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CONSTRUCTION OF BRANCHING MARKOV PROCESSES
WITH AGE AND SIGN*

By Masao NaGcasawA

It is a familiar fact in the theory of Markov processes that solutions for a
wide class of /linear parabeolic and elliptic equations can be investigated in terms
of Markov processes (e.g. Dynkin [3] and Ito-McKean [8]). On the other hand it
was known that a class of semi-linear parabolic equations plays an important role
in the theory of branching processes (e.g. Bartlett [2], Harris [5], Moyal [15], and
Skorohod [21]). The mathematical structure that reveals the mechanism of how
this non-linearity appears in the theory of Markov processes should, therefore, be
investigated systematically. Attempts in this direction were recently performed in
several articles, especially, in Moyal [13], [14], [15], Skorohod [21], and Ikeda-
Nagasawa-Watanabe [6], [7]. A branching Markov process X; is defined as a
strong Markov process on a large state space §= Us=o S"U{4} having the following
branching property®

. PN X
(1) Tif @=(T:f)|sx), x€8,

where T,Ais the semi-group of the “large” Markov process on S and f is a func-
tion on S defined by

1 , if xeS?°,
f@={ [17@, i w=Gas-a0eS"
0 , if x=4,
where f is a measurable function on S with ||f||=supzes |f(x)]=1. Then
w(t,x)=Tif (), x€S,

is the (minimal)® solution of a non-linear integral equation:

(2) u(t, )=Tf (@) +S:K<x, dsdy)Fly, ut—s, )],  weS,
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1) Definition of the notation appearing 1n the following will be found mn §1.

2) This 1s taken to mean that if f=0, =z, x):T;f‘(x) is the minimal solution of (2).
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where F is defined for a measurable function # on S by

(3) Flo, =3 qn<x)gsnnn<x, ai).

n¥l

%, K, q» and n, appearing in the above equation have the following probabilistic
meaning: 79 describes the motion of one particle before the instance z of the first
splitting i.e. 7% is a semi-group subordinate to T}, K(z,dsdy) is the joint distri-
bution of r and X._ for a particle whose starting point is x€S, ga.(x)=0 is the
probability that a particle splits into #-particles at z€S, and #.(x,dy) is the distri-
bution of the #z-particles which have been produced by splitting at z.

It should be remarked that, in the above treatment, g.(x) is non-negative, n=1
must be excluded in the summation defining F in (3), and 7%1(x)<1 at some point
z€S. In order to eliminate the above restriction from the probabilistic treatment
of the equation (2), a method was proposed by Sirao [20].» The crucial point of it
is to introduce new parameters “age” and “sign” to describe the state of particles.
We shall call a branching Markov process which has the additional parameters a
branching Markov process with age and sign.

Now, a fundamental problem concerning the general theory of branching
Markov process is how to construct a strong Markov process having the branching
property (1) by a given system of quantities {7}, K, ¢n, 7o} Which describes funda-
mental nature of branching Markov processes and is given usually as an experi-
mental data in many applications. Several methods were given in [6] to construct
branching Markov processes. One is a probabilistic way in which the process is
constructed by piecing out path functions of one particle which is originaly given.
One of the other two analytic ways is based on Moyal’s method given in [13], and
another one is through finding a solution of the non-linear integral equation (1).
The most fundamental one is, in the author’s opinion, the probabilistic construction,
because this method is directly based on and reveals probabilistic structure i.e.
mechanism of piecing out of path functions of branching Markov processes.

The purpose of this paper is to give a probabilistic construction of branching
Markov processes with age and sign and to discuss some properties of the processes
constructed. In §1 we will state the main theorem of the paper. A theorem on
piecing out of path functions will be stated in §2. We will construct the Markov
process with age in §3 and branching Markov process wilh age and sign in §4 by
means of the theorem of piecing out. In §5, main properties, especially the
branching property, of the processes constructed will be proved. A proof is given
in Ikeda-Nagasawa-Watanabe [6], [7]. The proof for the present case is essentially
the same as one given in [6]. We will give, however, proof of Lemmas for com-
pleteness. In §6 we shall give some additional comments on probabilistic solutions
of the non-linear integral equation (2).

ACKNOWLEDGEMENT. It is my pleasure to express my thanks to Nobuyuki

3) Similar idea was used 1n [7] to discuss branching transport processes.
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Ikeda and Tunekiti Sirao. Ikeda read the original draft and gave me various
advice. My attention to Nagumo’s equation was first brought by his suggestion.

§1. Main theorem.

Let D be a compact Hausdorff space with a countable open base, N={0,1,2,3, -},
and S=DXN. A point (x,k)eD X N describes a state of a particle whose position
and age are x and £k, respectively. We shall consider the following motion: A
particle moving in D and growing older produces (z—1)-sons whose ages are zero
at a random time z and on xeD with probability g}(x) or g, (x), where g;(x)gs(x)=0.
Then if ¢i(x)>0, the #u-particles continue the same but mutually independent
movement in S=DX N, say positive world, but if ¢;(x)>0 the =-particles make
transition to another world a copy of the original S=DX N and continue the same
but mutually independent movement. Then the #n-particles repeat such repro-
duction. Of course, if a particle is originally in another world, say negative world,
and ¢;(x)>0, then #-particles immigrate to the positive world. That is, if 4+ sign
apperrs on the shoulder of g,, then all particles stay in the same world, but if —
sign appears, all particles immigrate to the opposite world. Precisely speaking, to
carry out a technical procedure satisfactorily we prepare four copies of S, two of
them stand for positive world and the remainder negative world.

Accordingly a state of #-particles can be described by a point of the product
space of /={0,1,2, 3} and the n-fold symmetric topological product of S™ of S=DXAN.
Therefore an adequate state space of the above mentioned motion is

§=(G S"x])U{A}, S=DxN,
n=0

where 4 is an extra point added by the one-point compactification, and S°={d} X N,
where @ is another extra point.

The precise meaning of S™ stated above is given as follows: Let S™=(DXN)™,
(n=1,2,--+), be the n-fold direct product of DXN. We identify a point ((i,%1),
(23, B2)y +++5 (0, Br)) With another point ((Teciys Brcry)s (Trcays Brcoy)s =+ s (Tacny, Breny)), Where
{z(1), 7(2), ---, #(n)} is a permutation of {1,2,---,#}. This identification defines a
equivalence relation. S™ is the quotient space of S™ by this relation. An element
of S™ will be denoted by (x, k) where x=(x1, 22, -, Zn) and k=(k1, ks, -, kn), and a
point of § will be denoted by (x, k,j).2

We will construct a “large” Markov process on the “large” state space S by a
system of given quantities: (i) a conservative strong Markov process on D which
has right continuous path functions with left limits, which we shall call the basic

4) A point (x,k,j)eSrxJ stands for the following state of particles: A ki-year old
particle is distributed at w;, i=1,2, .-, % and if j=0 or 1 the #u-particles are in a positive
world and if j=2 or 3 they are in a negative world. Our definition of state space S is
slightly different from the one given in [20], where ((%y, £y), -+, (Zn, kn)) and (], L), -+, (zn, k7))
are identified if (xy, -+, x») 1s a permutation of (], -+, xp) and Y7, ki= 7= &i.
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Markov process; (ii) Bounded non-negative measurable function c¢(x) on D, which
will be called the killing rate; (iii) A sequence {g.(x); #=0,1,2,---} of measurable
functions on D satisfying

go]qnl(x)=1, zeD,

where |gu|=¢i+¢7, ¢:=¢.\V0, and g¢r=(—g.)V0; (iv) A sequence {ma(z,dy);
n=1,2,3, .-} of probability kernels defined on DXD™, where D™ 1is the =-fold
topological product of D.

Our main theorem is stated as follows:

THEOREM 1. 1. Assume there arve given a basic Markov process on D and a
system of quantities {c, qn, na} Stated above. Then there exists a strong Markov
process Z, on S =(Un=0 S"X U {4} which has right continuous path functions with
left limits before the terminal time { such that:

(i) Let U, be the semi-group of the process Z,” f a bounded wmeasurable
Junction on D and 2 a positive constant. Then U, satisfies the following extended
“branching property”

~ =~
L1 Ufd=(Us fDlo-2,®
where
1.2 FoaGe, ey j)=(—1)Unf i, k),

where [ ] is Gauss’s bracket i.e. [0/2], [1/2]=0, [2/2], [3/2]=1, and

WIS, if z=@ReS,  and  |ki= Lk
1.3) Fi@)= pr - . if z=(,k)eS", -
0 ,  if z=d.
() Put
(L. 4) ut, 1)=Uf Xw,0,0),  zeD,

then it satisfies the following non-linear integral equation

5) The semi-group U; of Z; 1s usually defined for a bounded measurable function g¢
on S with g(4)=0 by
Uw(-)=E[0(Z)),  -€S,

where E. denotes the integration with respect to the probability measure P. of the process.

However we define Uiy by the above equation even when ¢ 1s unbounded but ¢(Z;) is

integrable with respect to P.. Therefore it happens that Uig(-) blows up for some #>0.
6) For a function g defined on S, we write as (9)|p(x)=9(x, 0,0), xeD.
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¢
(1. 5) ut, x)=T§‘>f(x)+S dsTPCF, ut—s, @),  weD,
0

where TP is the semi-group defined in terms of the given basic Markov process x;
on D by

1. 6) TPf (2)=Ealf (2:) exp (— 20,
where

€7 o) = S:cms(w))ds,

and F is defined by

1.8 Floyil=ae)+ X 0@ mle dite),  zeD

where u is a measurable function on D and
w(y)= ljlu(yi), if Y=, vz, yn)€D™.

The equalities in (1. 1) and (1.5) are taken to mean that if the left hand side has
a definite value then both sides are equal.

Moreover when ||f||=r<1, there exists ¢>0 depending on r and ||f|| such that
ff-\:Z(Z,), tel0,¢), is integrable with respect to the measure Pirj and hence u(t,x)

=U, fr-\:i(x, 0,0), where te[0,e) and xeD, has a definite value and is a unique local
solution of (1.5) with the initial data f.

DeriNiTION. We shall call the Markov process Z; which is stated in the above
Theorem a branching Markov process with age and sign. The constant A appearing
in (1. 2) will be called a weight of age.

Remark 1. For applications, it is useful to observe the fact that the existence

of a solution #(f,x) of (1.5) is reduced to the integrability of ff-\ﬁ(Z,), an unbounded
function when A>1, with respect to the measure P of the branching Markov
process with age and sign. When the initial data f and the weight 2 satisfy
|IF]l<1 and 0<2=1, respectively, there is no diffieulty. In fact, under the con-
dition, fr-\j is a bounded function on § and hence ult,z)=U, ff-\i(x, 0,0) is well-defined
for all #=0. Moreover we have |u(¢,z)|<1 and therefore u(f,z) is the unique
global solution of (1.5). The uniqueness follows from the following inequality: For
any 7 satisfying 0<#<1, there exists a constant ¢(#)>0 such that

(1.9 IFL-, ul = F[-, o]l =c@)llu—2ll,

7) DW=DxDx---xD.
~ N

n
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provided |||, ||lv||<7, (cf. Lemma 1. 3 of [6]).

ReMARK 2. Theorem 1.1 is still valid when we take a non-negative continuous
additive functional ¢, instead of the one defined in (1. 7). In this case (1. 5) becomes

t
L5) x>=T<;>f<x>+S | K(@,0), dsdtv, Pty ue—s, 31, weD,
0JS
where K is a kernel defined on SXS by
K((x, O)r de('!/, k)):P(x,O)[Cedsy XC—Ed(y: k)]! .Z'GD,

in terms of a Markov process with age that will be constructed in § 3.

ReEMARK 3. We assumed in Theorem 1.1 that the basic Markov process is
conservative i.e. the life time {=oo, Pja.., but it is useful in applications to
distinguish the following case: the state space D contains a point § as a terminal
point and x,_=4d, P,-a.e., where { is the first hitting time of 6. For example, x, is
the part of the d-dimensional Brownian motion on a bounded domain U (cf. [3])
and D=UU{6} is the one-point compactification of U, then this is the case stated
above. We will give a remark about this point when we construct a branching
Markov process with age and sign in §3 and §4.

ReEMARK 4. If we take

(&, dY) =0z, 5, 2)(AY),
~—

then

(1. 10) Flz, u]= 20 gu(@))",

and if we take 2 as a weight of age, then
TPf (w)=Eslf (@)]=T.f (x),

where T is the semi-gromp of the basic Markov process. This is the typical case
appearing in many applications.

REMARK 5. We give a simple example. Let D be the d-dimensional Euclidean
space with one point compactification, the basic Markov process on D be the d-
dimensional standard Brownian motion, and let F be given in (1.10) with a con-
dition |c(x) Xm0 gal®)—c(y) Dw—o ¢u(y)|=7|x—vy|, where y is a positive constant and
|z—y| is a distance of D. Moreover we assume that c,ga(z) (#=0,1,2,3,-), and
f are bounded continuous function on D. Then we can obtain from (1.5) that

u(t, 2)=U,f-3(x,0,0), zeD, te[0,¢), || fl|=r<1, satisfies

L. 11) LB hurte@Fl, 40, 5)=F (@)
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where A is d-dimensional Laplacian operator and ¢>0 depends on 7, (cf. Remark 1
above, and Theorem 1 of [10]). In the case of simple branching Brownian motion
(i.e. without age and sign), #(t, z)=FE,[f(X;)], xeR¢ satisfies

u
at

where ||f]]<1, #€[0,00) and

(.12 =5 Mt o) Flad—ul,  0,)=F (o),

Flu]= goqn(xm(x)", 4n(@)=0,

nxl

(cf. [6]). The difference between two cases brought by introducing age, sign, and
weight of age should be remarked.

§ 2. Preliminaries.

Since the construction of the branching Markov process with age and sign Z,
that will be given in the following sections heavily leans upon a theorem of
piecing out paths of Markov process [6], we will give a brief description of the
theorem to make this paper self-contained.

Let £ be a locally compact Hausdorff space with a countable base and
E= EU{4} be the one-point compactification of E (if £ is compact, 4 is attached
as an extra point). Let {W, Ni, Ps, x:,¢,0:} be a Markov process on E=F U {4} with
4 as a terminal point, where W is the path space, N; is the smallest Borel field
on W with respect to which x(s=#) are measurable and ¢ is the life time of x; i.e.
the first hitting time to 4,2 and 6, is the shift operator of path i.e. fu(s)=w(+s),
(e.g. [3], [8]). We assume in addition that all path functions are right continuous
and with left limits, and the process satisfies the strong Morkov property. For every
N¢,-Markov time T and for any Borel set A of E, it holds that

Pilzr. €A, I<0°|NT+]=I(T<oo)PzT[xteA]y Pj-ae.,

where Nr,={B; BeN. and for every >0 Bn{w; T(w)=t}cN;,} and T is said to be
Ni-Markov time if {w; T(w)=t}eN;,.»

Let p(w, dx) be a probability kernel defined on W><E ie. p(w,-) is a probability
measure on £ and ¢(+, A) is a Ne-measurable function for any Borel subset A of
E. The kernel ww,dz) will be called an instantaneous distvibution, if it has the
properties: (i) For we W such that {w)=0 or {(w)=o0, pw,dy)=0d.dy), and (ii) for
any N;.-Markov time T'(w),

2.1 Polpw, dy)= 61w, dy), T<L]=Po[T<L], =€k,

where ¢ iNs the life time of x;. .
Let 2 be the infinite product of 2=WXE, ie.

8) We assume that z:(w)=4 for t={w). Ner=Ne>0 Nite
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@.2) =12, @=9,

with the product Borel field

(2.3) F= ,119” (F1=F=Nu® BE),

vAvhere Q(ﬁ‘) is the Borel field of E, and define a probability kernel Q(x,dw) on
ExQ by

@. 4) SAQ(x, dw)=SA SPx[dw]y(w, dy),  Aeg.

Then there exists a unique system of probability measures {}N’x,xeﬁ?} on (2, 3 )
such that for any bounded measurable function F(e!,®?, --,®") on (II7-, 2,,1I7., & ),
(n=1’ 2; 3! "')’

2. 5) ﬁx[F(O)l, M) = S-uSQ(x, doV)Q(z1, dw?)Q(x2, dw®)---Q(xn_1, do™)
-F(o', o, -+, 0"),

where w’=(w,,x;). The existence of such measure ]3, is guaranteed by Ionescu-
Tulcea’s Theorem (e.g. Loéve [11], p. 137).

Now we shall define a new process X; on 2, ,Eﬁ, 13,) by piecing out the paths

of the given Markov process z; as follows: First of all we put for o=(w,y)e2
zw), i t<C(w)
(2. 6) T w)= )
Y, it #=L(w).

{:, Qz} is generally not Markov process, however we can obtain a strong Markov
process by piecing out &, infinitely many times. Putting for é=(0?, ®? )€,
0)1'=(w1j, x’b)
inf {7; {(w;)=0}
N(ca>={
oo, if such j does not exist,

we define Xy(@) on (3, @) by

Zi(wh), if 0=t=l(w)
Tecwyy(@?), if  C(w)<t=L(w:)+L(we)

~ . n n+1
(2. 7) Xt(a))= i‘t~(((w1)+~~~~lC(wn))((’)n+1)’ lf 21C(w])<t é Zl C(w])
J= J=

N(®)
4, if = 3 Lwy),
=1
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and define the life time of X, by
5 N(&)
(2.8) La)= ZI1 Cwy),
=
and introduce a sequence of random times
@0, @=n@)=Cw), @)= Fewi| L@
=

It is easily seen that ﬁx[ﬁo]zl, where $,={@; X«(®) is right continuous with respect
to ¢=0}. The shift operator 6, of @ef, is defined by

(2- 9) 0507=((t9;_,k(5)wk+1, xk+1), o**2, "'), if Tk(@)§t<fk+1(a~))-

Let T(@) be a random variable on £, taking values in [0,00]. We shall call @ and
@ €3, Rr-equivalent and denote as G~a@’ (Ry) if: (@) T(@)=T(@"), (b) X«(&)=X(@),
for s=T(®), and (¢) if tx(@)=T(®) <4 1(®)=L(®), then r4(@)=T(@)<tps(@)=E(@)
and r/(@)=t(&") for every j<k, while if T(&)=(®), then T(¢")=L(¢’) and /&)
=74&") for every j=0. Put

Fr={A; () AeHNT, and (i) if @A and G~ (Ry) then &' cA).

Then g’zT is a Borel field of £, and {@;:tzO} is an increasing family and ﬁ;cg?t,
where N, is the Borel field generated by X, (s<#).
On the basis of the above notation our theorem reads as follows:

THEOREM 2.1 ([6]). Let {W, N, Py,x:,{,0:} be a strong Markov process on
E=FU{4} which has right continuous path functions with left limit with 4 as a
terminal point, and pw,dy) be an instantaneous distribution. Then the system
{Qo,§,+,Px, X:,C, 0.} defined above is a strong Markov process on ﬁ‘ which has
right continuous path functions with left limits before { with 4 as a terminal point
having the properties (i) The sub-process {X, ﬁx,At<r} of {X; P} is equivalent to the
Markov process {xi, Py, 1<}, and (ii) for I'e BE)

@.10) PX.el, (6 wleB}1=S Paldwluw, T,
B

where B belongs to the Borel field generated by xs, 0=5<{, and we write é=(o',?, )
and w*=w;, x;), 1=1,2,---. Moreover if x (w) is quasi-left-continuous and { is non-
accessible (i.e. totally inaccessible in ihe strong semse [12] p. 130), then X&) is
quasi-left-continuous before Z(®).

§ 3. Markov process with age.

We will construct a Markov process with a new parameter age from a given

9) ‘gg't.'_: Ne>o Pir.. We may take, if necessary, a completion of @H instead of ?UEH
by the standard argument (e.g. [3]).
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Markov process and a Killing rate c¢(x). Let D be a compact Hausdorff space with
a countable open base. Let {W, N, P, ¢, 0;} be a conservative strong Markov
process on D which has right continuous path functions with left limit. In the
following we shall call the process x: the basic Morkov process.

Taking a measurable function ¢ on D, we put

wz(w)=SZICI(xs(w»ds,
3.1) ¢:(w>=S:c+<xs<w»ds,

so:(w)=S:c-<xs<w»ds,

where we write ¢t=cV0, cc=(—c)V0, and [¢|=cT+c".
Now let {W, N, Py, &, ,0,} be a sub-process'® of z, that is obtained from =,
by curtailing the life time with Kkilling rate |c|(x), such that

(3.2) Eolf (@)]=Ealf (m)m],
where
3.3 mw)=exp (—@w)).

First of all we have

LemMmA 3.1. Let g(x,s) be a bounded measurable function on DX[0,00) and
Fe_=lim, 1z &, then

3. 4) Euloze, B, Cgt]=Ez[S:g<xs,s>e—*’s lel (%)ds].

Proof. ([16]) It is sufficient to prove (3.4) for g(z, #)=f(x)e *, bounded con-
tinuous f on D and 2>0. In this case we have

Ea :S:f(x,)e‘“e‘*" lel(as) ds]

£ { reerd—em)|

I
&
‘I

lim Z f (xih)e—“h(e‘%h—e“"(i+1>n)]

| 210y

=lim ¥ Eole %" f(#in); ih <C =(i+1)A]

hl0 sh<t
=E,[e%r(.); E=t].

Therefore the condition (c. 2) of [6] is automatically satisfied i.e.

10) Cf. Dynkin [3] or Ito-McKean [8].
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3.5 Pf=t]=0 for any fixed #€[0,co).

Now let z; be an infinite collection of Z;, precisely speaking, we define z; as
follows: put

S=(DxN)u{dl, N={0,1,2,3,--},

(3. 6) _
W =(WXN)U{w.},

where w, is an extra point, and

(z), k), if w=(@w,k), and <L)
)= ]
4, if w=w, or t=L@),
C-(W), if wxw,
C(w)= .
0, if w=w,,
(O, k), if <)
3.7 2w, k)= . -
W, it ={(@),

P i[Al=Pa[{w; (@, k)eA})],  AeN:,
Pj[A]=P,JAn W],

where N; is the Borel field generated by z;(s<#), No=V:>o N;, and we write as
xy= (&1, k).

Clearly {W*, N3, Plz.xy, 21, C, 03} is a strong Markov process on .§=(D><N)U {4}
which has right continuous path functions with left limits with 4 as a terminal

point.
Next we define a probability kernel =(wr, dy") on W*XS by

(@ e-w),dy) i 0<l(w)<4oo,
3.8 m(w", dy*) =

o4ady), if &(w)=0, or oo,
where
02(dY)0k41, 10 if ¢*(2)=0, and wy=(y, k)"

' ((x, k), dy')={ )
0Ady*), if ¢ (x)>0,

3.9
7'(4, dy*)=dAdy").

11) When D contains a point 4 as a terminal point of the basic Markov process and
ac-=3, where  is the first hittng time to 3, we put «'(6, %), dy)=3sdy)dx Where
y'=(v, ¥), and assume ¢(3)=0,
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Then it is easily seen that =(w",dy") is an instantaneous distribution of z;. We
can get, therefore, a strong Markov process {2, N, Pz, 1y, (, k)eS, Xi=(x:, k), €, 0}
on S which has right continuous path functions with left limit with 4 as a termi-
nal point by means of theorem of piecing out stated in §2. We shall call this
process X;=(x,k;) on S Markov process with age. We give a picture of this
process in Figure 1, where

a(w)=inf {t; X, ¢ DXk, when ki(w)=F},
(3.10) =oo, if {} is void,

o(@)=0,  o(w)=0(0), on(W)=0ni(®)+0,, 0(@), (2=2)»

peeme Dx3
// X04— /,l/XUS
/) Xo,
,’/,f""""’“' :/ Xos_ Dx2 )
a | $
A'{“------------"" Xoo_ ’
\\ fXg Dx1
\ |
c*Xo)>0
K ¢ (Xo_)>0 %\jb D
LI L N e S X x0
X, oY WA

Figure 1.

LeEMMA 3.2. Let f be a non-negative measurable function on D, 2 a positive
constant, o a non-negative constant, and

¢ t
b= bands,  bitor={ setonas,
0 0
wherve b is a non-negative measurable function on D. Then we have'®
+\7
@G.11) E(z‘,k)[f’z(Xt)e_abt; O'ngt<0'n+1]=EZ[f(xt)€_abt_% (XZ:) :,lk;

wheve the expectation ﬁ‘z of the right hand side is that of the basic process, and
f+2 is a function on S defined by

12) on #=0,1,2, ) is N;s-Markov time, and Py, i,[SUpn 62 <0 ; Va, 0n<L]=0.
13) We will use the same notation b;, but it may produce no confusion.
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fX(x, R)=f(x)A%,  if (x,k)eDXN™
fA(d)=0.

(3.12)

Proof. By the way of construction of X, we have E,i[f-A(X)e ;<o)
=FE[f(x:) exp (—abi—¢)]A*. Thus (3.11) is true for »=0. Assume that (3. 11) is
valid for —1. Then we have

E,ulf-A(X)e™ % on =t <onyi]
=EG ulf A X)e™; 6n=t<0n41, ¢ (2,-)=0]
=FEw, nle” % Ew,,ry[A=3f (11_s)e™ V=% 01 =t—5 <0n]|s=0; 0=¢, ¢ (2,-)=0],
=E il Ew,_ e [R50 f (21-5)e™ 0% on1 =t —5<0nl|s=0; 0=t, ¢ (2,-)=0],

noting (3. 4) and k,=k+1, we can continue the above, using the induction hy-
pothesis and Lemma 3.1, as

(Apg_e)"*

[ (*t
:Ez _Sodgog- e—?s—abszsI:f(xt_s) e—-m-s—nbt—-s (n_l)!

ety =0

=FE, ’_Stdspge—?s—nbs F(@)ePe-sUsWr=abe_s (Us) (Api_s(Ostw))** ] piaa!
| Jo (n—1)!

[P b e —e)) !
= e p )| 2dei W]”

i 2 +\7
=E, _f (21)e~ =0t (_%] 2.

Thus (3. 11) is true for #.

CorOLLARY 3. 3. For a non-negative measurable function f on D and a positive
constant 1

(3.13) Ecawlf- X)) =Ea flwe i 12,
(3.14) Eco ol f-AXDe"]=Eol f(m)e >+ 12t
Remark 1. From (3.11) we have
(.15 Ew,ulf-AXp); on=t<oni]=Eca,o[f- AX); o=t <on.1]2.
ReEMARK 2. If we take 2=2 and put
tf@)=FEw,olf-2X)],

14) When 2>1 (1<1), at®=4o0c0 (40) and when i=1, 1+>=].
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then
3.16) : f(x)=E,[f(x) exp (S:c(x,)ds)].

Therefore, if E.Jexp (Jtc(xs)ds)]<e% with some constant ¢,>0, it defines a semi-
group on B(D), the space of bounded measurable functions on D, which may
describe the creation of mass.

§4. Branching Markov process with age and sign.

We shall construct a branching Markov process with age and sign which has
the Markov process with age as a “non-branching part” (this terminology comes
from [6]). Let {2, N;, P.xy, (x, )€ D X N, X;=(x, ks), 6:} be a Markov process with
age on §=(D><N)U{A} constructed in the previous section, but here we assume
that ¢(x) which appeared in the first paragraph of § 3, is non-negative. Taking the
same functioh ¢, we put

4.1) ¢z(w>=S:c<x.,<w»ds,
and
4. 2) m(w)=exp (—pw)).

Let {2, N,, Peoky, Xy C, 6, be the my-sub-process of the Mar_kov_proces_s vgith_ age XQ
Next we make the n-fold symmetric direct product {2, ?s Plogy X3, €, 07} of X,
which stands for #-particles moving on and growing older independently. Here

Gr=0x0x-x4,

C-n(w)=min {z(wk); k=1! 2; ) n})
4.3) _ _ _
P(Xc(wl): ) Xt(wn))y if t< C"(G)),

X;‘(w)={ ]
4, it 1={%(o),

Y a q P
?w=(0cw1) 0lw2) R 0&‘” )y

where w=(o?, @?, -+, ®™e2" and p is the natural mapping from the direct product
S™ onto the quotient space S*. Let N7 be the smallest Borel field with respect to
which X* (s=<¢) is measurable and put for AeNZ,

Peay iy X Pagogy X+ X Peag kp[AL, if  z=(x,k)eS™,

4.4 PJAl=1 _ _
*9 (A {P,,x---xR,[A], if z=4.
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PROPOSITION 4. 1.9 The n-fold symmetric direct product {2", N7, PG, X7,E7,07%)
defined above is a strong Markov process on S"U{d} which has right continuous
path functions with left limits, with 4 as a terminal point.

Now we prepare four copies of the direct sum of all X3, n=1,2,3,). Strictly
speaking we construct a large Markov process Z% on 8§ in the following way: We
put

@ 5) §={<7QOS”)><]}U{A}.

where S=DXN, N={0,1,2,3,---}, /={0,1,2,3}, S°={0} XN, 0 is an extra point, and
S” (n>1) is the symmetric #-fold direct product of S. Moreover we put

A. 6) @=U G"xJ, 3" ]={ow; keN, je]}

where {w;;} are extra points, and

(o), if o=(0,j), wel

)=
o0, if weQ'x],
(X¥w),7), if o'=(0,)eld"x], <),

4.7 ZYo")=14, if wel"x], t={%w),
(a, kyj)’ if w°=wakj€g°><f,
3o, ), if 0'=(0,7)el"x],
0%0° =+

Wik j, if @"=wsm;.

Let NY be the smallest Borel field with respect to which Z3, (s<#) is measurable,
and put for AeN?,
Plegl Al=Plplio; o'=(0,)eA, 0e Y],  (x, k)eS,
to.%, HLA]=010, ) (4),
P9 is any probability measure on (£2° N?) such that
Y[ Z(w®)=4 for all €0, c0)]=1.

4.8)

PROPOSITION 4.2. The system {2° N3, Ploxs, 2%, (% 03} defined above is a

15) A proof is found in [6].
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strong Markov process on § ={(U$=0 S™ X JYU{4} which has right continuous path
Sunctions with left limits with 4 as a terminal point.

The process Z9 is a mathematical model of motion of arbitrary number of
particles moving on and growing older independently in four countries (the same
copies).

We will write in the following as Z¢=(X?¢, J%).1®

The next step we have to do is to define a law that governs the situation of
splitting of particles and that decides a country where those particles will imigrate.

Let {g,; #=0,1,2,---} be a a sequence of bounded measurable functions on D
satisfying

“.9 5 la@)=1,  aeD,

where |gn|=¢i+qn, ¢2=¢.V0, gz=(—gx)V0, and take a sequence {m.(z, dy);
n=1,2,3, -} of probability kernels defined on DXD", n=1,2,3, -, where D™ is
the n-fold direct product of D.'”

First of all we define a probability kernel on SxS*, #=0,1,2,3, - by

7'L'O((x) l)) d(y’ k))=5(6,l)(d(y’ k))’
(4' 10) ﬂﬂ((x) l)x d(y) k))zﬂ:l((x) l)y P_l(d(y, k))))
777,2(('27; l), d((’.l/n kl); ) (ym kn)))=ﬂ'n($, dy)a(l,u(dk);ngly

n—1

where (y, k)=((y1, £1), -+, (yn, £2))€S™ and p is the natural mapping from the z-fold
product S™ to the #n-fold symmetric product S™ and put

*((x, ), d(y, k) = i a5 (2)ma((, D), d(y, k)N S™),
4.11) =0

= ((x, 1), d(y, k) = i gi(@)al(, ), dy, K)NS™).

#* and 7~ are kernels defined on SX(U5- S™ and n*+4z is a probability kernel on
SX(Un=oS™.

Next we define kernels g and g on (2"N{w;0<E™(w)<oo}) X (Ui SH)™,
n=1,2,3, -+ by

=)
s (@, d(xs, k1), d(xs, k2), -+, d(2tn, kn))
(4. 12)

n (=) — n
= Zl Tgnwy=twin(®) 7 (Xzwiy (@), d(2i, ki) - Hl 5(237:(,,)_(«:1):((17(351: k),
1= =

J*

16) X9 takes values in U= S®, and J§ in J.
17) When D contains a point § as a terminal point of the basic Markov process and
x;-=0, we put |g;|(6)=1 (therefore |gn|(x)=0, nx1) and (3, dy)=20s(dy).
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where we write o=(0", @? -, ®®)e2™ Then we put

4.13) 1w, dx, k)=t (, 7(dat, K)),

where 7 is the natural mapping from (Ug- S*)™ to Ujeo S* defined below:

T((xly kl); M) (x'm k”))
4.14)
{(3, kitkot---ky), if (s, ki)=(0, k) for all i=1,2,---,n,
B P((x}: k})) (.’L‘f, ki)’ 0y (x:nl: k;nl), (.l';, %)) B (x?m k}l)’ Tty (l"ﬁ'”", k;'a‘”)), OtherWise)
where we take all (x,, k;)=((z}, &3), -+, (=%, k7)) which differ from (9, k), and p is

the natural mapping from U$-o, S™ onto Ug=e S™ .
Finally we define a probability kernel p(o® d(x, k,7)) on 2°x8S by

[l+((1), d(xr k))ahvf’-'_/“_(w’ d(x: k))ajz-f':

if o'=(o,1)e ng_nxf and 0<{%e?)<oo,
4.15)  p(e® d(x, k, 7"))=+ -
o(d(ex, k, 7)), if @’e U 2*x ] and (%e®)=0 or +oo,

0ok, (A0, I 7)), i @*=wa;€2°XJ,

where j; and j» are the functions of j (of w’=(w,7)) defined by the table:

0 1 2

1 0 3

2 3 0

3 2 1
Table 1.

A picture given in Figure 2 describes the mechanism of transition of particles
governed by the kernel p(e® d(x, k, j’)) defined above (but only for g,).
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-l

(z, &, 2)
’
@01 1 L 0,2)
(2 00T - == g (>0
S"x1 U S"x2 U S"x3
§
Figure 2.

We may write the transition mechanism more simply and symbolically as shown
in Figure 3, because the crucial point is the change of the variable j (of (x, k, 7))

depending on the sign.

~—

(=) | T—
o
~) | G
AT
0 1 2 3

8

Figure 3.

The symbol (+) and (—) in Figure 3 correspond to the sign appearing on the
shoulder of ¢$° i.e. to the case ¢i(x)>0 and ¢,(x)>0, (r=0,1,2, ---), respectively.

It is clear from the definition that the kernel w(o® d(x, k,s’)) is an instantaneous
distribution for Z9. Consequently we can apply Theorem 2. 1 to the Markov process
Z? and the instantaneous distribution px. Hence we have obtained a strong Markov
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process on § which has right continuous path functions with left limits before the
life time ¢{. We will denote hence-forth the process as {2, N, Z;=(X;, K3, J),
Pl k), (6, k, j)e@, ¢, 0:} and call it a branching Markov process with age and sign
(corresponding to the basic Markov process x; and the system of quantities {c, gn, 7a}).
The components X;, K;, and J; of Z, stand for positions, ages and sign of particles
at instant ¢, respectively, taking values in Uy D™, UZe N, and J.

Theorem 2.1 implies that this process has the following properties: (i) The
sub-process {Z;, Pix,xj), t<z} is equivalent to {Z3, P(xr.j,t<(’}, where ¢ is the “first
branching time (splitting time)” of Z,, i.e.

(4. 16) t(0)=inf {£; J{w)=xJo(®)},'®
and (ii) as a particular case of (2. 10)

Py,o.0lZ.ecd, K, 7)|Z.-]
4.17)

= goﬂn((x’ l): d<x,: k’)){q;(x)al,j"l'q;(w)a& j’}y yGD,

where Z._=(z,/,0).

Thus we have obtained a Markov process which was expected to exist in
Theorem 1.1. We will prove in the next section the remaining properties of the
process that are stated in Theorem 1. 1.

§5. Some properties of Z,=(X;, K;, J;).

In this section we shall prove that the semi-group U; of the process Z; has
the branching property (1.1) and provides a solution of non-linear integral equation
(1. 5). Proof of the branching property of Z; can be done in the same way given
in Ikeda-Nagasawa-Watanabe [6]'® with minor notational change caused by new
components K; and J; of Z;, which will be dealt with the following lemma and
Lemma 5. 2.

LeMMA 5.1. Let f be a measurable function on 8§ which is independent of k
and j. Then

6. B g pl(— D2 K f (X)] = (— 1) £ 0,0) [(— DV 22K (X))

where [+] denotes Gauss's bracket and |k|=X7 ki if k=1, ks, -+, kn). The equality
in (5.1) is taken to mean that if the left hand side has definite value then both
sides are equal.

18) ¢ is Ni+-Markov time.
19) Cf. Proof of the equivalence theorem, especially, Property B. III -Branching

property.
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Proof. According to the way of construction of the measure Py, the left
hand side of (5. 1) is equal to

SSP G Al (0, ', K, 7)) =122 f (') =1, say.

Now remembering that Pl j is the direct product of the sub-process of the
Markov process with age,?” and noting the following

0, A, B, )= D2 £ )= 250 o, e, ) — 1 ')

which follows from the definition of the kernel x, we have, using Corollary 3. 3,
I= S SX""P G0, [ d0 N0, d(x’, K, 7)) (=152 f ().

On the other hand if we take account of the function relation of j; and j.,
given in the Table 1 and the form (—1)Y"/% of the integrand, we have

1=(=1n (Pl aoldotlutt, dea, W, 70X—10 27 )

=(—=DYNRE o 0 0[(— DY AEAS (X)),
which is the right hand side of (5. 1).

Let us introduce some notation to state fundamental properties of Z;. For a
bounded measurable fuction f on D, we put

5.2) UL 2@, K, ) =Eaalf 22 e =t<erl, 720,
when ff-\:l(Zt) is integrable on {r,=¢t<z,41} with respect to Pk, Where z, is

defined by

(@)=0, r(e)=7(w), and
(5. 3) {

r(w)=1r1(@)+0.,_v(w), r=2.
We write also U$ instead of U{. Let ¢ be the joint distribution of « and Z, ie.
5.4 o, k, 9), dsdx’, k', j') =Puxjceds, Z.ed', k', 7).

Then we have the following property that corresponds to the property B. IIL.
of [6]. We will, therefore, call it also property B.IIIL

20) Cf. §2, (2.4).
21) Cf. (4.8) and (4. 4).
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[Property B.III1 Let f(x) and f(x,v) be bounded measurable functions on D
and D X0, 0), respectively. Then the following two properties hold:

~ /-f\/\/
(i) %f"z(xy k,])=(Ugf'l)|D'z(x:k;j);

t —
S SS (@, 0,0), dsd@’ K, i) F (- -2, K, §7)

0
(i
=&

=1

(0 60 0,0, dsa, 0, 0726, R, 0+ 1 VAL 5w 0,0

pF

where x=(x1, T3, ***, Tn)y k=(R1, ks, -+, k), and f’?ﬁ is defined in (1. 2).
Proof. (i) is verified as follows: For x=(x1, -+, x») and k=(ky, -+, kn),
L foA@, K, §)=Eao ) Lf- 220 <]
=(—DIEE 1ol F-AZ3); <L,

but since Pl 0 is equivalent to the direct product measure P,z of the subprocess
of the Markov process with age,?® the above line is equal to, by Corollary 3. 3,

(— )RR EL oL f AKX 3); t< 7]
=(— D)8 [T Ecay0,0Lf~4(Z0); <]
i=1

/-N\./
=(U%f'2)|17"1(x; k; .7)-

(i) is verified as follows:
~—
Elz0,0[f (-, 7)-A(Z); r=t]
3 [ .
= 3 Baool 942 Jo=', 7=t

but since when o=(o?, ? -+, "), r(0)=inf (r(0?),i=1, 2, ---,#), we can continue as
follows:

S~
22) When zeD, US[f(-,s)-2(,0,0)=Uf(-,s)- (0, 0), because Z:eS, <z, Pcz,o.0y-.€.

and f(-,8)- Ay, k)=S(-,5)- Ay, k), (y, k) €S.
23) Cf. (4.8) and (4. 4).
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3 n /\
= 3 B0 09 E0o L X K Ty e=c(oeds, s<x(@?), for pi)
7=01=1Jo
3 n t 0 . /\
= 2 5 cvrmpta| | [ o dw, k00 7C, 9 20 )

24)

TLF (-, 5)- AR Ea)eds, s<<°<wﬂ>,pa:i].
)

Il
NeES
M=

=3
Py
[
-

t , . /\
So(“”" B 0.0 [SS e, Ay, K, )3y, 17 C-, ) 2w, K); c0<-:ds]

.

'p];LE-(a:p,O) [f(‘) S)'Z(Xs); S<C]

= 3 { BevoolF 3 4@0 2eds) - ] Bagonlf 19220 5<),
=1 ¥

completing the proof.

LEMMA 5. 2. For a bounded measurable function f on D and positive 2, it
holds that

(. 5) UPfa@, k, j)=(—1 e Uefie, 0,0),
5. 6) U.f- 4z, k, j)=(—DE 28 U, f-Ax, 0,0).

These are taken to mean that if the left hand side is definite then both sides are
equal.

Proof. We prove (5.5) by induction. When =0, (5.5) is nothing but (i) of
Property B.1II. Let us assume that (5. 5) is valid for r=0.

g+ f3ex, k, 9)
=B )L AZ); Tri1 =5t <Tri]
=E e Ex, 1 s lf M Zams)s tr=t—5<tpial = e =1]
=Ea)(—DIPEAE x_,, 0)[ff'\j(Zt~s); T =t—5<trp1]ls=e; T=H],

where we used (5.5) for ». Then Lemma 5.1 implies the last line is equal to

(_1)”/2]1'kIE(x,O.O)[E(X,.0,0)[./;‘\1(Zt~s); T =t—5<tril |s=f; t={]

=(—1)IIUKE 0 )L F-AZ0); Trar=t<tpis],

24) Cf. (4.7) and (4. 3).
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which proves (5. 5) for r+1. (5. 6) follows from (5. 5) and

Ufi= 3, U S

r=0

which is verified by P, HlliMp.. o=C1=1 (cf. (2. 7)), completing the proof.

We shall state several Lemmas which correspond to Lemma 1. 2~Lemma 1. 6
of [6]. Proof of our Lemmas here can be performed by the same way as [6]
making slight modification of notation, which we can dispose of mainly by Lemma
5.2. All equalities that will appear in the following lemmas are taken to mean
that the left hand side is definite if and only if the right hand side is, and if this
is the case both sides are equal.

LeMMA 5.3. For a bounded measurable function f on D and positive 2,

~ t ~
6.7 UNUSE Dk )= S S§¢<<x, k, ), dod(@', K/, ) Um0 F300, K, 7).

~ ¢ ~
(GRY)) Uof-2(x, k, f)=S S W, k, ), dsd(’, K, ') U f-2(x", K, 7).
0J S
Proof. The above equalities are direct consequence of the strong Markov
property of Z;. In fact,

Ui, k, j)
=K (x,k,j)[ft\j(Zg); Tme1 =t <Tmi2)

= Ep NEz L A Zms); tn=t—5 <tmsllos; 1=1]

=( Pesilreds, Zeedw', k. USRS Tew, B, ),
0J S

which proves (5. 8). Next we prove (. 7).
UNUEf D), K, 5)
=K (x,k,j)[EZS[EZ,[fr‘\:Z(Zc—s—r); T 1 SE—S—¥<tm]|r=e; t=E—5]; s<7]
=K (x,k,j)[EZ,(gs,,,)(0sm)[f,:\j(Zt—s—r); Tm-1SE—5—7<Tm]|r=cagmr; $ <7, T(0s0) =t —5],

taking account of {; t(w)=s+7(0;0), s<t(w)}={0; s<t(w)}, this is equal to
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=E G Ez L[ AZ); s St—1 <tml|yos; s<c=1]
t ~y
:S Sg« Prpleedr, Z.ed@', K, 7 UT F- 2!, K, 7).
s
which proves (5. 7).

LemmA 5. 4. For (x,0)eS™, a positive constant 2, and a bounded measurable
Sfunction f(x,s) defined on DX[0,c0), we have

! o~
SoSsme¢((x’ 0,0), dsdx’, k', i) f(-, 8)- A", K’ , ")

1

7 ¢ o~ .
69 =z S S H((@s, 0,0), dsd@’, K, /) F (-2 A, ', 1)
1=1J0Jsm—(n—=Dxg

. ];I E(xp,o.O)[f(',s)'Z(Xs, Ky); s<z].
¥

Proof. If we put af, where « is a non-negative constant, in (ii) of Property
B.III instead of f, and compare the coefficients of ¢™ of both sides of (ii), then we
can obtain (5. 9).

LemMA 5.5. Let fi(xz,?) (=1,2,---) be bounded wmeasurable functions on
DXx[0,c00) and 2>0. Then for m=n—1, mxn, and (x,0)eS™, we have

L1, 9@ 0,00 daw, w0 | o 2 [l feotely o210 |
0JSmxJ m

e oz 1=1

ng((xi’ Oy 0): dvd(x/y kl)j,))

Sm—-n+1x

610 =S:z§:1< ;@ >("‘-Zn:+1) (”il)! Z**S

1 m—n+1 , o)
'{ (m_n+1)! Z* hl_—II f*(xf,n v)xkh(_]-)rj /2 [pl;l;E(xp,O.O)[f**(" U)'R(Xq;, Kv); 1)<‘l']

where Y. denotes the sum over all permutations = on (1,2, -, m), X m-nt1, the sum
over all choices (qi, Qsy ***y Gu-n+1) Srom (1,2, .-, m), * the sum over all permutations
T on (G, Gm-ns1) ANd 2 %% the sum over all permutations = on (L, -+, ln_1) which is
the remainder of (1,2, ---,m) excluding (qi, ***, @m-ns1)-

Proof. If all f, are the same ones, (5. 10) reduces to (5.9). In order to deduce
(5. 10) from (5. 9), we have to use a formula of permanent: Let (a.;) be a mXm-
matrix, then we have
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m m m m ‘m—1
2 ey =11 (Z am)* 2 H( akq.1>+
T J=1 7=1 \k=1 1y kg —1) J=1 \g=1

. 11)

m

+ 2 <gakq,])—---+<—1)m-l ;jjlak_,,

Ky kp—2) =1

where 3 ,....x,, denotes the sum over all choices (&, -, k,) from (1,---,m). By
means of this formula the integrand of the left hand side of (5. 10) can be expressd

as a sum of functions of the form gf-\ﬁ therefore we can apply (5.9) to each term
and verify (5.10) as follows. The left hand side of (5.10) is equal to, putting
(xly kly j,):zy

S:Ssmx.r 9(,0,0), dv dz) %{ m @)

&N = —
= 2 (Bh0)aet - BACT A6,

and by (5.9) in the previous lemma, this is equal to

B 900 d0az) 2] (B )am- 1o [ (Bric0) 20,0

p¥

—
- B ()1 O () 20,04 -]

(Fgyeeifogm—1) \q=1

Applying again the formula (5.11) of permanent to the integrand { } above, we
can express the above line as

n
2
i=1

SS (@, 0, 0), dv A=, k',j'»{ T facns @ty 2)- 24 (—1)”"2]}
gm—(n—1) 7 k=1

0

‘p]gz U%[fn(hp)(' ) U) '2](‘7/‘137 0’ 0))

where £2=1,2, -, m—n+1, and {hy1<p<n, pxil={m—n+2, -, m}. Since
ml=0")n—! m—n+1)! and .= m-n+1, 2¥* 1%, this equal to the right hand
side of (5. 10).

LeMMA 5.6. For (x,0)eS™ and a bounded measurable function f on D, we
have
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t n
z {5
1ty =r J01=1

Sg W@, 0,0), do de, K, ) UL, B, 77)

5.12) -1 UAUS® £z, 0, 0)

pX

= Z ﬁ Ugri)ff?jz (J?i, O: O),

Tty =r+1 1=1

where Yy .iry=r denotes the sum over all combinations (ri---rz) of nom-negative
integers such that v.+---+r,=v, permitting r;=v,.

Proof. If we put ¢"ov)=UsU"%f A(x:,0,0), then the left hand side of (5. 12)
is equal to, using (5. 7) in Lemma 5. 3,

S d— gD @) [] 67 (0).
¥

Tyt trp=r SO 1=1

Replacing 7;+-1 by 7; and noting dg‘»(»)=0, we can express the above as

t n

S d(—g> @) ][] 9P ()
Trtetr=r4+1 J0r=1 p¥

= 2 ﬁg‘”’(o),

Tt trp=r+11=1

which is equal to the right hand side of (5.12).

LemmA 5.7. For (x, k)eS™, we have

5.13) UP P, b =(—1Fm 3 [] UeoF iz, ks, 0).

Tt trp=7r1=1

Proof. When r=0, (5.13) is just (i) of property B.III. Let us assume (5. 13)
is true for 1,2,3,---,7. Since Lemma 5. 2 implies

U+ Foax, k, f)=(—1)EA06 U £, 0, 0),

it is sufficient to treat U+ ff-VZ(x, 0,0). However by Lemma 5. 3

~ t ~
I= U§r+1>f' X(x’ 0’ 0)=S SA ¢'((xr 0: 0): ds d(xI, k/s j/))' Ug?&f"z(x,) kl’ j,)}
0J8
and hence we can apply (5.13) to the integrand U, ff?J/l(x’ ,k’,j") by the induction
hypothesis, Then applying Lemma 5. 5, we have
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= 3 ‘s **S 0,0), dsd(’, K, 7'
m=Zn:—1r1+rz+Z-:+rm=rSOt§( Z >(7"Zn+l) (% 1)1 Z S'n-”+li¢((x ) s (x k J))

. ___1___ « " (rs) k U'/z]} O[T Foql( !
{(m_n Tor ZF I Ui, 0,001 - T UL 25,0, 0,

Where 74=%y,ny T4x=%ip(py and 2* and Y ** are given in Lemma 5.5. Noting
that

)
71+t rp=r (m—n+1) (m—n+1) 7y +etry, (+r/=r a1t rgm—n1="
._1— Z*=

(m—n+1)!

Tg gy —p 1= Tq,t g n 1=

we can express I as

oo t n 1
J= S kk
m=Zn—1 rll+~--+r§_1+r'=r Oz§1< m ) (m—Zn:-H) (% l)Y Z
n—1

3 9(@5,0,0), ds ', K, 1)
Sm—n+1xJ
m—n+1
{ H U2 f-2ah, 0, 0)2(—1DFm L - [] USLUL f~A(zh, 0, 0)
rql+~--+'rqm_n+1=r’ h=1 pxL

0 m=n-1 (m—n+1) ry+--+rp=r
n—1

U3, K, 7 T] USUSRF (w5 0, 0),
e

where we used the induction hypothesis for » <r and wrote (r, 75, -++, 7») instead of
(7135 115+, 1, _,, ¥').  Hence we have

I= tZS W((,0,0), ds d@’, k', iNUIL -2, K, 57)- l—I UAUR f (5, 0,0)

Tyt =7 SOz—

= Z ﬁ Ugri)f"\'i(xi; 0) 0))

Tt trp=r+l =1
by Lemma 5.6. Thus we have obtained (5. 13) for r+1.

We are now ready to prove the branching property of U,.
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PrOPOSITION 5. 8. The semi-group U of Z, has the branching property:

~ /-N\/
Uif- 2@, k, ) =(Uf - D) p- 2, k, )2

Proof. First of all we note Pk, ;) [limpw 7on=C]=1. This follows from the
construction of Z; (cf. §2, especially (2.7)). Therefore by Lemma 5.7 we have,
taking (x, k)eS™,

Ufoae, k)= 3 USF 366, k, )

=0

e DD N | R T EW N

=0 71+t rp=r 1=1

=198 3 - 5 [ U0 Faws by 0)

r1=0 Tp=1 1m1
(5. 14)
=(—1)u/2 ﬁ ST USF (s, ki, 0)
=1 r=0

=(—1)W ﬁ U,f-a(xs, 0, 0)
1=1

/?—/
=(Ucf*D)|p- A, k, 7).

On the other hand since (9, &,7) and 4 are traps, we have

~ /'N\/
U.f+ 4@, k, )=(—1)V=(U.f- D|p- A0, &, 5),

(5. 15)
—

Ui f-2(d)=0=(U.fD)| o+ ().

(5. 14) and (5. 15) prove the branching property of U..
Now we shall prove (1.5) of Theorem 1.1. At first we define a kernel = on
(Sx{0)x S by

(5' 16) 7[((.%‘, l) O); d(x/7 kl, j’))=7r+((x, l)y d(x,y kl))al.j’"i'ﬂ_((x; l)’ d(x,’ k,))52.j’,
where z* and =~ are defined in (4. 11).

LEmMMA 5.9. Let By, B, and Bs be Borel subsets of [0,0], DXNX], and @,

25) We define Utf"\j(x, k, j) when f:\'l(Z;) is integrable with respect to P k,j)-
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respectively. Then we have
(5.17) E,0,0l15,(0)8,(Z:)8(Z)]= Ez,0,0)I,(0)]8,(Z:)n(Z.-, B)].
Proof. This follows directly from the way of construction of Pz,o,0y:
Ew.0,00[15,(0)5,(Z: ) Z0)]
=K ?x.o.m[IBl(C“) Ip,(Z ?L)Sﬂ(w‘), ae’, K, 7)) s, (7, k',f’))]
=E%z,0,0[I5,E)5,(Z % )n(2%-, Bs)]
=Ew,0,0[18,(0)5,(Z: )n(Z.—, Bs)].

In order to write down the integral equation which is satisfied by U; jr"-vl(x, 0, 0),
we have to introduce some notation:

Fla, il=go(@)+ 3 0:(&) | oo, dpi),

5. 18
.19 K(z, dt d@y, F))=Pes.o wolzedt, Z._cd(y, £, 0],

u(t, )="U.f-X(,0,0), zeD,

where f is a bounded measurable function on D.

In the following we shall assume that w«(f, z) has definite value in [0, T),
Te(0, oo], that is, fr-\:l(Z;) is integrable with respect to P,0.00. Then we have by
the strong Markov property of Z;

u(t, -'E)=E(x.o.0)[fr:i(zt); t<T]+E(.Z‘.0,0)[[]t—rf"\i(Zr); tZT]-

By Lemma 5.9, the second term of the right hand side is equal to
1= e[ veds, Z.- e dtw, b, 05 (1, 1,00, dtwr', o, MY UF 30 1,70 |
-} SSK (e, ds &y, k»{ { (@R, W, KU 2, K, 1)
+S§n'<<y, k), Ay, k) Ueesf 20", K, 2) }

but by the branching property of U; and (5. 6) in Lemma 5.2, we have
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S,
Uiesf -2y, k', )=2%1(Us-of - Do (¥"),
N

Us-sF 2y, Ky 2= =2 Upof Do @),

and hence

: . .
1-{'{_x@.asaw m{@o-awrt E@-ae| .- )

= St SSK(‘% ds d(y, R)A*F [y, u(t—s, *)].

Thus we have proved that #(#, x) satisfies the following non-linear integral equation.
ProrosiTiON 5.10. If f?ﬁ(Z,) is integrable with respect to Pcs,o,0, for te[0, T),
then u(t, z)=Ec,o.0, [f-4(Z0)] satisfies

~ t
619 ut, D=0 ke 0,0+ | K, dsdw, maFL, s, )
0JDXN
where [ is a bounded measurable function on D ane A is a positive constant.

LemMmA 5.11. For a non-negative measurable function f on D, we have

(5. 20) S K(x, ds d(y, B2 ()= T(c-f)@)ds,
DXN
. 21) UL f- 4z, 0,0)=T®f (),

where T™ is the semi-group defined in terms of the basic Markov process x, on D
by TPf (x)=Ex[f (x)e 2.

Proof.
SDXNch, ds d(y, S W)

=E0.0lceds; FA(X., K]
=FE,nlleds; f- A X )
=E a0l f+ XX **dips]®
=], say.

26) X, }—’@,k,} is the exp (—g:)-subprocess of the Markov process with age where
pt=[tc(xs)ds, cf. the first paragraph of §4.
27) {Xi Pcx,ry} is the Markov process with age.
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Since dps=c(xs)ds, we have
I=E@,ol(c 1) A(Xs)e*]ds.
By Corollary 3.3, we have
(5. 22) Ea,0[(c-f)-A(Xs) exp (—@5)]= Exlc(xs) f (2s)e~P%].

Thus we have proved (5. 20).
Next we show (5. 21);

U f-i(z, 0,0)
=E 0.0l -4(Z); t<7]
=FEa,0lf2(X;, K7)]
=Ew,olf 2 X)e ]
=Ez[f(x)e D%
=T f(x),

where we used Corollary 3. 3.
Combining proposition 5.10 and Lemma 5. 11, we have

ProrosiTION 5.12. If f:l?(Z;) is integrable with respect to P, o,0y, then u(t, x)
=Ew, 0.0l AZ)] satisfies

(6.23) ut, ©)=T f () + S ds TP(F [, ut—9))(x),
0

where F is given in (5. 18).

Now, in the following we will prove the last statement of Theorem 1.1. First
of all we need the following lemma.

LemMmA 5.13. For an initial data f satisfying ||fl|=r<1, there exists ¢>0
depending on v and ||f|| such that there exists the wumique local solution v(t, x),
tel0,¢), of the integral equation (5. 23).

Proof. For any r satisfying 0<7<1, there exists a constant c¢(#) such that for
bounded measurable functions # and » on D,

(5. 24) sup sup | () —B(@)| < ()| |lu—]),

provided ||#||, |[v||=7, (cf. Lemma 0.1 of [6]). On the other hand we have
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(5. 25) |F[t, u]—F[z, v]| < Z_}l |gn(x)] Slip fgz [d(x)—B()].

Therefore it holds for % and » satisfying |||, |l¢]|=7 that
(5. 26) |F[-, w]—F[-, v]||=c@)||lu—2]|.

Hence we are able to apply a Theorem due to Segal ([19] Theorem 1.1, cf.
also Kato [9]) to the present case, that is, if we put

o, £)=TP f (),
un(t, 2)=T® f(x)+ S dsT PCF-, tnaE—9)Dx), nz=l,
0

then we can find ¢>0 such that u,(#, x) converges for #€[0,¢) and it supplies a
unique local solution of (5.23), and hence we obtain the assertion of the lemma.

Next we borrow the following lemma from [6],2 which is easily proved by
induction for 7.

LemMA 5. 14. If v(x) is a solution of (5. 23), then it satisfies

=1 =1 s

n n t n
6. 27) [ T@Pvs(@)=[] T®f (xi)+S dr Y, TP (cF [+, vi-e]) (@) [ TP01-r(2p).
=1 ¥
PRrROPOSITION 5. 15.2  [f v/x) is a solution of (5.23) and if we put

Bet, Ky )= (=198 [[ oz, if (x, K)eS™,
=1

©.28 540, by i) =(— 1)y,

17&(4) =0’

then ¥, satisfies the following integral equation of vemewal type*®

(5. 20) 3, k, )= U* f~4x, K, ) +S Ss¢«x, k, i), ds ', K, 7))

¢ ijt-s(x,; ky j,)y (x: k’ ])GS\’

28) Cf. Lemma 4.4 in [6].

29) This proposition is stated here in its own interest. We shall not use the pro-
position to prove the last statement of Theorem 1.1, but we use a version of it in the
following proposition.

30) This is called M-equation in [6].
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where

¢, k, 7), ds d(x', K, §"))=Pa,x, ) [ceds, Z.edx’, k', 1")].

Proof. Since (x, k, j) has clearly the following property

. o~
ﬁt(x, k, ]) = ﬁt( ° ) ID' X(xa k) j)’

the equation (5. 29) can be written in the form

5@, K, 1) =(— 1)U [] T f ()
7=1
(5. 30)
t n
+S s 31 (— L TP (-, i) @) [] T0A)l?,  (x, K)eS™,
0 =1 p¥

by the Property B.III and Lemma 5.11. However (5.30) follows directly from
(5. 27).

ProPOSITION 5. 16. For any initial data f satisfying ||f||<r<1, there exists

>0 depending on v and ||f|| such that ff-\j(Zt), tel0, ¢), is integrable with respect to
the measure P r.j) of the branching Markov process with age and sign, and hence

u(t, x)="U, f'-\/i(:v, 0,0), where te[0,¢) and xeD, is a unique local solution of (5.23).

Proof. Let f be a non-negative®” measurable function on D such that || f||=7<1.
First of all we remark that Lemma 5. 13 is valid when we replace F' in (5. 23) by

. 3) 1P1 e, wl=1ao@)|+ 3 a:@)| | mnte, dico

Let v(x), 2€[0,¢), be the solution of (5.23) with |F| instead of F, the existence of
which is assured in Lemma 5.13. Then w/(x) satisfies (5. 27), where F' must be
replaced by |F|. Put
B, ky )= [1 oo, if (v, k)eS™
=1

(6. 32) ﬁt(a’ k’ j) = lk:

ﬁg([’ ) = O.

Then it is easy to see that #, satisfies

~ N .
31) |f-4]=||f)-4]. Therefore it is sufficieent to consider a non-negative f.
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t
0

6.33)  dux K )=U|F 2@ K, j)+g S§¢<<x, k, 7), ds d@', K, 7))
'6t—s(x,’ k,) jl)’ (x: kyj)e§°

In fact, (5. 33) is equal to
i 13 n

(5.34)  Dux, k, )= [] T f(w:)aké -I—S ds 35 TP (C|F| [+ vesl) (@:) [[ TP0e-s(5)2%,
1=1 0 =1 ¥

by a version of the Property B.III for f/-}(x, k,j7) = f/~>(x, k). (5.34) follows from
(5. 27) with |F|.
Now, it is clear from (5. 33) that

U |4, k, j)=bilex, k, ).

Assume that
N o~ - A -
2 UP|f- 2, k, =0, k, 7).
n=0
By the definition of U{™ and the strong Markov property of Z;, we have

N+1 ~ ~ .
Z_o Ui\ f 2, k, )= Ui\ f-2|(x, K, 1)

e b asaw v (8 v, w).

By the induction hypothesis, the second term of the right hand side of the above
equality is less than and equal to

t
S S§¢((x’ k: j)) ds d(xl, k’,j’))ﬁ,_s(x’, k,) j/)'
0
Therefore we have
M+1 ~ . ,
2 UP|fal(x, k, )<bux, k, )<oo,  te[0,¢).
n=0
and hence
~ N ~
(5. 35) U f-Al(x, k, J')=11Vim Z_Io UP|f-al(x, k, ) <bi(x, k, j)<oo,  t€[0,¢),

which proves the integrability of ff-\:l(Zz), te[0,¢), with respect to the measure
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Pk, j). Accordingly u(, x)==U¢f’?/1(x, 0,0), £€[0,¢), has a definite value and hence it
is a solution of (5.23) by (ii) of Theorem 1.1, which has been proved already.
The uniqueness part of Lemma 5.13 implies v(¢, x)=u(t, ), where v(f, x) is the
solution guaranteed in Lemma 5. 13.

Thus we have completely proved Theorem 1. 1.

REMARK. When F[z, #] has the following form
N
(5. 36) Pl ll=que)+ 2 0ao)|  7ole, d)iy),

where N<+oco, the previous proposition is true for any bounded initial data f on
D. In fact, when F is given by (5. 36), it satisfies

(. 37) |F [, u]— F [z, v]| =c()llu—2,

provided ||#||, ||v]|=7, where 7 is any positive number. Therefore Lemma 5. 13 is
true for any >0, and all arguments following Lemma 5. 13 are of course applicable
for this case.

§6. Some comments.

(A) When all ¢g.(x) are non-negative, we may use U%-oS"Xx{0,1} as the state
space instead of U=, S™x{0,1,2,3}. In fact particles starting from Ug.,S™%x{0, 1}
do not make transition into U, S"X{2, 3} and vice versa. In this case we shall
call the process Z; on Ug—o S™X{0,1} branching Markov process with age.

Let Z: be a branching Markov process with age on Uj-,S"x{0,1}. We have

I\
already proved that when #(¢, )=Ez,0,0[f+-2(Z:)] has a definite value it is a solution
of the non-linear integral equation:

©.1) w(t, 5= T?)f(x)+S:dST?’(CF[u(t—S, M),  weD.

We shall remark that u(¢, £)=FEwu,o0[f+A(Z)] is the minimal solution of (6.1) when
f is non-negative.

LEMMA 6.1. Let f be a bounded non-negative measurable function on D, then
N © n
u;(x, k: ])=E(x,k,j)[f° X(Zt)]y (xr k’ j)G ﬂL=JoS X {0) 1}

is the minimal solution of the following integral equation of renewal type
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N\
ui(x, k, ))=ULf- A%, k, 7)
(6. 2)

t
‘l‘SO Sssb((x, k,j),dsdx’, K, i Nue—ox', K',5'),  (x, k,j)eS
where S=Uz-0 S"x{0,1} and

H(Cx, K, 3), ds d@x', k', §)) =Pk, j)lreds, Z.edx', k', )]

Proof. If vdx, k,j) is a solution of (6. 2), then clearly
N\
Z)g(x, k’ ]')2 Uﬂf-l(x, k’ j)'
Assume v(x, k, =28, U™ f/-3(x, k,7), N>0, then

- /\ - - . N /\ .
o, K, §)= USF 3@, K, ]>+S S K@, K, ), dsd@, K, 1) 3 USBF36, K, 1)
S n=0

t
[
N+1 2N
= Z Ugn)f"z(x; k’ ])-
n=0
Therefore

ad N\
vt(x’ ky J)zut(xy k; ]): ZO Ugn)f'l(xy ky ])’

completing the proof.
Let v(x) be a solution of (6.1) for non-negative f, then

b, k)= [ o), @, Bes™,

is a solution of (6. 2), which is already proved in the previous section. Suppose
that vy(x) <#e(x)=Ez,0,0,[ f{}(Zt)], then we have 9.(x, k, 7)) <u.(x, k,7). This contradicts
the fact that u.(x, k,7) is the minimal solution of (6. 2). This implies that #.,(x) is
the minimal solution of (6. 1).

B) When ¢i(x)=<0, (but the other g¢.(x) are arbitrary), we need not use
U= S™%{0,1,2,3}. Instead, we may use Ug-oS"x{0,1} as the state space. In

this case, we have to replace ff-\:l in (1. 2) by

.29 Fate, b, i)y=(—17 i, k), 7=0,1,
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and the table 1 by Table 1’ below to define the instantaneous distribution in (4. 15).

\ J1 Iz

0 0 1
1 1 0
Table 1’.

Figure 3 is simplified as follows:

(+)

U S"x{0,1)

n=0

Figure 3'.

(C) When all gn(x) are non-negative and in addition if ¢,(x)=0, then we do
not need any discussions given in §4 and §5, because we are able to use the
branching Markov process X; defined on Ug-, S™, S=D XN, developed in [6], taking
the Markov process with age constructed in § 3, as a non-branching part. We shall
call this Markov process on Ugm-o S"U{d4} branching Markov process with age, too.

As an application, we can treat the problem of the blowing up of solutions for
the following non-linear integral equation

w(t, @)= Tof @)+ S:dsn(c-u(t—s, W), B=23,

in terms of branching Markov process with age. Here T is the semi-group of d-
dimensional symmetric stable process with index a, (0<a=2). The behaviour of
blowing up of the solution depends on the dimension d, the index «, and the power
B, (cf. [4] and [17]).

(D) Let E be a compact Hausdorff space with a countable open base. Assume
there are given conservative strong Markov processes that have right continuous
path functions with left limits, { W*, Nt, P4, ¢, 64 and {W?, N3, P%, (3% 63 on EX{l}
and EXx{2}, respectively. If we put
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D=FEx{1,2},
{W= Wiu W?,
(W) =xHw), if wewt, i=1,2,
Ny=N}V N,
(6.3) Peiy=P%,  i=12,
Cw)=Cw), if weW? i=1,2,
0,=0¢ on Wi i=1,2,

then {W, N, xt, Pes,iy, §, 62} is clearly a strong Markov process on D=Ex {1, 2}, which
has right continuous path functions with left limits.

Now we take this process as a basic Markov process. Let {gi(x); »=0,1,2,3, ---},
1=1, 2, be sequences of measurable functions on FE satisfying

6. 4) D lg@l=1  i=12,

and taking sequences {a¥(x); #=0,1,2,3, -}, (;,j=1,2), of non-negative measurable
functions on E such that

(6. 5) ai(x)+fai(x)=1, i=1,2, and #»=0,1,2,--,
we put
ma((, 1), A, U))= a8 (2)5 ¢z, 13, .13,y 2, 13>(dX 7))
N————e

(6. 6)

FAFHX)0 (.2, (@, 2300 (0203 (AEX T)).
N—————”

n

Then =, is a probability kernel defined on DX D™ .3» Finally let c¢¥(x), i=1,2, be
non-negative measurable functions on E, and put

c(z, 1)=c¥(x).
We can apply Theorem 1.1 to the system of quantities: the Markov process

{W, Ny, P, iy, 2, &, 0s), (=, 3), {gi}, and {za((=, 2), d(x’, i’))} defined above. Therefore
we have a branching Markov process with age and sign

(0N, o 2,500 on §=(U s*xT)uia)

32) D™=DxDx---XD.
~_

n
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where S=EX{1, 2} X N.
Now we define a function f on D=EX{l, 2} by

(6' 7) f(.Z‘, Z) =f(x); i=17 2’

where f is a bounded measurable function on E. Taking 2 as a weight of age,
we put

6. 8) uit, D)=Ecoinolf-2AZ)], i=1,2; zeE.

Then w;(t, x) i=1,2 satisfy, when they have a definite value i.e. fi\é(Z,) is inte-
grable, the following system of non-linear integral equation:

ity )= T%f(:G)-FS:dsT},{cl 20 h(aut—s, )"+ aus (t—s, ;)”)}(:c),
6. 9)
us(t, )=T%f (x)-l-Sods Té{cz Z_}oqi(ai‘ul(t— S, )"+ aBus (t—s, -)")}(:c), zek,

where 7% and 7% are the semi-group of x} and x? defined by

{T%f(x)=E<z,n[f (@)], =eE,

(6. 10)
T%f(-x):E(z.Z)[f(«Z’%)], xek.

Thus Theorem 1.1 is of use to treat a system of non-linear integral equations in
terms of Markov processes.

For example, the equation of Nagumo [18] for an active pulse transmission
line simulating nerve axon

2.
aaz? =chaa—:;—+c<ul—%—ui>+cuz,
6. 11)
3u2 _ 1 b
Tt T e

can be treated as a special case of (6.9), (cf. also [1] and [22]).

Added in proof. As for a limit theorem similar to the one for nerve axon, cf.
M. Nagasawa, A limit theorem of a pulse-like wave form for a Markov process.
Proc. Japan Acad. 44 (1968), 491-494.
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