tensor of (M, g) and put
Ricsa=Rac’8ea. Pt Foo=F)’Gea, Gpa=GC’Gea, Hya=Hy 8ea, which are all skew-
symmetric.

Let a function f satisfy the differential equation (III). Then using (III) and

the Ricci identity we get.
Vchfa_Vchfa:_Rcbaefe
=k(fo8ca—Ic8rat2Acoa’ et Acas’fet Aoac’Se) .

Contracting with g** we have from (2.6)
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(s—4m(4m+-8)k)f.=0,
where the function f is non-trivial. Then we have

LEMMA 2.2. If M admits a non-trivial solution for (III), then the scalar
curvature s is equal to 4m(4m+8)k>0.

Next the following integral formula is known:

ProprosITION 2.3 (Ishihara [3].). Let M be a compact quaternion Kaehler
manifold. Then

[ @ Xo+s/(4m+-8)- X)X, +1/16]L 5 A)*
HFSV o X 0P+ (G o X ) +(H W, X *)*)=0,
where X° is a vector field on M.

Assume that M admits a non-trivial solution f for (III). Contracting (III)
with g% and using Lemma 2.2, we have

2.7 VJVefo+s/(4m+-8)- f,=0.
Because of skew-symmetry of F, G and H, we get
(28) Fcbefc=Gcbefc:chbec:0 .

M is an Einstein space whose scalar curvature is positive, because of Lemma
2.2. Thus M is compact, since M is complete. Substituting X* by f° in Pro-
position 2.3 and making use of (2.7) and (2.8), we get

(2.9) Lgraa s A=0.

From (2.9) and (2.5), we have easily in the coordinate neignborhood U
VofeFo'+V o feFof=0,

(210 VafeGo*+VofGa"=0,
VofeHy+Vof Ho =0,

§3. Fibred space with Sasakian 3-structure (See [4].).

Let M have a Sasakian 3-structure and M be a quaternion Kaehler mani-
fold, and assume that there exists a fibration = : M—M (See [5].). In such a
case, M is necessarily of dimension n-+3=4m-+3. We now assume that dim M>7
(i.e. m>1). The fundamental geometry in such a situation has already been
discussed in [4] and [5]. We shall recall some notions and results given in [4]
and [5]. . N

We take coordinate neighborhoods (U, " of M such that =({)=U are
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coordinate neighborhood of M with local coordinates (v*). Then the projection
r: M—M may be expressed with respect to {U x" and {U, v} by certain
equations of the form
vazva(xl, xn+3) ,

v® denoting coordinates in U of the projection P==(s) of a point ¢ with co-
ordinates x” in U, where v%(x?, -+, x™**) are differentiable functions of variables
x* with Jacobian matrix (0v%/0x") of the maximal rank 4m. We take a fibre F
such that FAU+#0. Then, we may assume that FAU is connected. We can
introduce local coordinates (#°) in FAU in such a way that (v% u%) is a system
of local coordinates in U, (v%) being coordinates of z(F) in U.

We now put E;*=0v*/dx* and C,=0/0u®. Denoting by C”*, components of
C. in U, we put C;*=g8**C";, where g;; are components of Z in U, Zop=
g;iC?.C% and (2*%)=(8.5)"". We next define E" by (E", C")=(E% C;*)™*. We
now define three tensor fields ¢, ¢ and @ of type (1,1) by

¢:‘7$; 5[):‘777: 0:7C-

Then we can put in U, denoting E® and E, a vector field and a 1-form whose
components are E;?> and E*, respectively,

(33) ¥ =0"E’QE,, ¢ =P"E'QE., 07=6,"E'QE,,

where ¢” denotes the horizontal part of ¢ and so forth, ¢,% ¢,% 6,° being local

functions in U and ¢7, ¢¥, 6% satisfy (2.1) (See [5].). We easily have
3.0) Dra=—Pao=05Cea , Pra=—Par=9s"Gea
0ba:—0abzﬁbegea y

where g,,=g;;E’,E*, which is a Riemannian metric of M. We get the Co-Gauss
formulas (See [5], [6].)

7 Bo=—{  }E B+ EFCS+CFEY),
(3.5)
7,C0=—ha®E, ES—PegE,Cf—{ ﬁ“r teer,

where h,%, P.g% {cab} and { ‘g?‘ } are local functions defined in U respectively.

In particular, {cab} and { g)‘ } are Christoffel’s symbols formed with g,, and
8,5 respectively. Furthermore we get
(3.6) hy®s=—(appp "+ +c56") ,

where we put £§=a°C,, 7=0%Ca, {=c"Cq and ap=83,0"% bsg=Zp.0% csg=Fpc" in 0.
The following structure equation for z is satisfied (See [6], Chapter I, 6.):

(3-7) KkjihE kdEJcEibchaledhcba_/Vchdba ,
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(3.8) K, "E*4CIE"Cr*=—"V ghgy*+h’shes”

K,;* being curvature tensor of M and
/thcbazadhcb—{;C}heba—{deb}hcea‘f‘Pdeahcoe,
”V‘Bhdbaza[ghdba+{‘g“r}hbdr—’hdeﬁheba_hbeﬂhdea.

Using the Ricci identity for &, 7, { and (3.6), (3.7), (3.8), we have

(39) aﬁhaeafe_{arﬁ} haeTfe +fehdeahu.dﬁ +fa§aﬂ:0 ’
(3.10) buhitafit{ LY fahaa{ &} i Pedhat =0,
and

(311) fehdeahcd[a‘+fehdeﬁhcda+2fcgaﬁ:0 .

Let f be a function on M. We now consider a tensor L,;; given by
iji:l?kﬁjﬁtf—‘_szgji-‘-f;gki+f~1§-k] ’
where 7 denotes the lift of f (i.e., f(6)=fon(s).). Now we have
71,f~=ft=EiaVafy

in U, 7, being a formal covariant derivative with respect to { cab}' Using
(3.15), we get

(3.12) PV F= o f)E,"E 4 fuhy o E*C7+C,"ELY) .
Moreover differentiating (3.12) covariantly and using (3.15), we have
17kﬁjﬁtfz(Vchfa——hbe,,fehw“—haeafehw“)EfEJ”Ei“
+V o fahs?atV o faha®a)Ci*E,"E®
(3.13) FWeaaE i E*C,5+Wepo ELEPC*
+Z4.CiPC,"E "+ Z,5.C,FC°E?
H(fehdahetp+fehdshe D ELC,ACi%

where W .. and Z,3, are defined respectively by

e d e
Wcaa:Vafdhcda+chdhad«+Vcha afe +{ ec}fdha a

~{ AN foh it Podbhats
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Zaﬁazaﬁhaeafe—{a%}fehael"*-fehdeahadﬁ .

Thus, substituting (3.13) in L,;; from (3.9), (3.10) and (3.11), we have
Liji=V o o=’ ahea®fe—Paaherfet2f e 8oat Fo8eat faBeo) E4°E, E"
+ o faho otV o faha®)CE"ES
+ Vo fohelatV e faha®a) EiC, E®
o fohlatV  fahol ) ELECS .

(3.14)

§4. The construction of Hopf-fibration from the Sasakian 3-structure.

In this section we construct the Hopf-fibration S*—S*"**—-P™ H) by using
the given Sasakian 3-structure on the sphere S*™*3, The construction of the
Hopf-fibration S'—S?*™*'—P™(C) is studied by Yano and Ishihara [11].

First suppose that z: S*"**(1)—R*™** is an imbedding given by the equation

4m+4

4m+3
P2 ya®=1. Setting y,=u,, (1=i=4m+3), we get Vims,==*[1— 3 %,*]"%. Then
—1 =1
the differential i, of the imbedding is given by

0, (A=j=1, -+, 4m+3)
(l*)iA:(ayA/aut): u
— 21 , (A=4m+4),
where we have set [l—wisuf]”z:/? (resp. =—2A) for the hemisphere V,,+,>0
1=1

(resp. for ¥,n+:<0). The induced metric g is given by g;,=0,;+u;u,/2%. We take
the outer normal vector N, i.e., the components N4 of N is y,. Let v* denote
the components of vector field on R*™**. Then the components of its projection

4m+4
on S*™*® are v'= AZ)I v4(i4)' 4, where
0, —uu,, A=j,
irta={
—u,, A=4m+4.

We denote {;el} the Christoffel’s symbol formed with g& Then we have
(4.1) {5 =uGtuu).

Since the imbedding is totally umbilical whose principal curvature is equal to 1,
we get

Vj(i*)iA:gjiNA , VjNA:_(i*)JA ’
where F, is the van der Waerden-Bortolloti covariant derivative. Let &=

4m+3 ~
E{ £'0/0u, be a Sasakian strncture on S*™*: We define a vector field &=
1=
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S £43/8y. by §A=4§3§*(i*)iA. From (3.1) and (4.2), we have
=1 1=
ﬁj7i$A=_gjiEA .
By Obata [9], the function &4 can be written on S*™*® as
4m-+4

(4.3) g4= BZ=)1 QA48YB,

where A=(a,z) is a constant matrix. Extending &4 to R*™* by homotheties
centered at the origin, we can make it a vector field € on the R**** and denote
it by the same letter. In fact, the components of £ has the same form as given
by (4.3). Because of the above constructure, & is orthogonal to the Normal

vector N:
4am+-4

At a4
> AupYaVB= El EAN4=0.

A,B=1
from which we have
(4.4) aAB+aBA:0-

am+4
Since ¢ is unit vector, ,42 &4£4=1 on S*™*%, [n particular at u;,=0, (1=<i<4m-+3),
=1

we have
4m+3

(45) zgl Cymss=L.
On the other hand

amts
§'= 3 £4(ix)"a
A=1
4m+3 4a4m-+4
- ng (2 ajByB)(ajt_ujut)"‘—( BZ)] a4m+4ByB)(_2uz) .

Using (4.4), we get
4m+3

(4.6) §= ;21 QU+ Ay -
Differentiating (4.6) covariantly and using (4.1) and (4.4), we have
l 4m+3
=V &= —a'—'i‘ E {kt}'ft
:aik_%al4m+4+;ui(5kt+—217ukut>(Z]:atju3+zat4m+4)

=aik"”}2_az4m+4 +(;akju;)ui+'zak4m+4ui+% (; pameaUe)Upl, .

Then we have from (4.4)

4m+3 1
¢ E g;z¢k '_a]k+ ak4m+4uj_‘——2 Qjgm+aUp .
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4m+-3
Since El 6.;87=0, we get by (4.6)

4mt3 1 4m+3
“.n > aikatjuj_—l (X2 azjai4m+4u;)uk
1,7=1 1,7=1

4m+3 \ am+3
+A( 1§ aika14m+4)—zl(ai4m+4) U+ Qrymed( §1 Qjam+a)=0.

At u;=0, (1=:1=4m+3), we have
4m+3

(4.8) > y;0um+a=0.

=1

Because of (4.5) and (4.8), (4.7) is reduced to

4m4-3
(4~9) 121 akiazj+ak4m+4a4m+4j:—5k] .

By (4.8) and (4.9), we have A*=—I, where I is the identity matrix. Let {&, 7, {}
be the natural Sasakian 3-s§ructure on S*"*%1). From the above construction
the extended vector fields &, 7 and  on R*™* can be written as

§=AN, #=BN, ¢&=CN,

where the matrices A=(a,), B=(b4s), C=(c4n) _are constant and skew-
symmetric. They satisfy A*=B?*=C?=—1. Since &, 7 and ¢ are mutually

orthogonal,
> aubacyeYe= 2 AupCacYsYo= 2 bapCacypY¥c=0,
A,B,C A,B,C A,B,C

from which we have

(4.10) §<0A3b80+aCBbBA): ZB:(bABCBc'I"bCBCBA)
= ;(CABaBC+CCBaBA):0 .

By the definition (3.2) of the Sasakian 3-structure, we get
[5) 77][34m+3=[7:*5, 1*vj=i*[§, 77]=2€|s4m+3 .
From the above equation, using (4.10), we have
Y (aucbas—ccr)ye=0.
4,0
This means that BA=—AB=C. Similarly, we have CB=—BC=A and AC=
—CA=B. Then {A, B, C} defines a quaternion structure on R*™** We con-

sider the distribution D spanned by &, » and {. Then the projection x:S*"*+*
—S*m+3/D is the Hopf-fibration. So we get

PROPSSITION 4.1. Let S*™*%(1) be a shere of radius 1 and have the natural
Sasakian 3-structure {&, n, {}. Then S*™*3/D is a quatermion projecte space
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P™H).

§5. Proof of Theorem 3.

We first note that it suffices to prove the theorem for k=1. For, if k+1,
the homothetic change g—g=Fkg of metric transforms the differential equation
given in Theorem 3 into the corresponding one with £=1. We are now going
to give a proof of Theorem 3.

Sufficiency. Let S*™**(1) be the sphere in R*™** with its natural Sasakian
3-structure {§, », {}. 1i.e., according to the notation of §4, we may put

&=FN, =GN, {=HN,

where F, G, H are matrices defined by the following:

01 | o 10 01
10 0 0 01 0 10
01 10 0-1
F=l 0 _qg , G=|g-1 0 , H=10 0

We define a function Fon S by f=(1/2)(u12+u22+u32+uﬁ). Then it is easily
checked that f is a solution of the differential equation (I) and L¢f=-L,f=L.f
=0. We now consider the Hopf-fibration 7 : S***>—~P™(H). Then f is project-
able with respect to =. We can define a function f on M by for=f. From
(3.13), we get

Vchfa_hbeafehcaa_haeafehcba+2fcgba+fbgca.+fagcb:0 .
Thus, by (3.6), f satisfies (III).

Necessity. Let M satisfy the assumption of Theorem 3. The following pro-
position is known in [7] and [10].

PRrROPOSITION 5.1. Let (M, g, V) be a quaternion Kaehler mamifold. Then
there exists a PR*-bundle M over M which 1s canonically associated to M. More-
over if the scalar curvature s of M is positwe, M has a Sasakian 3-structure.

From the above proposition and Lemma 2.1, we get

PROPOSITION 5.2. If M admits a non-trunal solution f for (Ill), then there
exists a PR3-bundle M over M which is canonically associated to M and admits
a Sasakian 3-structure.

We denete by z the projection : ]\717M. We consider a solution f of the
differential equation (III). Then the lift f of f with respect to = satisfies (3.14).
From (2.10) and (3.6), we have
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(51) Vafchbca+bechaca:0 ’
(51) Vchfa,_hbeafehcaa—hmeafehcba+2fcgba+fbgca.+fagcb:0 .

Thus, from (5.1) and (5.2), we get L;;;=0 (defined in §3.). This implies that the
function f is a non-trivial solution of the differential equation (II). Then M is
isometric to a space of constant curvature 1 by Theorem 2. If we take a
universal covering M* of M, then M* is isometric to S*m*3(1). And the natural
Sasakian 3-structure can be induced on M* from that defined in M. Then from
Proposition 4.1, M is isometric to P™H).

Thus Theorem 3 is completely proved.
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