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SOME CONDITIONS FOR CONSTANCY OF THE

HOLOMORPHIC SECTIONAL CURVATURE

BY SUSUMU TSUCHIYA AND MlNORU KOBAYASHI

1. Introduction. Let M be a Kaehler manifold with complex structure /
and Riemann metric < , >. By a plane section σ we mean a 2-dimensional linear
subspace of a tangent space of M. If σ is invariant under the action of /,
it is called holomorphic section. If σ is perpendicular to Jσ, it is called anti-
holomorphic section. A Kaehler manifold of constant holomorphic sectional
curvature is called a complex space form. Then the following result is known.

THEOREM A (B. Y. Chen and K. Ogiue). Let M be a Kaehler manifold. If
the anti-holomorphic sectional curvatures of M are constant and if dim M^3r

then M is a complex space form.

In Section 2, we shall define the angle between two linear subspaces of a
vector space. Then we shall call a plane section σ a θ-holomorphic section if the
angle between σ and Jσ is θ and the sectional curvature for a ^-holomorphic
section the θ-holomorphic sectional curvature. It is clear that a complex space
form has constant ^-holomorphic sectional curvatures. Conversely, in Section
3, we shall prove

THEOREM 3. Let M be a Kaehler manifold. If the θ-holomorphic sectional
curvatures of M are constant and if cos 0^0, then M is a complex space form.

Next, the holomorphic bisectional curvature H(σ, σ') for holomorphic planes
σ and σ' is defined by S. I. Goldberg and S. Kobayashi ([2]) as H(σ, σ')=
(R(X, JX)JY, Yy, where R is the curvature tensor of M and X, Y are unit
vector in σ and σ/ respectively. We shall call H(σ, σ'} a holomorphic τ-bisectional
curvature if the angle between σ and σ' is τ. Then it is clear that a complex
space form has constant holomorphic τ-bisectional curvatures. We shall prove

THEOREM 4. Let M be a Kaehler manifold. If the holomorphic τ-bisectional

curvatures of M are canstant and if τ =£-«-, then M is a complex space form.

THEOREM 5. Let M be a Kaehler manifold. If the holomorphic ^--bisectional

curvatures of M are constant and if dimM^3, then M is a complex space form.
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2. The angle between two subspaces. Throughout this section, V denotes
an n-dimensional real vector space with inner product < , >. Consider two
arbitrary /^-dimensional subspaces 5 and T of V. We are now going to define
inductively sets

where 0^0^ ••• ^θm^~t and where Xlt •••, Xm and Fα, •••, Ym are orthonormal

respectively in S and T. First we put

, F); ZeS, FeT,

where <(Z, F) denotes the angle between X and Y. Then we can take unit
vectors X1 and Fj such that X^S and F^T with <£(Z1? F^ .̂ Next, as-
suming that Θm (l5^m<&) is already defined, we put

and define 0W+1 by

, F); *eSm, FeTJ .

Then we can take unit vectors Zm+1eS, Fm+1eT such that
So, we now have a set θm+1={0ι, — , θm+l X19 — , Zm+1 F1? — , Fm+1}. There-
fore we can define inductively sets θm (l^m^k). We can now prove that the set
{X<ΞS; there exists FeT such that <(X, F)=0}VJ{0} is a vector subspace of S
and hence the set {θlt ••• , ̂ fc} is independent of the choice of Xlf ••• , Xk&S and

DEFINITION. The set (Θ19 ••• , 0*) is called the angle between S and T. It is
denoted by <(S, T)=(0!, - , 0A).

LEMMA. Lei 5, S7, T, T7 ^?e k-dimensional subspaces of V such that <(S, T)=
<(S7, T/)=(01, ••• ,0fc). T/ιen ί/zβre ^zzsίs an orthogonal transformation u of V
such that z/(S)=S7 and u(T)=T'.

Now, we assume that V has a complex structure / and an hermitian metric
< , > in the sequel and in Theorems 1 and 2.

THEOREM 1. Let S and T be two 2m-dimensιonal subspaces of V. Then

<(S, T) = (θ^ θlt 02, 02, ••' , 0m, 077l)

THEOREM 2. // S is a k-dimensional subspace of V, then we have

(i) <(5,/5)-(01,01,. .,0m,0m,^-) for k=2m+l,

(ii) <(Sf yS)=(01, 0lf - , 0m, 0W) /or k=2m.
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Since Theorems 1 and 2 are established, we can put

)=(Θ19 - , 0m) and

If σ, σ' are /-invariant plane sections, we have <(<τ, <7')=(0ι)=0ι where ^=
inf«(Z, A7); ZeΞ<7, X'eσ'}, and <(σ, /σ)=(r1)=τ1 where τ^inf {<(Z, Z');
Zeσ, X'<=Jσ}.

3. Proof of Theorem 3. Throughout this section, we denote a plane
section spanned by orthonormal vectors X and Y by {X, Y}. Let ^Γ and Y be
orthonormal vectors which span a #-holomorρhic section such that cos Θ—(JX, F>.
We put α=cos0 (=<JX, r» and ^=/Γ(X, F). Then, since {X, -Y+2aJX} is
a ^-holomorphic section, we have

, -Y+2aJX)(-Y+2aJX),

=K(X, r)-

(1)

Similarly we have

(2)

Also, since —7==^+-7=r/F, / r /Z~ - r iS a ^-holomorPhic

section, we have

Hence, substituting (1) and (2) into the above equation, we have

(3) <R(X, ]X)Y, JY}=2λ-(2a*

Moreover, since {aX-aJX+JY, X} and {X, aX+aJX+JY} are ^-holomorphic
sections, we have

λ=(R(aX-aJX+JY, X)X, aX-aJX+JYy

=a*H(X)-2a<R(X, JX}]X, Yy + <R(X, JY)JY, Xy ,

λ=<R(X, aX+aJX+JYXaX+aJX+JY), X)

, JX)JX, Yy + (R(X, JY)JY, Xy ,
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from which

(4)
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<R(X, JY)JY, Xy=λ-a

Similarly we have <#(F, JX)JX, Yy=λ-a2H(Y\ This, together with (4), implies
H(X)=H(Y). Consequently (3) reduces to

(5) <R(X,

Therefore, substituting (4) and (5) into the first Bianchi's identity, we have

2λ-(2a2+ϊ)H(X}+λ-a2H(X}+λ=Q , i. e.,

3α2+l

Thus M is a space of constant holomorphic sectional curvature. q. e. d.

4. Proof of Theorem 4 and Theorem 5. Throughout this section, we
denote a holomorphic section determined by a unit vector X by {X} and the
angle between σ and σf by <(σ, σ') Let X and Y be orthonormal vectors
such that <({^Γ}, {Y})=τ. Then we may set cosτ=</Z, F>.

Proof of Theorem 4. We put /3=cosτ (=(JX, F» and μ=H(σ, σr), where
, ^)=7. Then, since <({Z}, {-Y+2βJX}}=τ, we have

(6)

Similarly we have

(7)

Also, since

by using (6) and (7)

μ=(R(X,JX)(-JY-2βX), -Y+2βJXy

= <R(X, JX}JY, Yy-4β(R(X, Y)JX,

<R(X,Y)JX,Xy=βH(X).

<R(X,Y)JY,Yy=βH(Y).

Jχ~ Y})=τ> we have

, jx-βγy

, Y)}

from which

(8) K(X, Y .) =
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Similarly, since

=r, we can derive
^

(9) K(X, K)= H(X)+

This, together with (8), implies H(X)=H(Y\ Consequently (8) or (9) reduces to

(10) K(X, F)= 2F£±-H(χ )-^-μ .

Again, noticing that -^({βX— βJX+JY}, {X})=τ, we have by using (6)

, βjx+βx-Y)jx, xy=2β(R(jx, YΪJX, xy+μ ,

<R(JX, Y)JX,X>=0.

<R(JY, X)JY, F>=0.

Hence, since <£({2βX+JY}, {(l-2β*)X-βY+2β*JX-βJY})=τ, we can derive,
using (6), (7), (8), (9), (11) and (12),

(13) <R(X, Y}JX, F>=0.

Finally, since <({^Y-βJX-^]Y},{(\.+-^)X+^^JX+βJY})==τ, using

(6), (7), (8), (9), (11), (12), (13) and the first Bianchi identity, we can derive

from which

(11)

Similarly, we have

(12)

Thus M is a space of constant holomorphic sectional curvature. q. e. d»

Proof of Theorem 5. We put v=H(σ, σ'\ where <(σ, σ')=-γ. Let X, Y

and JY be orthonormal vectors. Then, since <({^(X+ ^)

—-9-, we have

JX-JY>

from which

(14) H(X)+H(Y)=to-4K(X, Y) .
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Also, since < ( Z - / F ) , ( Γ - / * ) , we have

— 4 λ

from which

(15) H(X)+H(Y)=2v+4K(X, Y).

This, together with (14), implies

Hence the anti-holomorphic sectional curvature of M is a constant -o-^ There-

fore, by Theorem A, we see that M is a space of constant holomorphic sectional
curvature 2v. q. e. d.
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