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EXTREMAL SOLUTIONS OF Δu=Pu

BY KAZUMITSU KAWAI AND LEO SARIO

Given a Riemannian space or Riemann surface R and a function Pi^O,
on R, we consider P-harmonic functions, that is, solutions of the partial differential
equation Δu—Pu. In contrast with the case of harmonic functions, the P-harmonic
Neumann's function p0 and Green's function pλ exist on every R. These functions
play a fundamental role not only in abstract analysis on R, but also in fluid
dynamics, heat conduction, and electro- and magnetostatics (see, e.g. Bergman-
Schiffer [1]).

An important unsolved problem is to determine extremal properties of p0 and
p! and their linear combinations μp0 + vpι. We shall give the solution as a special
case of a general extremal theorem which will be established for the partial dif-
ferential equation

(1) δdTu+PTu=Q.

Here T is an operator to be specified, d is the exterior derivative, and δ the coderi-
vative. The identity operator T gives the P-harmonic equation Δu=Pu.

An essential part of our investigation is the extension of extremal properties
from regular subregions to the entire space. In the process we establish some
auxiliary results which are of interest in their own right.

Among the consequences of the extremal theorem for μpo+vpi are simple
characterizations of the class OPE of Riemannian spaces R which do not carry P-
harmonic functions with finite energy integrals.

Our presentation, given for Riemannian spaces, remains valid, mutatis mu-
tandis, for Riemann surfaces.

§1. Extremal properties of principal solutions.

1. Examples of the operator T appearing in (1) are the Hodge star operator
*, the exterior derivative d, and the coderivative δ defined by δφ=(— l)np+n+1*d*φ
for differential ^-forms φ. More generally, we choose for T various combinations
of * and d for which the existence of the functions to be considered is known.
Several such operators were considered in Kawai-Sario [3], where extremal pro-
perties were obtained for solutions of various boundary value problems.
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In the present paper we allow the functions satisfying (1) to possess funda-
mental singularities, and apply the results to the case of the identity operator T.
Since δu=Q for functions u (0-forms), the operator Δ=—(dd+d§) reduces to

and equation (1) becomes

(2) Δu=Pu.

Here gi3 is the metric tensor of R, g is the determinant of (g^), and (g^) is the
inverse matrix.

2. Given an open set G of a Riemannian space R, we denote by S(G) the class
of solutions of (1) on G.

Let ζ={ζi} be a finite set of points of R, N=UNi a union of disjoint open
neighborhoods of the ζt, and a=_(Jai the boundary of a set B=\jBi of geodesic
balls Bi centered at the ζt with BdN. A fundamental singularity σ at ζ is de-
fined as

(3)

(4) lim
α— >ζ

We call a subregion Ω of R regular if it is relatively compact and has a
C°°-boundary β=β(Ω). Take an Ω which contains N, and consider solutions pi
(ί=0, 1) of (1) on Ω—ζ satisfying the following conditions:

(a) piζO(Ω-ζ)nS(Ω-0,

(b) pi— a is extendable to a solution of (1) on N,

( c) ndTp0=Q and tTp,=0 on β,

where n and t stand for the normal and tangential components along β. For
example, if T is the identity operator, then (c) becomes

f^=0 and P! = Q on β.
on

We call the pi principal solutions of (1) on Ω with the singularity σ.
We shall consider operators T for which the existence of unique pQ and pi is

assured, and deduce extremal properties of linear combinations of p0 and p^ For
real numbers μ and u with λ=μ+v, the function pμv=μp0+vpι has the singularity
/to. For competing functions we choose all pςS(Ω-ζ) with the singularity λσ at ζ,
and denote by βi and e the regular parts of pi and p on N:
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We postulate the following conditions, trivially met in our applications:

l i m \ TeiΛ*dTej=lim\ Te/\*dTβi
α-»ζ Jα α->ζ Jα

(5)

= l i m \ Tβif\*dTe=Q,
a— »ζ Jα

with i, y=0, 1. Let p =μzeQ—vzel-(μ-v)e and

Tσ/\*dTp-Tp/\*dTσ.

THEOREM 1. Among pζS(Ω-ζ) with the singularity λσ at ζ, the function
pμv gives

min \ TpΛ*dTp+Aμv(p) =0.
[jβ \

Proof. For p, qςS(Ω-B) we introduce the inner product:

[p, <ϊ\Ω-B = (dTp, dTq)Ω-B+(PTp, Tq)Ω-B

= (dTp, dTq)Ω-B-(Tp, δdTq)o-B

Γ
= \ TpΛ*dTq.

Jβ-a

We write \\\P\\\2

0-B=[p,P]o-B. Then

\\\p-pμv\\\zo-B=\ (Tp-Tpμv)/\*d(Tp-Tpμv)
Jβ-a

= \ Tp/\*dTp-Tpμv/\*dTp-Tp/\*dTp+Tpμv/\*dTpμv.
Jβ-a

Moreover,

( TpμvΛ*dTp=( μTp0/\*dTp
jβ Jβ

By Green's formula the path of integration β can be replaced by α. Hence

( TpμvΛ*dTp=( μTpo/\*dTp-μTpΛ*dTp0.
Jβ Jα

Therefore
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Tpμv/\*dTp=( μTp0Λ*dTp-μTp/\*dTpo-( (
/3-α Jα J«

Similarly

TpΛ*dTdμv=-( ι>TpιΛ*dTp+μTpΛ*dTpo,
β—a Jα

and

Therefore

\\\p-p,v\\\*o-B= TpΛ*dTp+Aμv(p; α),

where

Aμv(p; α)= -

On substituting in Aμv(p°,ά) the local expressions of pi=σ+ei and ^=/ίcτH-^, we
have

Aμv(p]a)=[ Tσ/\*dTp-Tp/\*dTσ
Jα

+ \ -μ2Te0Λ*dTeo-2μvTeι/\*dTe0
Jα

where p=μ2e0—v2e1 + (v—μ)e. As α shrinks to ζ, using (5) we obtain

limAμv(p;a) = lim\TσΛ*dTp—Tp/\*dTσ.
α->ζ α-»ζ J

This limit is denoted by Aμv(p).

Since |||/>— ̂ J||2c-B tends to |||^— A^ll l 2 ^ as α-^C> we have the following ex-
plicit formula:

( 6 )

We conclude that pμv minimizes the left-hand side of the expression, the minimum
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being 0, with the deviation from the minimum given by the right-hand side.

§2. P-harmonic principal functions on a regular region.

1. Hereafter we restrict our consideration to the case of the identity operator
Γ, that is, to equation (2). We call the principal solutions pi of (2) on Ω the P-
harmonic principal functions on Ω.

In this section we shall show the existence of unique P-harmonic principal
functions pi on Ω with prescribed singularities. Toward this end, we use the
linear operator method for P-harmonic functions given in Sario-Nakai [8]. For the
reader's convenience we restate it here briefly.

2. Let RQ be a regular subregion of a Riemannian space R with a=dR0. For
an open set G of R, denote by P(G) the class of P-harmonic functions on G. We
consider an operator L which assigns to each /€C(α) a unique LfζP(R—Ro)Γ\
C(R-Ro) such that

(7) Lf\a=f,

( 8 ) (minα /) n O^L/^(maxα /) U 0,

( 9 ) L(cf)

The following existence theorem, due to Nakai [4] (cf. Sario-Nakai [8]), pro-
vides the key step in the linear operator method.

THEOREM 2. Given s€P(R—Ro)ΠC(R—Ro) and L as above. Then there exists
a unique uzP(R) satisfying

(10) L(u~s\a} = (u-s}\R-RQ.

Proof. We may assume s|α=0, for otherwise we replace s by SQ = S— Ls
and have

u\R-R<*=sQ\R-R0+L(u-So\a)

= s\R-Ro-Ls\R-Ro+L(uM.

Therefore u\R-R,=s\R-RQ+L(u-s\a\
Take a regular subregion Rι of R such that Rι^>R0 and P^O on Rlt Let

aι=3Rι and let K be the operator which assigns to each /€C(«ι) the unique func-
tion Kf^P(R1)Γ[C(R1) with the boundary value / on αj. Set λ = s\aι.

We may reduce equation (10) to the following equation on C(αι):

(11) φ

If we obtain a solution φ for a given λ, we may define :

(12) Uι = Kφ,
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By (11),

Uι\aι = φ and

Uι\a=Kφ\a and

Hence HI and uϋ coincide on d(Rι—R0) and consequently on Rί—Ro. If we set
u\Ri=Ui and u\R—Rϋ=u0, u is well-defined and ueP(R). Moreover, u satisfies (10):
u\R— Ro=u0=s+L(u\a). Thus it suffices to solve for the function φ in (11).

Let Aφ=L(Kφ\a)\aι. Then A is a linear operator from C(«ι) into itself.
Consider C(«ι) as a Banach space with ||^||oo=supαι \φ\. Then property (8) and the
maximum principle assure that IMIU=sup(||^||00/||^||00) is bounded and actually
dominated by 1. Since (11) is (/— /%=Λ, φ is obtained as φ=Σh=oΛnλ if ||/ί||00<l.

To show PlloXl, take w=Kl, which belongs to P(R1)nC(R1) and has bound-
ary value 1. Since P^O on Rι and w^Q on Rlt the maximum principle implies
that 0<#=maxαM;<l. From ±^^||^||oo, it follows that

On a we have

hence

Since 0<L1<1 on R-R0, |L(Λ^|α)|αι|^^||^|U that is, PHI-#IMU This means
I Ml U ̂ ==q, which completes the proof.

From the above proof we can deduce a theorem which demonstrates the con-
tinuous dependence of u upon s.

THEOREM 3. Let Q=(l— q)~l. The principal function u of Theorem 2 satisfies

(13) Nk

(14) \\u-s\\R

(15) IKw'-sO-^-^OIlΛ-sβ^Qlls'-^Ίk,

where uf and u" are solutions corresponding to s' and s" with the same operator L.

Proof. For (13), we note that

IMk l̂MU ÎMI.̂  Σ ίΊWU=d-^)-1IWI-o.
w=0

Similarly (14) follows from

l«)l^
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Recall that s'\a = Q, 5/ 7 |α = 0. Thus

(u'-sf)-(u"-s")\R-R*=L(u'-u"\a}.

Denote by φ' and φ" the solutions of (11) corresponding to λ' = s'\ctι and λ" = s"\aι.
Since |L/|^maxα |/|,

\\(u'-s')-(u"-s"Ί(\R-R^\\W

From φ'-φ"=ΣS-*Λn(X-λ"\

- « r

3. Let D be regular subregion of R with a partition of its boundary into
components α, β.

We define operators L0 and L\ on C(ά) which assign to each /eC(α) a unique
P-harmonic function u0=L0f on D with u0\a=f and (du0ldri)\β=Q, and a unique P-
harmonic function u^—Lιf on D with &ι α=/ and ^ι|/3=0, respectively. Since the
existence of unique MO and u\ is guaranteed by the solvability of the Dirichlet
boundary value problem and the mixed boundary value problem for Δu=Pu (see
Itδ [2]), the operators L0 and Li are well-defined.

We claim that L0 and LI are operators satisfying conditions (7), (8), and (9).
Properties (7) and (9) are obvious; to show (8), we will use the following lemma.

LEMMA 1. Let u be a P-harmonic function on a regular region D. Suppose
that u^M on D, where M is a nonnegative constant, and that u=M at a boundary
point XQ. If u is continuous on D U {#0} and nonzero, the outward normal derivative
du/dn is positive at XQ.

The proof is given in Protter- Weinberger [6] for the case in which D is in a
Euclidean space. Since it is not difficult to extend the proof to the present case
we omit the details.

To show that L0 meets (8), we suppose, to the contrary, that UQ violates the
condition. Hence there exists a point x$D such that u(x)>(maxaf)(JO. Since the
nonnegative maximum of a P-harmonic function is attained only on the boundary,
UQ must take its nonnegative maximum at some boundary point x0. Therefore
z/C£o)>^)>(maxα/)Uθ, and x0 belong to β. Lemma 1 gives duoldn(xo)>0, in vio-
lation of the condition (duo/dri)\β=Q.

The inequality (minα/)n0^0 follows from the above argument, applied
to — UQ.

For LI, property (8) is immediate from the condition 2/1= 0 on β, and the P-
harmonic maximum principle.

4. We are ready to construct p0 and pi on Ω. Let σ, ζ, N, and Ω be as in
§1. Take a subregion D of Ω such that Ω—D is a regular region in Ω and
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Note that D is a boundary neighborhood of β(Ω), and le_t 3D=aι\Jβ.
Remove ζ from Ω and consider β—ζ as 7? in 2, and Ω—D—N as P0 Then

8N\Jaι plays the role of a in 2. We apply Theorem 2 to following 5 and L:s=σ
on TV—ζ with 5=0 on D', L is the operator acting on C(dN\Jaι) such that L on
AT"—ζ is the Dirichlet operator assigning to each feC(dN) the solution of the
Dirichlet problem on N, and L on D is the operator Lτ (i=Q, 1) defined as in 3.

From Theorem 2 we have pi (z = 0, 1) on £?—ζ such that />$—σ on TV—ζ is P-
harmonically extendable to ζ, and Llpί=pi on D, that is, (dpoldri)\β=Q and />1|jS=0.
Thus it is assured that p0 and ^>ι exist on Ω.

§ 3. Extremal theorom for P-harmenic principal functions on a regular region.

1. Application of Theorem 1 to the P-harmonic principal functions ρμv=μpϋ

+ ypι yields the following result:
THEOREM 4. Let Aμv(p)=\ima-+ζfaσ*dp—p*dσ, where p=μ2eQ—v2e1—(μ—v')e.

Among P-harmonic functions p on Ω—ζ with singularity λσ at ξ, the function
pμv gives

minK p*dp+Aμv(p)]=Q.
(Jβ \

2. We next seek a more explicit expression of Aμv(p). Toward this end we
reconsider the singularities σ.

Let Qt be the P-harmonic Green's function on Nί with pole at ζz, and ετ any
nonzero constant assigned to ζ<. We redefine σ by setting σ—^Qi on Ni. This σ
meets condition (3) but not (4). Thus we must enlarge the class of singularities by
revising condition (4) so as not to affect the discussion thus far. This is accom-
plished by requiring simply the following:

(16) lim \ *dTσ is a finite constant at each ζt.
«i-»C't, J«i

A σ which equals β^ on Nt is a singularity in this new sense. Hereafter we con-
sider only σ of this type.

In view of

and

lim \ *dgι=— 1
"ί-^ίi J«ι

lim ί gi*df=Q for fsC\Ni\
aί— »ζ?, Jα/

σ*dp—p*dσ=Σ p(Qti
. -„ ι
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Hence we have an improved result:

THEOREM 5. Among P- harmonic functions p on Ω—ζ with singularity λσ such
that σ=εigi on Nlt pμv minimizes the functional {fβp*dp—Σtεί(μ—v)e(ζi)}>
minimum is Σιε*(y20ι(Cί)— μ2£o(O) Explicitly,

(17) ( p*dp- Σ*i(μ-
Jβ I

where EΩ(U) is the energy integral of the function u£C1(Ω).

Proof. The first part is deduced from Theorem 4, and the second part from
(6), in view of usC\Ω\ \\\u\\\2

Ω = (du, du)Ω + (Pu, u)Ω=EΩ(u).
For μ=l, ι>=— 1, ζ consisting of one point azΩ, and ε=l, we have:

COROLLARY. Among regular P- harmonic functions u on Ω, the function po—pi
gives mm{EΩ(u)—2u(a)}> and the minimum is e^—e^a). Explicitly,

(18) EΩ(u)-2u(a)=e1(a)-eQ(a)+EΩ(u-p0+p1).

Note that for regular P-harmonic functions u,

\ u*du=EΩ(u).
Jβ

We remark that pϋ is the P-harmonic Neumann's function and p! is the P
harmonic Green's function on Ω with pole at a. We call the quantity e0(a)—eι(a)
the P-span of Ω and denote it by SP=SP(Ωy a).

The P-span has a significant relation to the norm of po—pi'.

This follows by setting u==Q in the Corollary.

§4. Convergence theorem.

1. In order to generalize Theorem 4 from a subregion Ωc.R to the entire
space R, we shall first establish a convergence theorem. This argument is ana-
logous to the one in Sario-Schiffer-Glasner [9] which deals with harmonic functions
and the Dirichlet norm.

LEMMA 2. For P-harmonic functions u on Ω,

Proof. An application of (18) to tu, where Ms a real parameter, yields

Since the discriminant of the quadratic on the left must be nonpositive,
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2. Essential to the proof of the convergence theorem is the following bounded-
ness property of the P-span.

LEMMA 3. The P-span Sp=eQ(a)—eί(a)ί as a function of a, is uniformly
bounded on compact subsets of Ω.

Proof. We show that Sp=e0(a)—e1(a) is a continuous function for a fixed Ω.
Denote by Na a neighborhood of a and let ga(χ) be the P-harmonic Green's

function on Na with pole at a. We change a slightly but keep the original Na

fixed. Let ar stand for a varying point near a and let ga>(x) be the P-harmonic
Green's function corresponding to a'. Denote by pi and e( the principal functions
and their regular parts corresponding to af.

Take a hypersphere αicTVα By Theorem 3,

(19) \\(Pfi-g^-(Pi-ga}\\Na^Q\\gal(χ}~ga(χ)\\aι.

Since ga(x) is jointly continuous in x and a for xΦa, the compactness of cxi in Na

implies that

(20) lim max \ga>(x)— Qa(x)\ =0.
a'-»a #€«!

From (19), (20) and the continuity of the function e[, we conclude that et(a}
is continuous. Hence Sp is continuous in a.

3. The following convergence theorem is the P-harmonic counterpart of the
theorem asserting that a sequence of harmonic functions which is Cauchy in
Dirichlet norm has a harmonic limit.

THEOREM β. Suppose that to each regular region Ω of a Riemannian space R
a unique P-harmonic function UΩ is assigned. If for Ω(^Ω'c:R,

lim EΩ(UΩ—UΩ>)=§,
Ω, Ω'-+R

then UΩ converges to a P-harmonic function on R, uniformly on compact sets.

Proof. Let Ω0 be a regular region with Ω0c:Ω and SP=SP(Ωo, a). By
Lemma 2,

By Lemma 3 and the hypothesis, we see that {UΩ} is uniformly Cauchy on compact
subsets of Ω0. In view of the completeness property of P-harmonic functions, {UΩ}
converges to a P-harmonic function, uniformly on compact subsets of Ω0.

Since Ω0 is arbitrary, the theorem is proved.
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§5. Extension to the space R.

1. We have principal functions pi on each regular subregion ΩdR. We pro-
ceed to extend the pi to the space R.

Fix ζ and N, and consider all regular regions Ω containg N. Let ΩdΩ', and
denote by pi and e( the functions corresponding to Ω'. For simplicity, we use the
abbreviated notation *(ζ)=Σ» **(£<), *o(ζ)=Σ»*ί*o(C»), *ι(0=Σt£ί*ι(ζt).

Letting /^ in (17) equal first pQ and then ,̂ we obtain

(21)

(22)

Substitution of p'0 Ω for /> in (21) and of p(\Ω for p in (22) yields

(23) \ p'ύ*dpf,-ef«(Q = -
Jβ

(24)

while substitution of p! for /> in (21) gives

(25)

Let β' = β(Ω'). Since ίβ>Pl*dpl=Q and ip-?pl*dpl=E0,-o(pi^Q, we have SβPί*dpί
^0. Consequently (23) implies έ?ί(ζ)^έ?0(ζ), and (24) yields έ?ί(C)^*ι(C) Finally,
eι(ζ)^βo(0 follows from (25).

We conclude that the quantity 00(ζ) is decreasing and bounded below, whereas
βι(ζ) is increasing and bounded above. Hence these quantities converge as Ω
tends to R.

2. We write pi on Ω as pίΩ and pi on ί27 as />ίβ/. From (23) and (24) we
obtain

lim EΩ(pio—piΩ>)=0.
Ω, Ω'-+R

Thus by Theorem 6, there exist functions pi = \impi0 (f=0, 1), which are P- har-
monic on R— ζ. Set pμv=μp0 + vpι for real numbers μ and v.

We substitute p0 for /> in (21), and pi for p in (22) to obtain

(26)

(27)
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Since fβζΩ)pi*dpi^Q, we have on letting Ω tend to R in (26) and (27),

Hence by the triangle inequality limΩ_>REΩ(pμv—pμvΩ)=Q. This and the definition
E(p-pμv)=limΩ^REΩ(p-pμv) give

Hm EΩ(p-pμvΩ)=E(p-pμv).

By (17),

r

) I I

and on letting Ω tend to R, we obtain the theorem stated below. We write
symbolically

ί ί»
? #*φ.

THEOREM 7. Among P-harmonic functions p on R—ζ with singularity such
that σ=εiQi on Nt, the function pμv minimizes the functional
and the minimum is Σ εί(v2eι(ζi)—μ2eo(ζi)). Explicitly,

(28)

In particular,

(29) pi*dpi=0 (ι=0,l).

§ 6. Applications.

1. In this final section we give some applications of the general extremal
theorem and discuss a result in classification theory of Riemannian spaces.

We consider only one singular point denoted by a. In this case the corres-
ponding functions p0 and pi, with the singularity ga, are precisely the P- harmonic
Neumann's and Green's functions on Rt as remarked previously.

First take μ=l, v=— 1. Then the competing functions, which we denote by
{u}, have no singularity. From Theorem 7 we immediately obtain:

THEOREM 8. Among all regular P-harmonic functions u on R the function
po—pi minimizes the functional {E(u)—2u(a)}, and the minimum is e^(a)—e^(a).
Explicitly,

(30) E(u)-2u(ά) = eι(a)-e0(a) + E(u -

We define the P-span SP-SP(ά) of R as SP^eQ(ά)—el(ά). The choice u=Q in
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(30) gives the following:

COROLLARY. SP=E(pQ —pλ\

2. We next deduce an interesting extremal property of the P-harmonic Neu-
mann's and Green's functions.

In (28), we take μ=l, ^=0, and then μ=0, p=l:

p*dp-e(a)=-eo(ά)+E(p-pά

If the competing functions p are restricted to those with $βp*dp^§, we then
have:

THEOREM 9. Among P-harmonic functions p with singularity ga and such that
fβp*dp^Q, the functon e(a) is maximized by the regular part of the Neumann's
function p0 and minimized by that of the Green's function pi.

Since e0(a)=maxe(a) and e1(a)=mine(a\ we infer:

COROLLARY. SP = max e(a) — min e(a).

3. Take ^ = ̂ =1/2. Then ps = (l/2)(po +pι) has the same singularity as p0

and PL

THEOREM 10. Among P-harmonic functions p with singularity ga, the function
(l/2)(p0+pι) minimizes fβp*dp, and the minimum is (\l^)(eι(a)—eQ(a)}. Explicitly t

4. The P-span of R turns out to be useful in the classification theory of
Riemannian spaces:

THEOREM 11. A Riemannian space ReOps if and only if SP=Q for some

Proof. We note that pQ-p^PE(R). Suppose R$OPE. Then there exists a
nonzero function usPE(R) and thus a point asR with u(ά)Φ§. If SP=0, then
E(po-p!)=0. Hence po-p^Q. By (30), E(u)~2u(a)=E(u) implies u(ά)=Q, a con-
tradiction.

Suppose SpφQ for some point in R. Then E(p0-p1)^Q and thus pQ-p^PE(R)
is not zero. This completes the proof.

Since the vanishing of SP at a point a is equivalent to po—pi, we may charac-
terize OPE as follows (for Riemann surfaces see Ozawa [5]):
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COROLLARY. A Riemannian space RξOPE if and only if the P-harmonic Green's
and Neumann's functions on R coincide.
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