PSEUDO-UMBILICAL SURFACES IN EUCLIDEAN SPACES

By BANG-YEN CHEN

Recently, the author introduced the notion of α th curvatures of first and second kinds for surfaces in higher dimensional euclidean space [2, 3]. The main purpose of this paper is to study these curvatures more detail. In §1, we derive some integral formulas for the α th curvatures of first and second kinds. In §2, we get some applications of these formulas to pseudo-umbilical surfaces.

§1. Integral formulas for ath curvatures.

Let M^2 be an oriented closed Riemannian surface with an isometric immersion $x: M^2 \rightarrow E^{2+N}$. Let $F(M^2)$ and $F(E^{2+N})$ be the bundles of orthonormal frames of M^2 and E^{2+N} respectively. Let B be the set of elements $b = (p, e_1, e_2, \dots, e_{2+N})$ such that $(p, e_1, e_2) \in F(M^2)$ and $(x(p), e_1, \dots, e_{2+N}) \in F(E^{2+N})$ whose orientation is coherent with that of E^{2+N} , identifying e_i with $dx(e_i)$, i=1, 2. Then $B \rightarrow M^2$ may be considered as a principal bundle with fibre $O(2) \times SO(N)$ and $\tilde{x}: B \rightarrow F(E^{2+N})$ is naturally defined by $\tilde{x}(b) = (x(p), e_1, \dots, e_{2+N})$.

The structure equations of E^{2+N} are given by

$$dx = \sum_{A} \omega'_{A} e_{A}, \qquad de_{A} = \sum_{B} \omega'_{AB} e_{B},$$

(1)

$$\begin{aligned} d\omega'_{B} = \sum_{B} \omega'_{B} \wedge \omega'_{BA}, \qquad d\omega'_{AB} = \sum_{C} \omega'_{AC} \wedge \omega'_{CB}, \qquad \omega'_{AB} + \omega'_{BA} = 0, \\ A, B, C, \cdots = 1, 2, \cdots, 2 + N, \end{aligned}$$

where ω'_A , ω'_{AB} are differential 1-forms on $F(E^{2+N})$. Let ω_A , ω_{AB} be the induced 1-forms on B from ω'_A , ω'_{AB} by the mapping \tilde{x} . Then we have

(2)
$$\omega_r = 0, \qquad \omega_{ir} = \sum_j A_{rij} \omega_j, \qquad A_{rij} = A_{rji},$$
$$i, j, \dots = 1, 2; \qquad r, t, \dots = 3, \dots, 2 + N.$$

From (1), we get

$$(3) d\omega_i = \sum_j \omega_j \wedge \omega_{ji}, d\omega_{AB} = \sum_C \omega_{AC} \wedge \omega_{CB},$$

Received November 2, 1970.

BANG-YEN CHEN

Let $(p, e_1, e_2, \bar{e}_3(p), \dots, \bar{e}_{2+N}(p)), p \in U$, be a local cross-section of $B \rightarrow F(M^2)$ and for any unit normal vector e at $x(p), p \in U$, put $e = e_{2+N} = \sum \xi_r \bar{e}_r(p)$. Denoting the restriction of A_{rij} onto the image of this local cross-section by \bar{A}_{rij} , we may put

$$A_{2+Nij} = \sum \xi_r \bar{A}_{rij}$$

Hence the Lipschitz-Killing curvature G(p, e) is given by

(4)
$$G(p, e) = \det (A_{2+Nij}) = (\sum_r \xi_r \overline{A}_{r11}) (\sum_s \xi_s \overline{A}_{s22}) - (\sum_t \xi_t \overline{A}_{t12})^2.$$

The right hand sides is a quadratic form of ξ_3, \dots, ξ_{2+N} . Hence, choosing a suitable cross-section, we can write G(p, e) as

(5)
$$G(p, e) = \sum_{\alpha=1}^{N} \lambda_{\alpha}(p) \xi_{\alpha+2} \xi_{\alpha+2}, \qquad \lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_N$$

We call this local cross-section of $B \rightarrow F(M^2)$, the Frenet cross-section in the sense of $\overline{O}tsuki$, and the frame $(p, e_1, e_2, \overline{e_3}, \dots, \overline{e_{2+N}})$ the $\overline{O}tsuki$ frame. We call the curvature λ_{α} , the α th curvature of the second kind [2, 5]. By means of the method of definitions, λ_{α} are defined continuously on the whole manifold M^2 , and the $\overline{O}tsuki$ frame is defined uniquely on the subset in which $\lambda_1 > \lambda_2 > \dots > \lambda_N$. With respect to the $\overline{O}tsuki$ frame the curvatures:

(6)
$$\mu_{\alpha}(p) = \frac{1}{2} \operatorname{trace} \left(\bar{A}_{2+\alpha \imath j} \right), \quad \alpha = 1, \cdots, N,$$

are called the αth curvatures of the first kind [2].

With respect to the Otsuki frame, we have

(7)
$$\omega_{1r} \wedge \omega_{2r} = \lambda_{r-2} dV, \quad dV = \omega_1 \wedge \omega_2, \quad r = 3, \dots, 2+N,$$

(8)
$$\omega_{1r} \wedge \omega_{2t} + \omega_{1t} \wedge \omega_{2r} = 0, \quad r \neq t; \quad r, t = 3, \dots, 2 + N.$$

In the following, by a spherical immersion $\bar{x}: M^n \to E^{n+N}$ of a manifold M^n into a euclidean (n+N)-space E^{n+N} we mean that M^n is immersed into a hypersphere of E^{n+N} centered at the origin of E^{n+N} by the immersion \bar{x} . Let X(p) denote the position vector of x(p) in E^{2+N} with respect to the origin of E^{2+N} , $[, \cdots,]$ the combined operation of exterior product and vector product in E^{2+N} , and (,) the combined operation of exterior product and scalar product in E^{2+N} . Then, with respect to the \overline{O} tsuki frame $(p, e_1, e_2, \bar{e}_3, \cdots, \bar{e}_{2+N})$, we have

$$d(X, [d\bar{e}_r, \bar{e}_3, \cdots, \bar{e}_{2+N}]) = (dX, [d\bar{e}_r, \bar{e}_3, \cdots, \bar{e}_{2+N}]) - \sum_{s} (X, [d\bar{e}_r, \bar{e}_3, \cdots, \bar{e}_{s-1}, d\bar{e}_s, \bar{e}_{s+1}, \cdots, \bar{e}_{2+N}])$$

358

$$=2(-1)^{N}\left\{\lambda_{r-2}(X\cdot\bar{e}_{r})dV+\mu_{r-2}dV+\frac{1}{2}\sum_{s\neq r}(X\cdot\bar{e}_{s})(\omega_{1r}\wedge\omega_{2s}+\omega_{1s}\wedge\omega_{2r})\right.\\\left.\left.+\frac{1}{2}\sum_{s\neq r}\omega_{rs}\wedge((X\cdot e_{1})\omega_{2s}-(X\cdot e_{2})\omega_{1s})\right\}\right]$$
$$=2(-1)^{N}\left\{(X\cdot\bar{e}_{r})\lambda_{r-2}dV+\mu_{r-2}dV+\sum_{s\neq r}\frac{1}{2}\omega_{rs}\wedge((X\cdot e_{1})\omega_{2s}-(X\cdot e_{2})\omega_{1s})\right\}.$$

Suppose that $x: M^2 \rightarrow E^{2+N}$ is spherical. Then the last term of the above equations vanishes. Hence, we get

(9)
$$d(X, [d\bar{e}_r, \bar{e}_3, \cdots, \bar{e}_{2+N}]) = 2(-1)^N \{ (X \cdot \bar{e}_r) \lambda_{r-2} + \mu_{r-2} \} dV.$$

Furthermore, suppose that there exist a unit normal vector field e defined globally on M^2 and a fixed integer α ; $1 \leq \alpha \leq N$, such that the Lipschitz-Killing curvature $G(p, e) = \lambda_{\alpha}(p)$ for all $p \in M^2$, then, by the definition of the Ōtsuki frame, we know that for each point p, there exists an Ōtsuki frame $(q, e_1, e_2, \bar{e}_3, \dots, \bar{e}_{2+N})$ with $\bar{e}_{2+\alpha} = e$ on a neighborhood of p. Therefore, by the fact that

$$d(X, [d\bar{e}_r, \bar{e}_3, \cdots, \bar{e}_{2+N}]) = d(X, [d\tilde{e}_r, \tilde{e}_3, \cdots, \tilde{e}_{2+N}])$$

for any two Ōtsuki frames $(p, e_1, e_2, \bar{e}_3, \dots, \bar{e}_{2+N})$ and $(p, e'_1, e'_2, \tilde{e}_3, \dots, \tilde{e}_{2+N})$ with $\bar{e}_r = \tilde{e}_r$, we have the following theorem:

THEOREM 1. Let x: $M^2 \rightarrow E^{2+N}$ be a spherical immersion of an oriented closed surface M^2 into E^{2+N} . If there exist a unit normal vector field e over M^2 and a fixed integer α , $1 \leq \alpha \leq N$, such that the Lipschitz-Killing curvature $G(p, e) = \lambda_a(p)$ for all $p \in M^2$, then we have

(10)
$$-\int_{M} \mu_{\alpha} dV = \int_{M^2} (X \cdot e) \lambda_{\alpha} dV,$$

where μ_{α} is the α th curvature of first kind corresponding to e.

Furthermore, we have

 $d(X, [dX, \bar{e}_3, \dots, \bar{e}_{2+N}])$

(11)
$$= (dX, [dX, \bar{e}_3, \cdots, \bar{e}_{2+N}]) - \sum_r (X, [dX, \bar{e}_3, \cdots, \bar{e}_{r-1}, d\bar{e}_r, \bar{e}_{r+1}, \cdots, \bar{e}_{2+N}])$$

$$= 2(-1)^{N-1} (1 + \sum (X \cdot \bar{e}_r) \mu_{r-2}) dV.$$

Hence, if we define the mean curvature vector H by

(12)
$$H = \sum_{r} \mu_{r-2} \bar{e}_r,$$

then, by integrating both sides of (11) over M^2 and applying the Stokes theorem, we get

LEMMA 2. Let x: $M^2 \rightarrow E^{2+N}$ be an immersion of an oriented closed surface M^2 into E^{2+N} . Then we have

$$\int_{M^2} dV = -\int_{M^2} (X \cdot H) dV.$$

In theorem 1, if *e* is parallel to the mean curvature vector and $\alpha = 1$, then we have the following corollary:

COROLLARY 1. Let $x: M^2 \rightarrow E^{2+N}$ be a spherical immersion of an oriented closed surface M^2 into E^{2+N} . If the Lipschitz-Killing curvature in the direction of mean curvature vector is nowhere negative and the mean curvature normal is nowhere zero, then we have

$$-\int_{M^2} h dV = \int_{M^2} (X \cdot e) \lambda_1 dV,$$

where H=he.

Proof. If the mean curvature vector $H \neq 0$ everywhere and the Lipschitz-Killing curvature in the direction of H is nowhere negative, then we can easily verify that $G(p, e) = \lambda_1(p)$ for all $p \in M^2$. Therefore, by theorem 1, we get the above integral formula.

§2. Pseudo-umbilical surfaces in Euclidean spaces.

In [4], the author proved that

LEMMA 3. Let x: $M^n \rightarrow E^{n+N}$ be an immersion of an oriented closed n-dimensional manifold M^n into E^{n+N} . Then the immersion x is spherical if and only if $X \cdot H = -1$.

An immersion $x: M^n \rightarrow E^{n+N}$ is called *minimal* if the mean curvature vector H=0 everywhere. If the mean curvature vector H is nowhere vanished, then we can let e be a unit normal vector field in the direction of H. In this case, if the second fundamental form in the direction e, $\prod_e = -dX \cdot de$, is proportional to the first fundamental form, $I=dX \cdot dX$, everywhere, then the immersion $x: M^n \rightarrow E^{n+N}$ is called *pseudo-umbilical* [6].

The main purpose of this section is to prove the following:

THEOREM 4. Let x: $M^2 \rightarrow E^{2+N}$ be a spherical immersion of an oriented closed surface M^2 into E^{2+N} with the mean curvature vector H nowhere zero. Then the immersion x is pseudo-umbilical if and only if the Lipschitz-Killing curvature in the direction H=he is maximal, i.e. $G(p, e)=\lambda_1(p)$ for all $p \in M^2$.

Proof. If the immersion x is pseudo-umbilical, then we can choose a local

360

cross-section $(p, e_1, e_2, e'_3, \dots, e'_{2+N})$ such that $e'_3 = e$ parallel to the mean curvature vector *H*. With respect to this cross-section, we can easily find that

(13)
$$A'_{311} = A'_{322} \neq 0, \qquad A'_{411} = -A'_{422}, \dots, A'_{2+N11} = -A'_{2+N22},$$

where A'_{rij} is the restriction of A_{rij} onto the image of this local cross-section. Moreover, by a suitable choosing of e_1, e_2 , we can assume that

(14)
$$A'_{312} = A'_{321} = 0.$$

Thus, the Lipschitz-Killing curvature $G(p, e) = (A'_{311})^2 > 0$ in the direction of mean curvature vector H = he and the Lipschitz-Killing curvatures $G(p, e'_r) \leq 0$ for all $r=4, \dots, 2+N$. From these results, we can easily verify that $G(p, e) = \lambda_1(p)$ for all $p \in M^2$.

Conversely, if the Lipschitz-Killing curvature G(p, e) in the direction of mean curvature vector H=he is equal to the first curvature of second kind $\lambda_1(p)$ everywhere, then, by Corollary 1, we have

(15)
$$-\int_{M^2} h \, dV = \int_{M^2} (X \cdot e) \lambda_1 dV.$$

Moreover, by the assumption that x is spherical and lemma 3, we have

$$h(X \cdot e) = -1.$$

Combining (15) and (16), we get

(17)
$$\int_{M^2} \left(\frac{1}{h}\right) (h^2 - \lambda_1) dV = 0.$$

Thus, by the fact h>0, and $h^2-\lambda_1\geq 0$, we get $h^2-\lambda_1=0$. From this we can easily prove that the immersion x is pseudo-umbllical. This completes the proof of the theorem.

REMARK 1. If $x: M^n \rightarrow E^{n+N}$ is spherical, then we can prove that the mean curvature vector $H \neq 0$ everywhere. So that the condition of $H \neq 0$ everywhere in theorem 4 is not essential.

REMARK 2. In [1, 7], Yano and Chen proved that the only spherical pseudoumbilical submanifolds M^n of dimension n in E^{n+3} with constant mean curvature, h=constant, are minimal submanifolds of some hyperspheres of E^{n+3} (not necessary centered at the origin of E^{n+3}). Thus, by theorem 4 and the Yano-Chen result, we know that if $x: M^2 \rightarrow E^5$ is a spherical immersion of a closed oriented surface in E^5 , then the Lipschitz-Killing curvature in the direction of H satisfies G(p, e) $=\lambda_1=$ constant, H=he, when and only when M^2 is immersed as a minimal surface in some hypersphere of E^5 .

The author would like to express his thanks to Professor T. Otsuki for his

BANG-YEN CHEN

valuable suggestion and also thanks to Professor G. D. Ludden for their valuable conversation.

References

- [1] CHEN, B.-Y., Minimal hypersurfaces in an *m*-sphere. Proc. A.M.S. 29 (1971), 375– 380.
- [2] CHEN, B.-Y. On an inequality of T. J. Willmore. Proc. A.M.S. 26 (1970), 473-479.
- [3] CHEN, B.-Y., On the difference curvature of surfaces in euclidean space. Math. J. Okayama Univ. 14 (1970), 153-157.
- [4] CHEN, B.-Y., Submanifolds in a euclidean hypersphere. Proc. A.M.S. 27 (1971), 627-628.
- [5] ÖTSUKI, T., On the total curvature of surfaces in euclidean spaces. Japan. J. Math. 35 (1966), 61-71.
- [6] ÖTSUKI, T., A theory of Riemannian submanifolds. Ködai Math. Sem. Rep. 20 (1968), 282–295.
- [7] YANO, K., AND B.-Y. CHEN, Minimal submanifolds in a higher dimensional sphere. To appear in Tensor.

EEPARTMENT OF MATHEMATICS, MICHIGAN STATE UNIVERSITY, EAST LANSING, MICHIGAN 48823, USA.

362