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EXTREMAL SOLUTIONS OF du=Pu
By Kazumitsu KawAl AND LEO SARIO

Given a Riemannian space or Riemann surface R and a function P=0, P#0
on R, we consider P-harmonic functions, that is, solutions of the partial differential
equation du=Pu. In contrast with the case of harmonic functions, the P-harmonic
Neumann’s function p, and Green’s function p, exist on every R. These functions
play a fundamental role not only in abstract analysis on R, but also in fluid
dynamics, heat conduction, and electro- and magnetostatics (see, e.g. Bergman-
Schiffer [1]).

An important unsolved problem is to determine extremal properties of p, and
p1 and their linear combinations pp,+vp,. We shall give the solution as a special
case of a general extremal theorem which will be established for the partial dif-
ferential equation

(1) odTu-+PTu=0.

Here T is an operator to be specified, d is the exterior derivative, and é the coderi-
vative. The identity operator 7' gives the P-harmonic equation du=Pu.

An essential part of our investigation is the extension of extremal properties
from regular subregions to the entire space. In the process we establish some
auxiliary results which are of interest in their own right.

Among the consequences of the extremal theorem for ppo+uvp, are simple
characterizations of the class Opz of Riemannian spaces R which do not carry P-
harmonic functions with finite energy integrals.

Our presentation, given for Riemannian spaces, remains valid, mutatis mu-
tandis, for Riemann surfaces.

§1. Extremal properties of principal solutions.

1. Examples of the operator 7' appearing in (1) are the Hodge star operator
*, the exterior derivative d, and the coderivative ¢ defined by dp=(—1)"?+"+1xdx ¢
for differential p-forms ¢. More generally, we choose for T various combinations
of * and d for which the existence of the functions to be considered is known.
Several such operators were considered in Kawai-Sario [3], where extremal pro-
perties were obtained for solutions of various boundary value problems.

Recerved October 5, 1970.
The work was sponsored by the U.S. Army Research Office-Durham, Grant DA-ARO-

D-31-124-70-G7, University of California, Los Angeles.
276



EXTREMAL SOLUTIONS OF du=Pu 277

In the present paper we allow the functions satisfying (1) to possess funda-
mental singularities, and apply the results to the case of the identity operator 7.
Since du=0 for functions # (0-forms), the operator 4= —(3d+ds) reduces to

1 9

ou
d=si= (Vv 55)

and equation (1) becomes
(2) du=Pu.

Here g;, is the metric tensor of R, g is the determinant of (g;;), and (¢¥) is the
inverse matrix.

2. Given an open set G of a Riemannian space R, we denote by S(G) the class
of solutions of (1) on G.

Let {={¢;} be a finite set of points of R, N=UN; a union of disjoint open
neighborhoods of the &, and a=Ua; the boundary of a set B=UB; of geodesic
balls B; centered at the ¢, with BCN. A fundamental singularity ¢ at ¢ is de-
fined as

(3) a€S(N—L),

(4) limS *dTo=—1.
a—-f Ja

We call a subregion @ of R regular if it is relatively compact and has a
C=-boundary g=p(2). Take an £ which contains N, and consider solutions p;
(i=0,1) of (1) on 2— satisfying the following conditions:

(a) pieCH2-NS2-L),

(b) pi—o is extendable to a solution of (1) on N,

(c) #ndTp,=0 and ¢TpH,=0 on B,
where » and ¢ stand for the normal and tangential components along . For
example, if T is the identity operator, then (c) becomes

%:0 and =0 on B
We call the p; principal solutions of (1) on 2 with the singularity o.

We shall consider operators 7' for which the existence of unique p, and p; is
assured, and deduce extremal properties of linear combinations of p, and p,. For
real numbers p and v with A=p+v, the function p,=pgpe+vp: has the singularity
Jo. For competing functions we choose all peS(2—¢) with the singularity is at ¢,
and denote by e; and e the regular parts of p; and p on N:

bi=o+ey,
b=lo+te.
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We postulate the following conditions, trivially met in our applications:

Iimg Tei/\*dTeJ=linclg TeN*dTe;

a=g a

(%)
=linc18 Te; ANxdTe=0,

with 4, j=0, 1. Let p=p?es—r?e;,—(p—v)e and

A (p)=lim S To AxdTo—ToAwdTs.
a—f Ja

THEOREM 1. Among peS(Q—L) with the singularity is at (, the function
Duv gives

min { Spr/\* dTp+A,.(p);=0.

Proof. For p, qeS(2—B) we introduce the inner product:

(5, qlo-=(dTp, dTq)o-p+(PTp, Tq)a-5
=(dTp, dTq)o-p—(Th, 6dTq)a-5

= Sﬂ_an/\* dTq.
We write [[|p||I2e-=1[p, plo-p. Then
lp—pullia-n={  (T—Tpu) Axd(To—Tpy)
= Sﬁ_“Tp/\*dTp— T AxdT—Top Nk AT+ Thp A+ dThy.
Moreover,
SﬁTpﬂp/\*dTp= Sﬁ;tTpo/\*dTp
=Sﬂ,quo/\*dTp—/,sz/\*dTpo.
By Green’s formula the path of integration § can be replaced by a. Hence
Spr,w/\*dszSapro/\*dTp—pr/\*dTpo.

Therefore
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Sﬁ_aTva/\*dTp=SaproA*dTp—prA*dTpo—Sa(;cho+qu1)/\*dTp
=—Saqu,/\*dTp+pr/\*dTpo.
Similarly

S TpAxdT. ,,,=—S VTpi A#dTp+uTp A AT,
B—a a

and
Sp an”"A*d Th,.=— Sap2Tﬁo/\*Tj)o+1«'2Tp1/\*deh-i—Z/vapl/\*dTpo.
Therefore
p=bullia-n=\ ToA*dTp+ 4.5 ),
where

A#v(p; a)zs _#ZTPO/\*dTpu—‘JZTplA*dTpl
— 2 Th A% dTpo+2pToAxdTpo+20 T, AxdTp— Tp AxdTp.

On substituting in A,.(p; @) the local expressions of p;=c+e; and p=ic+e, we
have

AulD; a)=S ToAxdTp—TpN*dTo

+Sa-pzTeo/\*dTeo—vaTel/\*dTeo
—v*TesNxdTe,+2uTe NxdTe,+2vTe, AxdTe— Te AxdTe,
where p=p’e,—1e;+(v—p)e. As a shrinks to ¢, using (5) we obtain
l‘li_l}gAp,(p; a)=lai_l:lc15T0/\*dTp—Tp/\*dTo.
This limit is denoted by A,.(p).

Since |||[p—pull|?e-5 tends to |||p—p.llI°e as a—¢, we have the following ex-
plicit formula:

(6) SﬂTp/\*dTpi-A,w(p):Hll)—ﬁ/w!llzsz-

We conclude that p,, minimizes the left-hand side of the expression, the minimum
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being 0, with the deviation from the minimum given by the right-hand side.

§2. P-harmonic principal functions on a regular region.

1. Hereafter we restrict our consideration to the case of the identity operator
7, that is, to equation (2). We call the principal solutions p; of (2) on £ the P-
harmonic principal functions on Q.

In this section we shall show the existence of unique P-harmonic principal
functions p; on 2 with prescribed singularities. Toward this end, we use the
linear operator method for P-harmonic functions given in Sario-Nakai [8]. For the
reader’s convenience we restate it here briefly.

2. Let R, be a regular subregion of a Riemannian space R with a=0dR,. For
an open set G of R, denote by P(G) the class of P-harmonic functions on G. We
consider an operator L which assigns to each feC(a) a unique Lfe P(R—R.)N
C(R—R,) such that

(7) Lfla=1,
(8) (min, f)NO0=Lf=(max, f)U0,
(9) Licf)=cL(f), L(fi+f2)=L(f1)+L(f2).

The following existence theorem, due to Nakai [4] (cf. Sario-Nakai [8]), pro-
vides the key step in the linear operator method.

THEOREM 2. Given se PIR—R,)NC(R—R.) and L as above. Then there exists
a unique u€P(R) satisfying
10) L(u—~s|a)=(u—s)| R— R,.

Proof. We may assume s|a=0, for otherwise we replace s by so=s—Ls
and have

u]R—Ro=So!R‘—Ro+L(u—So[a)
=$|R—Ry— Ls|R—Ry+ L(#|a).
Therefore #|R—Ry=s|R—Ro+ L(#—s|a). _
Take a regular subregion R, of R such that R,DR, and P#0 on R, Let
a=0R; and let K be the operator which assigns to each feC(a;) the unique func-

tion Kfe P(R,)NC(R,) with the boundary value f on a;. Set 1=sl|a:.
We may reduce equation (10) to the following equation on C(a,):

11) o—L(Kpla)la;=2.
If we obtain a solution ¢ for a given 2, we may define:

12) u=Kp,  the=5+L(Kp|a).
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By (11),
wlai=¢p and #plor=2+L(Kpl|a)|a,=¢;
wla=Kpla and wuola=s|a+L(Kp|a)la=Kp|a.

Hence #; and #, coincide on 3(R,—R,) and consequently on R,—R, If we set
#|Ri=u, and u|R— Ry=uo, u is well-defined and #e P(R). Moreover, « satisfies (10):
#|R— Ro=u,=s+L(u|a). Thus it suffices to solve for the function ¢ in (11).

Let Ap=L(Kyp|a)la;. Then A is a linear operator from C(@;) into itself.
Consider C(a;) as a Banach space with ||¢|l.=Sup., |¢|. Then property (8) and the
maximum principle assure that ||4|l.=sup (]|4¢|l./|l¢|l.) is bounded and actually
dominated by 1. Since (11) is (I—A)p=2, ¢ is obtained as ¢p= 5., 4"2 if ||4]|.<1.

To show [|4]|.<1, take w=K1, which belongs to P(R:)NC(R,) and has bound-
ary value 1. Since P#0 on R, and w#0 on R,, the maximum principle implies
that 0<g=max, w<1. From *¢=|(¢||., it follows that

+ Ko=|lo||l-K1.
On a we have

+Kopla=4||¢lle
hence

+ L(Kola)=qll¢l|-L1.

Since 0<L1<1 on R—R,, |L(Kp|a)|a:|=q|l¢|l-, that is, ||4¢||=g||¢|le. This means
[14]l.=gq, which completes the proof.

From the above proof we can deduce a theorem which demonstrates the con-
tinuous dependence of # upon s.

THEOREM 3. Let Q=(1—q)™. The principal function uw of Theovem 2 satisfies

(13) ”uanéQ“s”aly
14 llot— 51| r-7, = QISlleys
1%) (2" —s")— (" — ") | p-ro = QUIS" =" |ays

where w' and u'' arve solutions corresponding to s’ and s’ with the same operator L.
Proof. For (13), we note that
ol = ey =l =< 3 @l1lo=CL =) 12

Similarly (14) follows from

ot —sl|r-ro = |IL(2] )| - ry = 08l | = []28] |y = (1 — @) ][4 |
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Recall that s’|a=0, s’/|a=0. Thus
(' —s")—(t'"—5") | R—Ro=L(t' — 0"’ |ax).

Denote by ¢’ and ¢’/ the solutions of (11) corresponding to ¥'=s’|a; and ¥/ =s""|a..
Since |Lf|=max,|f],

(" — ") —("" =" | p-ry = || L(' —"")|| p-m, =mAX4 06" —24""|
=maX,, |u' —u""|=|l¢" = ¢"|lay

From ¢’ —¢"' = Y7, A"(A'—2"),

”¢,_§0,/”w§ Zq’nHZI_RII”alz

l_qHS’—S"llal-

3. Let D be regular subregion of R with a partition of its boundary into
components a, .

We define operators L, and L; on C(a) which assign to each feC(a) a unique
P-harmonic function #,=Lof on D with uola=f and (9u./on)|f=0, and a unique P-
harmonic function #,=L,f on D with u|a=f and #,|f=0, respectively. Since the
existence of unique #, and #; is guaranteed by the solvability of the Dirichlet
boundary value problem and the mixed boundary value problem for du=Pu (see
1t6 [2]), the operators L, and L, are well-defined.

We claim that L, and L, are operators satisfying conditions (7), (8), and (9).
Properties (7) and (9) are obvious; to show (8), we will use the following lemma.

LEMMA 1. Let u be a P-harmonic function on a regular vegion D. Suppose
that u=M on D, where M is a nonnegative constant, and that u=M at a boundary
point xo. If u is continuous on DU{x,} and nonzero, the outward normal derivative
oulon is positive at x,.

The proof is given in Protter-Weinberger [6] for the case in which D is in a
Euclidean space. Since it is not difficult to extend the proof to the present case
we omit the details.

To show that L, meets (8), we suppose, to the contrary, that #, violates the
condition. Hence there exists a point xeD such that #(x)>(max,f)U0. Since the
nonnegative maximum of a P-harmonic function is attained only on the boundary,
u, must take its nonnegative maximum at some boundary point x,. Therefore
w(wo) >u(x)>(max, f)U0, and xz, belong to 8. Lemma 1 gives duo/dn(xo)>0, in vio-
lation of the condition (duo/on)|5=0.

The inequality (min,f)N0=wu, follows from the above argument, applied
to —u,.

For L,, property (8) is immediate from the condition #,=0 on p, and the P-
harmonic maximum principle.

4. We are ready to construct p, and p; on 2. Let o, {, N, and 2 be as in
§1. Take a subregion D of 2 such that 2—D is a regular region in £ and
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2—D>oN. Note that D is a boundary neighborhood of B(2), and let 9D=a,Up.

Remove ¢ from 2 and consider 2—¢ as R in 2, and Q—D—N as R,. Then
dNUa; plays the role of « in 2. We apply Theorem 2 to following s and L:s=¢
on N—{ with s=0 on D; L is the operator acting on C(ANUa;) such that L on
N—{ is the Dirichlet operator assigning to each feC(dN) the solution of the
Dirichlet problem on N, and L on D is the operator L, (=0, 1) defined as in 3.

From Theorem 2 we have p; (i=0,1) on 2—¢ such that p;—¢ on N—( is P-
harmonically extendable to ¢, and L,p;=p; on D, that is, (3p./07)|f=0 and p,|f=0.
Thus it is assured that p, and p, exist on 2.

§3. Extremal theorom for P-harmenic principal functions on a regular region.

1. Application of Theorem 1 to the P-harmonic principal functions p,.,=ppo
+vp, yields the following result:

THEOREM 4. Let A, (p)=limu.; faoxdp—pxds, where p=pPei—r’e;—(p—v)e.
Among P-harmonic functions p on Q2—C with singularity 2o at &, the function
Do gives

min

Sﬁp*dp+AM<p> =0,

2. We next seek a more explicit expression of A,.(p). Toward this end we
reconsider the singularities o.

Let ¢; be the P-harmonic Green’s function on N; with pole at &, and e any
nonzero constant assigned to ;. We redefine ¢ by setting s=¢;9; on N;. This ¢
meets condition (3) but not (4). Thus we must enlarge the class of singularities by
revising condition (4) so as not to affect the discussion thus far. This is accom-
plished by requiring simply the following:

(16) lim S xdTv is a finite constant at each ..
;=% Jag
A ¢ which equals ¢;g; on N; is a singularity in this new sense. Hereafter we con-
sider only ¢ of this type.
In view of

lim S xdg;=—1
;=8 Jaji

and

limg gixdf=0 for feCY(NVy),

ai—G,

A p=lim (s edp—prds=3 ot

=G

= ; ei(pPeo(C) —rv*er(lo) — (p—)e(Co).
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Hence we have an improved result:

THEOREM b. Among P-harmonic functions p on Q— with singularity is such
that o=¢;9; on N,, p,, minimizes the functional {[sp*dp— Y. e(u—v)es)}, and the
minimum is ), e(v%ei(()—pPen(ly)).  Explicitly,

an Sﬂl’ *dp— ; el(p—v)e(l)= Zz: e(v’es(Co) — pPeo(C)) + Eo(p—D ),

wherve Eo(u) is the energy integral of the function ueC'(Q).

Proof. The first part is deduced from Theorem 4, and the second part from
(6), in view of ueCY(2), |||u|||2e=(du, du)e+(Pu, u)a=FEo(u).
For p=1, v=—1, { consisting of one point ¢ef2, and e=1, we have:

COROLLARY. Among regular P-harmonic functions u on Q, the function po—p:
gives min {Eq(u)—2u(a)}, and the minimum is e(a)—el(a). Explicitly,

(18) Eo(u)—2u(a)=ei(a)—eo(a)+ Eo(t—po+p1).

Note that for regular P-harmonic functions #,
S wkdu=Eq().
8

We remark that p, is the P-harmonic Neumann’s function and p, is the P-
harmonic Green’s function on 2 with pole at . We call the quantity e.(@)—ei(@)
the P-span of £ and denote it by Sp=Sp((2, a).

The P-span has a significant relation to the norm of py—p;:

Sp=FEo(po—p1).
This follows by setting #=0 in the Corollary.

§4. Convergence theorem.

1. In order to generalize Theorem 4 from a subregion 2CR to the entire
space R, we shall first establish a convergence theorem. This argument is ana-
logous to the one in Sario-Schiffer-Glasner [9] which deals with harmonic functions
and the Dirichlet norm.

LEMMA 2. For P-harmonic functions u on 2,
w(@)*=Sp- Eo(u).
Proof. An application of (18) to f#, where ¢ is a real parameter. yields
P E(u)—2tu(@)+ Eo(po—p1) = Ea(tu—po+11) 0.

Since the discriminant of the quadratic on the left must be nonpositive,
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u(@)?— Eo(po—p1)+ Eo(u)=0.

2. Essential to the proof of the convergence theorem is the following bounded-
ness property of the P-span.

LemMA 3. The P-span Sp=eia)—ei(a), as a function of a, is wuniformly
bounded on compact subsets of £.

Proof. We show that Sp=es(a)—ei(e) is a continuous function for a fixed Q.

Denote by N, a neighborhood of ¢ and let g.(x) be the P-harmonic Green’s
function on N, with pole at @. We change « slightly but keep the original N,
fixed. Let @’ stand for a varying point near « and let g,.(x) be the P-harmonic
Green’s function corresponding to @’. Denote by p; and e, the principal functions
and their regular parts corresponding to a’.

Take a hypersphere a;CN,. By Theorem 3,

19) [(Bi—9a)—(Pi—9a)l| ¥, =QlIgar (€)= ga()| |,

Since gq(x) is jointly continuous in x and @ for x+#e, the compactness of «; in N,
implies that

(20) lim max |ga.(x)—ga(x)| =0.

a’—a T€

From (19), (20) and the continuity of the function e/, we conclude that e;(a)
is continuous. Hence Sp is continuous in a.

3. The following convergence theorem is the P-harmonic counterpart of the
theorem asserting that a sequence of harmonic functions which is Cauchy in
Dirichlet norm has a harmonic limit.

THEOREM 6. Suppose that to each regular region Q of a Riemannian space R
a unique P-harmonic function wuo is assigned. If for QCQ'CR,

lim Eo(uo—ug) =0,
2,9'-R

then ug converges to a P-harmonic function on R, uniformly on compact sets.

Proof. Let 9, be a regular region with 2,c®2 and Sp=Sp(2y, @). By
Lemma 2,

(#o(@)—uao(a))?=Sp- E.ao(u.o—ua:).

By Lemma 3 and the hypothesis, we see that {«o} is uniformly Cauchy on compact
subsets of 2,. In view of the completeness property of P-harmonic functions, {#e}
converges to a P-harmonic function, uniformly on compact subsets of Q,.

Since @, is arbitrary, the theorem is proved.
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§5. Extension to the space R.

1. We have principal functions p; on each regular subregion 2cR. We pro-
ceed to extend the p; to the space R.

Fix ¢ and N, and consider all regular regions Q containg N. Let 2c£’, and
denote by p; and e, the functions corresponding to £’. For simplicity, we use the
abbreviated notation e({)=X,ee(ls), el)= X1 ceo(C.), ei(Q)= 1 eier(C).

Letting p,, in (17) equal first p, and then p,, we obtain

@1) |, prdp—e©)=—ekO+ Ealp—p),

22) |, b+ eQ =00+ Euo—p).
Substitution of p}|2 for p in (21) and of pi|Q for p in (22) yields
(23) Sﬁps*dpa~es(c>=—eo<c>+Eg<pa—po>,

(24) Sﬂpi*dpi+e((C)=el(C)+En(Pi—pl),

while substitution of p; for p in (21) gives
(25) Sﬁpl*dpl—em:—eo<c>+Eg<p—po>.

Let p/=p(2’). Since [z pi*dp;=0 and [p_s pi*dp;=FEa _a(p:;)=0, we have [, p]*dp;
=0. Consequently (23) implies ej{)=e,((), and (24) yields ej()=ey(¢). Finally,
ei()=e\§) follows from (25).

We conclude that the quantity e,({) is decreasing and bounded below, whereas
e,(§) is increasing and bounded above. Hence these quantities converge as £
tends to R.

2. We write p; on Q as p and p; on 2/ as p;o.. From (23) and (24) we
obtain

lim Eo(pio—pia)=0.

2,2'-R
Thus by Theorem 6, there exist functions p;=lim p;e (=0, 1), which are P-har-
monic on R—{. Set p,,=ppo+vp, for real numbers p and v.

We substitute p, for p in (21), and p, for p in (22) to obtain

(26) S ok dpr—eo©) = —e0o(©)+ Ealpo—poa),
1€

(27) S 2 *dl)]+el(C)=em(C)+E0(1§1—Pm)-
(D
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Since fgc0) pi*dp; =0, we have on letting 2 tend to R in (26) and (27),

llmEg(pz—jhg)=O

Q-R
Hence by the triangle inequality limge.z Eo(p,—pume)=0. This and the definition
E(p—pup)=limo_r Eo(p—p,) give

y_{%Eﬂ(p_p#vﬂ)=E(p—p#V)-

By (17),

Sp 0)1'7 *xdp— 3 ei(u—v)e(ls)= ZL: el(pPe1a(li)—r?eoa(C:) + Eo(p—puwa)s

and on letting 2 tend to R, we obtain the theorem stated below. We write
symbolically
Sp*dp=1im8 prdp.
8 2R Jp
THEOREM 7. Among P-harmonic functions p on R—C with singularity such

that 6=eig9; on N, the function p,, minimizes the functional {§s p*dp— 3, eiu—v)e(C:)}
and the minimum is 3 e,(v?ei(C)—pPeo(Cs)). Explicitly,

(28) Spﬁ *dp— ; ei(p—v)e(C)= 2] ev*er(Co) — pPeo(Ci)) + E(p—Dyw)-

In particular,

29) Sﬁ pokdpi=0  (i=0, 1).

§6. Applications.

1. In this final section we give some applications of the general extremal
theorem and discuss a result in classification theory of Riemannian spaces.

We consider only one singular point denoted by @. In this case the corres-
ponding functions p, and p;, with the singularity ¢,, are precisely the P-harmonic
Neumann’s and Green’s functions on R, as remarked previously.

First take g=1, v=—1. Then the competing functions, which we denote by
{u}, have no singularity. From Theorem 7 we immediately obtain:

THEOREM 8. Among all regular P-harmonic functions u on R the function
Po—p1 minimizes the functional {E(u)—2u(a)}, and the minimum is e (a)—eda).
Explicitly,

(30) Eu)—2u(@)=e(a)—eia@)+ E@—po+p1).
We define the P-span Sp=Sp(z) of R as Sp=ei@)—ei(a). The choice #=0 in
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(30) gives the following:

COROLLARY. Sp=E(po—p1).

2. We next deduce an interesting extremal property of the P-harmonic Neu-
mann’s and Green’s functions.
In (28), we take p=1, v=0, and then p=0, v=1:

Spp*dp—e(a)=—eo<a>+E<p—po>,

Sﬁp*dp+e<a>=el<a)+E<p—p1).

If the competing functions p are restricted to those with [, pxdp=0, we then
have:

THEOREM 9. Among P-harmonic functions p with singularity g, and such that
fep*dp=0, the functon e(a) is maximized by the regular part of the Neumann's
Sunction py and minimized by that of the Greew's function p.

Since ey(@)=max e(e) and ei(@)=min e(e), we infer:
COROLLARY. Sp=max e(e¢)—min e(a).

3. Take p=vy=1/2. Then p;=(1/2)(po+p:) has the same singularity as po
and j)l.

THEOREM 10. Among P-harmonic functions p with singularity ge, the function
1)2)(po+p1) minimizes [y pxdp, and the minimum is (1/4)(e(@)—ela)). Explicitly,

[, ap=Fe @@+ E(p—5b0+2).

4. The P-span of R turns out to be useful in the classification theory of
Riemannian spaces:

THEOREM 11. A Riemannian space ReOpg if and only if Sp=0 for some acR.

Proof. We note that po—p,€e PE(R). Suppose R¢Opz. Then there exists a
nonzero function e PE(R) and thus a point aeR with #u(a)#0. If Sp=0, then
E(po—p1)=0. Hence po—p,=0. By (30), E(u)—2u(e)=FE(u) implies #(e)=0, a con-
tradiction.

Suppose Sp+#0 for some point in R. Then E(po—p:)#0 and thus p,—p1€ PE(R)
is not zero. This completes the proof.

Since the vanishing of Sy at a point ¢ is equivalent to p,=p;, we may charac-
terize Opg as follows (for Riemann surfaces see Ozawa [5]):
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CoROLLARY. A Riemannian space ReOpg if and only if the P-harmonic Green's
and Neumann's functions on R coincide.
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