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ON THE CHARACTERISTIC FUNCTIONS OF HARMONIC

QUATERNION KAHLERIAN SPACES

BY YOSHIYUKI WATANABE

1. Introduction.

An analytic Riemannian space M is harmonic if every point p0 is the origin
of a normal neighbourhood TV such that, if p is a point of TV and Ω is the dis-
tance function Ω(p0, p)=(l/2)s2, then the Laplacian ΔΩy calculated for fixed p0

and variable p, is a function depending upon Ω and not otherwise upon p, i. e.,
ΔΩ=f(Ω) where f(Ω) is called the characteristic function of M.

Its typical examples are the following: (1) spheres, (2) real projective spaces,
(3) complex projective spaces, (4) quaternion projective spaces and (5) the Cayley
projective planes ([8], [11]), and the characteristic functions f{Ω) of spheres,
real projective spaces and complex projective spaces have been found ([9], [13],
[14]). Moreover, we have already the following theorems in harmonic spaces.

THEOREM A (Lichnerowicz [9]). In any harmonic Riemannian space M of
dimension n, its characteristic function f(Ω) satisfies the inequality

The equality sign is valid if and only if M is of constant curvature.

THEOREM B (Tachibana [13]). In any harmonic Kdhlenan space M of
dimension 2 m, its characteristic function f(Ω) satisfies the inequality

The equality sign is valid if and only if M is of constant holomorphic curvature.

THEOREM C (Watanabe [15]). In any harmonic Kdhlenan space M of di-
mension 2 m, its characteristic function f(Ω) satisfies the inequality

2/3(0)-K13 m+28)/(0)/(0)+7(m+l)(m+2)/(0)^0.

The equality sign is valid if and only if M is locally symmetric.
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A quaternion Kahlerian space is defined as a Riemannian space whose
holonomy gronp is a subgroup of Sp(m)-Sp(l). Its typical example is a qua-
ternion projective space. Several authors (Alekseevskii [1], Gray [2], Ishihara
[3], [4], [5], Ishihara and Konishi [6], Krainse [7] and Wolf [16]) have studied
quaternion Kahlerian spaces, and obtained many interesting results. As we
stated in the first place, a quaternion projective space is also a harmonic space.
So in the present paper, we study harmonic quaternion Kahlerian space by using
tensor calculus developed in [3], [4] and [5], In § 2, we give some preliminaries.
§3 is devoted to establish some formulas in a quaternion Kahlerian space. In
§ 4, we give an equation, which plays an important role in any harmonic qua-
ternion Kahlerian space. The last section is devoted to prove our main theorems
5.1 and 5.5.

The author wishes to express his sincere thanks to Prof. S. Tachibana and
Prof. S. Ishihara, who gave him many valuable suggestions and guidances.

2. Preliminaries.

Let (M, g) be a Riemannian space with Levi-Civita connection F. By R—
(Rljki), we denote the Riemannian curvature tensor. Then Ri=(Raija)—(Rtj) and
S—gl3RlJ are Ricci tensor and scalar curvature respectively. Let ( ) denote
the covariant differentiation, and put FR=(Rι

jkl;h). For a tensor field T—(Tιjk),
for example, we denote \T\=TtjkT

%Jk. We put

a=\R\\ β=RabcdRab

uvRcduΌ and γ=RabcdRa

ucvRbudv.

Then they satisfy the following fundamental formulas (cf. [12]).

(2.1) Rij

(b) RabCiRan

(2.2)
pabcd p u v p pabcdp uv p -L a

** Λ c bduv — -**• -**-(zc -Γ^-budv— Λ PI

ΊDabcd JD u v zp jDabcd ID v ujD .„ -»- Ω

^ ft-a c ^-bvdu — •"• -"-α c ^-budυ — / Ύ~P

Lichnerowicz [10], [17] proved the following formula.

(2.3)
Let M be a harmonic Riemannian space. Then it is well known ([9], [11])

that M satisfies the following curvature conditions:
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(2.4) /?,,= - 4 - / ( 0 ) ^ , S = - 4 "

(2.5)

equivalently,

= •ξ-f{θ)(gtjgkl+gikglj+gilgjk)

and

/O /?\ JDfCk Z?P Z?2 QO Z?P Z?2 7? "̂ ^ Q1 Ĉ  -fίC\\ T2f re rr re \
{Δ.Ό) r{yKi/

ιJ(lιkK*ιmϊ).n—OΔKi'lj(lK kιrK mnp) — oLΌj\S))r\gt]gkιgmn),

where P denotes the sum of terms obtained by permuting the given free indices,
and (') means the operator taking the derivative with respect to Ω.

(2.4) and (2.5X give

(2.7)

Taking account of (2.4) and (2.7), we have from (2.3)

(2.8) | VR12+-J-

From (2.6), it follows ([15]) that

(2.9) 271 Fi? 1 2 - 3 2 ( ^ + - | f - α — ^ - /

3. Quaternion Kahlerian spaces.

Let M be a differentiate manifold of dimension n and assume that there
is a 3-dimensional vector bundle V consisting of tensors of type (1, 1) over M
satisfying the following conditions:

In any coordinate neighbourhood U of M, there is a local base {F, G, H}
of V such that

(3.1)
/-< TT J-JΠ 77 UT7 Ί7U Γ1 Ϊ7Π Λ1 Z? U
vjrJtl — — lΊLr=^Γ f 1ΊΓ=^—Γ11—Lr, ΓKJ=^—LτΓ=fl,

I denoting the identity tensor field of type (1, 1) in M.
Such a local base {F, G, H) is called a canonical local base of the bundle
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V in U. Then the bundle V is called an almost quaternion structure in M and
(M, V) an almost quaternion space. Thus, an almost quaternion space is neces-
sarily of dimension n=4m(m^l).

In any almost quaternion space (M, V), there is a Riemannian metric g such
that giφXj Y)+g(X, φY)=0 for any cross-section φ of V, local or global, X
and Y being arbitrary vector fields in M. Such a set (g, V) is called an almost
quaternion metric structure and the set (M, g, V) an almost quaternion metric
space. Thus a manifold M admits an almost quaternion (metric) structure if
and only if the structure group of the tangent bundle over M is reducible to
Sp(rn).Sp(l).

Let {F, G, H} be a canonical local base of the bundle V in a coordinate
neighborhood U of an almost quaternion metric space (M, g, V). Since each of
F, G and H is an almost Hermitian with respect to g, Φ, Ψ and θ are local 2-
forms in U, where they are defined respectively by

(3.2) Φ(X, Y)=g(FX, Y), Ψ(X, Y)=g(GX} Y), Θ(X, Y)=g(HX, Y),

X and Y being arbitray vector fields. However,

(3.3) ω=ΦΛΦ+ΨΛΨ+θΛθ

is also a 4-form defined globally in M.

If an almost quaternion metric space (M, g, V) satisfies the condition,

(3.4) Fω=0,

then (M, g, V) is called a quaternion Kahlerian space and (g, V) a quaternion
Kahlerian structure.

The following formulas (3.5)~(3.9) were proved in [4] and [5] if m is greater
than 2:

(3.5) R»=-§ίΓS'*'

?ih

(3.6) RkjihG^__§_Gkjf

RkjίhH
ιh= 2(m+2) Hk>

(3.7)

4(m+2)

4 ( m + 2 )

ϊ£

4(m+2)
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RkjtsFι

tFh

s=Rkjih-\—4m/m_j_2) (GkjGih+HkjHιh),

(3.8) RkjtsGιtGh

s=Rkjih-\

RkjthHι

t=Rkji

sHs

h—

(3.9)

We take a point ί in a quaternion Kahlerian space (M, g , V) of dimension
4 m and a vector X tangent to M at ̂ . Putting

(3.10) Q(X)={Y\ Y=aX+bFX+cGX+dHX} ,

fl, b, c and rf being arbitrary real numbers, we call Q(X) the Q-section deter-
mined by X, where Q(X) is a 4-dimensional subspace of the tangent space of
M at p. When for any Y, Z^Q(X), the sectional curvature σ(Y, Z) is a con-
stant p(X), then ^(Z) is called the Q-sectional curvature of (M, g, V) with
respect to X. A quaternion Kahlerian space is said to be of constant Q-sec-
tional curvature tz when any Q-section Q{X) has its Q-sectional curvature p(X)
and p(X) is a constant Λ: independent of X at each point p. The following
proposition is well known:

PROPOSITION 3.1 (Ishihara [4]). A quaternion Kahlerian space is of constant
Q-sectional curvature /c, if and only if its curvature tensor has components of
the form

Rkjih

(3.11)

A typical example of quaternion Kahlerian space of constant Q-sectional
curvature is a quaternion projective space HP(m) of dimension m, whose Q-
sectional curvature is equal to 4. When m—1, HP(ΐ) is a natural sphere with
constant curvature.

Let A=TtJklT
tJkl be the square of the tensor Tιjkl defined by

-\-GkhG3l—GjhGki—2GkjGih-\-HkhHji—HJhHki—2HkjHih~]
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where &——Ί—?—x^Γ Then after some calculations, we get

/ι_n, 5m+l c2
Λ~a 4m(m+2)2 ώ *

If A vanishes identically, then M is of constant Q-sectional curvature. Thus
we have

PROPOSITION 3.2. In any quaternion Kdhlerian space M of dimension Am,
we have

(3.12) «

The equality sign is valid if and only if M is of constant Q-sectional curvature.
Especially when m—\, M is of constant curvature.

Now, we prove two lemmas for later use.

LEMMA 3.3. In any quaternion Kdhlerian space of dimension 4m(ra>l),

(3.13) Ra>caRaucvGu

dGΌ

b=—jrft+ ( m | 2 ) 2 S2.

Proof. From (3.1) and (3.9), we get

n r>aucv/~* df^ δ
κaicdκ '-'u ^v

ς
p r^ rr* br>aucΌ_\ ^ ir ΣJ jDaucv

— KaburV-c ^υ K Π 2mTm + 2)~

τiauzirb\

2m(m+2) n n J + 2m(m+2)

C2

2 ) 2 ^ *" 2 α i " (m+2)2

LEMMA 3.4. In any quaternion Kdhlerian space of dimension 4m(m>l),

(3.14) H b h G i k F \

Proof. From (3.1) and (3.9), we get
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5
=-Gt*Ht

hR>a'{-Rhpr.Ft + 4 m ( ^ + 2 ) (HhpGrk-GhpHrk)}

Oί ύ
" 2 "~~ (m+2)2 ° 2m(m+2)2 °

_ 1 2m+l ς 2

" 2 α 2m(m+2)2 ύ

4. Harmonic quaternion Kahlerian space.

In the present section, we shall give an important equality in any harmonic
quaternion Kahlerian space. Transvecting (2.5)' with Fa

ιFb

jRkaU

y we have

(4.1)

_ 45(2m+l)
2(m+2)

We now are going to show by using (3.1), (3.5), (3.6), (3.7), (3.8) and (3.9)
that the left hand side of (4.1) reduces to that of (4.2). To do so, we have by
using (2.2) and (3.13)

2) (HHGik-GHHik)}

+ 2m(m+2) C

=Rm.Rp

nr{Rnt'+

~ 4m(m+2) {n»

+ G2m(m+2) Gpa
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2m(ί+2) g«<

X θ 3S 6m+l
~ y i P 4m(m+2) α + 4m2(m+2) s

By (2.1) and (2.2), we get

—/? Rq pJf?kιiJ4 Γ.kιΓ.llλ
κptjqκ lk ^K + 2m(m+2) U U f

2m(m+2)
3S a\ β m + 1

u" ^ 4m2(m+2)

S3

C 3
ON 3 ^

4 ^ 8(m+2)3

1 /> 3S m 2 -12m-2
~ r 2 P 4m(m+2) α

Similarly, we get

R ... /?9, P F xFJRkabl— ί-/5 1+ 4m2(m+2)3 ύ '

KpmR sι ba Fb R τ β - 2 m ( m + 2 ) a- 8 m 2 ( m + 2 ) 3 S ,

^p«β/? /* ^α ̂ Λ - r—γP- 4m(m+2) α ~ 8m2(m+2)3 S '
and

7? , Rq

L

 PF *>FJRkabl— r ^-R ry I 4m+l ^3
^ptid^ k, faf>κ - ϊ 4 /> 2m(m+2) α + 4m2(m+2)3 ύ *

Substituting these into (4.1), we get

15S ., 3(m2-18m^-4) Q 3 _ 45(2m+l)S
4 m ( m + 2 ) α ~ 8m2(m+2)3 ύ " 2(m+2) /

Thus, we obtain from (2.7)

PROPOSITION 4.1. In any harmonic quaternion Kdhlerian space of dimension
4m(m>l),

2m2-25m-4 c3

2m(m+2) α + 4m2(m+2)3
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5. Some theorems.

In this section, we give some results by combining (2.9) with Proposition
4.1. Substituting (2.4) and (2.7) into (3.12), we get

from which

THEOREM 5.1. In any harmonic quaternion Kdhlerian space M of dimension
4m(m>l), the inequality

(5.1)

holds. The equality sign is valid if and only if M is of constant Q-sectional
curvature.

By (2.8) and (4.3), we get

„ , 2m 2 -25m-4 C 3 Λ
a ι

2m(m+2) + 8m2(m+2)3

Similarly, we get

5 ) s

 n> 2m 2 -25m-4exίRTi IF/?I 1 fir 1
(5.3) \VK\ +bγ+ 4 m ( m + 2 )

From (5.2) and (5.3), we have

PROPOSITION 5.2. Any harmonic quaternion Kdhlerian space M of dimension
4m(ra>l) satisfies the following inequalities:

2m2—25m—4
<5 4 ) ^ ~ 6m(m+2) l (

and
Cv 2m2—25m—4
5 ) «^ - 24m(m+2) { ^ - 5 ) « 2m(m+2)'

equality sign is valid if and only if M is locally symmetric.

When S^O in (4.3) and (5.5), (3.12) gives

4 r 23- 9S α-1 2m2
α1

2m(m+2) α i ^ 4m2(m+2)3

> (4m—l)(m—1) ς 3

= 8m2(m+2)
and

2m 2 +9m+l ^ 3
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Thus, we have 0^2^/3 if S^O. Similarly, we have 2γ>β it. S<0. Summing
up, we have

PROPOSITION 3.3. Let M be a harmonic quaternion Kdhlenan space of di-
mension 4ra(m>l). Then

(1) // S^O, then 0 ^

(2) If S<0, then 2γ<β.

Next, (2.9) and (4.3) give by using (5.2)

(5.6) -32 315m(2m+l)(m+l)/(0)

| 4(13m+71)5 2(m3+16m2-113rn-12)
-t- m ( m + 2 ) " + m2(m+2)3

Thus, when S>0, we obtain from (3.12) and (5.6)

PROPOSITION 5.4. A harmonic quaternion Kdhlenan space of dimension
4m(m>l) with positive scalar curvature satisfise

Lastly, making use of (2.4) and (2.7), we can prove that (5.6) takes

+(13m+71)(m+2)y(0)/(0)+14(m+l)(m+2)3/(0)} - 0 ,

from which

THEOREM 5.5. In any harmonic quaternion Kdhlenan space M of dimension
4m(ra>l), its characteristic function f(Ω) satisfies the inequality

(m2+7m+64)/3(0)+(13rn+71)(m+2)2/(0)/(0)

The equality sign is valid if and only if M is loo ally symmetric.
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