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§1. Let R(resp. S) be an ultrahyperelliptic surface defined by an equation
¥:=G(z)(resp. u*=g(w)), where G(resp. g) is an entire function having no zero
other than an infinite number of simple zeros.

Let ¢ be a non-trivial analytic mapping of R into S. Then

h(2)=Ps0p0 @p7(2)

is an entire function, where Pr(resp. Ps) is the projection map (z, y)—z(resp.
(w, u)—w) [4]. This entire function A(z) is called the projection of the analytic
mapping ¢.

In this paper we shall prove the following theorem.

THEOREM. Let R and S be two ultrahyperelliptic surfaces. Suppose that there
exists a non-trwial analytic mapping ¢ of R wnto S such that the projection of ¢
15 a transcendental entire function. Then there 1s no non-trwial analytic mapping
¢ of R nto S such that the projection of ¢ 1s a polynomial.

Under some restrictions on R and S, Niino proved the above fact [3] (cf. [2]).

§2. To prove our theorem we need the following two lemmas. The stand-
ard symbols of the Nevanlinna theory are used throughout the paper.

LEMMA 1 [4]. If there exists a non-trivial analytic mapping ¢ of R wnto S,
then the projection h(z) of ¢ satisfies an equation

@ J(2)*G(2)=go h(2)

with a switable entire function f(z). Conversely, if a non-constant entwre function
h(z) satisfies the equation (1) with a suitable entwre function f(z), then there exists
a non-trwial analytic mapping ¢ of R into S such that the projection of ¢ s h(z).

LEMMA 2 (cf. [1]). Let h(z) be a transcendental entire function. For gwen
three numbers A, B and C there 1s a number R, (>0) and an wncreasing sequence
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{R,}p-1 with R,—oo (n—o0) such that for all n (=1) and all v n [R,, R,4] and
all w satisfying R,<|w|<r® we have

) n(r, 1 )>C.

h—w

Proof. We can prove this lemma along the same line as in [1]. Suppose
at first that there is a number R such that for all r(gﬁ) and all o satisfying
|w|=7% we have

n(r, hiw )>C.

In this case our assertion holds for every increasing sequence {R,}n-; with
R, =R and R,=R>.

Suppose next that the above is false, that is, for arbitrary large r there exists
an o satisfying |w|=7% such that

n(r, h—l-a) >§C :

We choose 0 so that |d|>]|A(0)] and

3) N(r, 52 )~T0 B (o).

Now put R,=|h(0)|+|0|+1. Let {R,};-; be an increasing sequence with R,> R,
and R,—co (n—o0) such that for all n(=1) there is an @ satisfying |w|=R,*?
and

@) n(R.24, 1)=cC.

Assume that for arbitrary large n the statement of our Lemma does not
hold where R, and {R,}3-, are defined above. Then for such n there is an 2,
depending on 7, such that R,<|#2|<R,4% and

®) n(o. 42 )=C  (p=Rw).
Choose p to satisfy R,/2<p=<R, such that

©®) (o, g )=oT(o, 1), (n—e0),

@) m(p, X5 )=0(T(o, b)), (n—c0).

The relations (6) and (7) can be derived from the choice of @ and £, since h(2)
is transcendental. Hence by (5), (6) and (7) we have

(®) T(p, o) =0(T(p, 1)), (n—0),

© T(p, 4 )=o(Tip, ), (n—c0).
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Put k=(6—2)/(w—45) and consider

il - SR,
Then
(10) N(p, 47)=N(p, 715 ) =-+o(W)T(p, h).
By (10) and the choice of 6, @ and 2 yield
(11 T(p, H)=(1+o())(T(p, b)) .
On the other hand, by (8) and (9)
(12) (o, H)=0(T(p, h)).

The relations (11) and (12) are mutually incompatible for large n. Con-
sequently we can see that there is a number R,(>0) and a sequence {R,}n-; with
the properties given in the statement of the Lemma.

§ 3. We shall prove our theorem.

Proof of theorem. Suppose that there exists a pair of two ultrahyperelliptic
surfaces R and S such that there exist two non-trivial analytic mappings ¢, and
¢, with the projections p(z) and 4(z), respectively, where p(z) is a polynomial and
h(z) is a transcendental entire function. Then by Lemma 1 we have

(13) f1(2)*G(2)=gop(2),
(14) f(2)*G(z)=goh(z),
where f, and f, are suitable entire functions.
Put p(z)=az’+Bz""'+ --- +7 (a#0). Then for given ¢ (0<e<1)
1 y 1
n(r, W)§ vn(l alr’(l+e), ?)—i—O(l) .

Hence
1

N(r, b

” 1
)=N(lalr(L+e), —)+00og ).
Since g is transcendental, by (13)

1 1 y 1
(15) N ) =N o) =AroN(lalr(te), =)

This inequality holds for all large 7.
By (14) we have

1 1
N(r, E—>§N (r, 7)
<T(r, M)+ O <T(r, h)+O(log rT(r, h))<2T(r, h)
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outside a set F of finite measure, since A(z) is a transcendental entire function.
On the other hand, by the second fundamental theorem, we have

~ 1
RT(r, =N(r, o)
for arbitrary but fixed constant I?, if r&€ E. Hence we have
1 1
(16) N(r, ) 20=N(r, 557)

outside the set E. By (15) and (16) we get

17) N(lalr (1-!—5),

= 1+4-e ’ngh>’

which holds outside the set E.

Now we apply our Lemma 2 for A=3, B=v+1, C=4(v+1) and h(z). Let
{R,}7-, be a sequence satisfying the statement of the Lemma 2.

Let {w,}5-; be the zeros of g(w). Choose 7, satisfying R,’<r,<R,* and r,& E.
Then, for large n,

18) N(rn, ghh> an n(t, 1/g0h) dt

>j‘rn : wy, Rosm,_,|<11(7 n)< h )}dt

24(»—(—1)J n n(tt?, 1/g);n(R0, 1/g) dt
Rnp

v+l

24" L8 gt o1og r,)

et
=N (., ) —N(R., )= Olog )
=2N(r.>, %) .
By (17) and (18), as n—oo,
N(ra o) z2N(re, L)

22N(lalr(1+¢), ) 2217 N(7as ) -

It is untenable. This completes the proof of our theorem.
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