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PATTERN RECOGNITION BY RANDOM NET

BY YASUICHI HORIBE

1. Introduction.

It might be said that the significance of the role played by random trans-
mission of information or signal transmission through a random net in the large
scale information processing systems such as pattern recognizing learning systems
has become to be recognized through a kind of simulation of a certain part of the
information processing mechanism in some living organisms. Especially in the
perceptron theory [2], which, getting out of the experimental stages, has attracted
various theoretical attentions, e.g. [1], [5], [6], [7], [8], [12], one considers a random
connection structure by such a simulation. The theory, however, does not use
any essential property of " randomness", i.e. mathematically this random connec-
tion only transforms input stimuli (or patterns) into another forms of patterns,
and therefore one may consider only on these transformed patterns as if they
were original input patterns.

The work of the random net in such systems might be said not to be clarified
particularly from the theoretical view point.

Generally a random net consists of, like neural nets, a large number of ele-
ments which might be called "basic organs" corresponding to neurons in neural
nets and emit signals after transforming their input signals by certain operations,
and a large number of random "connections" which transmit signals among the
basic organs. A subset / of the set of all basic organs contained in the random
net receives stimulus signals from the outer world of the net. The signals, then,
propagate along connections through the whole net. They are transformed many
times by basic organs, and eventually reach another specified subset O of basic
organs which output final signals. The net in the whole, therefore, has a general
character of transforming input signals into output ones except for the random
signal transformations.

Now suppose that a signal has a multi-dimensional vector form and each com-
ponent signal in the vector signal is received by each basic organ in the subset /
of our random net. Correlations or dependences among component signals may
easily be seen to be generally strong if we only consider our visual patterns
as vector signals. One of the important roles of the random net is " to tear these
dependences into independent pieces" to gain statistical independences among com-
ponent signals. In other words, as a vector signal passes through the net, it
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gradually loses its initial strong component correlations because of the random
connections in the net.

It must however be remarked that the acquisition of independences should not
lose the original " information" which the input signals have, i.e. the equivocation
should be maintained near zero or below a certain desirable level. It seems to be
for this requirement that the size or the dimension of a random net must be
large, i.e. it must have a large number of basic organs and complicated connec-
tions among them. This seems to be similar to the general notion that to gain
the reliability of information through an unreliable medium one must increase the
dimension of the system involved, for example, the coding problem in information
theory [4], or von Neumann's reliable construction of automata from less reliable
basic organs [13].

The object of the present paper is to consider a reason of why "from de-
pendence to independence" in the light of the pattern recognition problem, and to
evaluate a certain kind of random net, which will be shown to be capable of
recognizing patterns.

The pattern recognition methods by perceptron-type iterative error-correction
learning which have been proposed in various ways, e.g. [1], [5], [6], [7], [8], [12],
never uses random net structures and presupposes that the input pattern space is
decomposed (disjointly) into a finite number of category classes. In the present
paper, however, we treat patterns with a more general character as reflected in
setting a general statistical structure on the input pattern space, and show that in
the random net which has as its all basic organs (except for / ) AND-basic organs
and OR-basic organs, if the number of input points (i.e. the number of elements
in / ) and the number of layers of basic organs are taken sufficiently large, then
the random net becomes pattern recognizable, where the pattern recognizability is
the direct consequence that the random net which satisfies the above mentioned
requirements (i.e. statistical independence and information losslessness) can recognize
patterns by a posteriori probability method, assuming a certain learning mechanism
that stores a set of frequencies or probabilities gained from the sample training
patterns taken from the input pattern space.

2. General concept and motivation.

The random net we shall consider here has n input points each of which
receives signal 0 or 1 (non-stimulus or stimulus, or, white or black) from an outer
world of the net, and output basic organs each of which emits signal also 0 or
1 (as well as other basic organs in the net) to the outer world or a certain observer.
Let the set of input points be /={1 , 2, •••, n\ and the set of output basic organs
be O={1, 2, ~,N}. A random net with / and O has of course a randomly fixed
structure between / and O (Fig. 1).

Suppose that an input signal is an ^-dimensional vector whose n components
are signals 0 and/or 1 which are received simultaneously by /, each component
corresponding respectively to each input point in /. Suppose also that possible
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random net

O
Fig. 1

time delays produced in the course of signal transmission through the net are
properly synchronized so that we can observe an output signal as an iV-dimen-
sional vector with components 0 and/or 1. We call an ^-dimensional input vector
input pattern or simply pattern. The set F of all 2n possible input patterns will
be called (input) pattern space.

A pattern f=(σh - ,σn) or simply written as f=σlf -' ,σn, with σt=0 or 1, may
be a binary expression of a continuous signal like a speech sound. Or a pattern
may be a direct white-black visual image (on a "retina") of an object like a
character, for instance the image of the number 2 shown in the Fig. 2 has its
pattern 000011000011011001100110000110000011000001111110 with ^ = 6 x 8 = 4 8 (this 48
is too small) if the image is scanned horizontally from left to right.

ODDOi OO
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OO iOOOC
OII IIIO

Fig. 2

Now to say that there are given K categories on the pattern space F to which
each pattern belongs is to say that there are given K probability distributions
j?α>, JPC2), •• , P C J O on F. Denote by C={1,2,—,K} the set of categories and put
/><*>{/»} =/>?>. Then the Kx2n-matrix (pf), kzC, i=0,1, •••, 2 n - l , may be re-
garded as a channel matrix of "pattern generating channel" with the sending
signal space C and the receiving signal space F. The value pf> is the conditional
probability that f% is presented to /, given k.



358 YASUICHI HORIBE

The pattern classification {recognition) means the decision that to which category
the current input pattern belongs.

A special case of the pattern generating channel is the lossless channel [4], i.e.
it is possible to decompose the pattern space Finto K disjoint subsets, F = U f = i F α )

such that pw{F^}=\ for every ktC. This case has been treated as a problem
of pattern recognition by means of a suitable learning algorithm or an iterative
accompolishment of a correct classification of input patterns, but never essentially
used any property of random net [1], [2], [5], [6], [7], [8], [12].

In order to make clear the possible differences between this iterative procedure
(or usually called perceptron-type learning) and the random net approach which
concerns us in the present work, we briefly sketch the essential mathematical
features of the former for the case, K=2 and the binary patterns, which never
loses generality. The input pattern space F is transformed by an TV-dimensional
vector valued function ψ into a (transformed) pattern space G,

φ={ψi, •••, ΨN): F-^G, φ{F)=G.

ψ might be a product φL φ2φ1 of L mappings for a suitably chosen integer
L. Suppose that we could have taken ψ such that the two sets {Gta\ GίC2)},
G ί α ) = ̂ ( F ί α ) ) c G for "training input pattern sets" F ί α ) c F α ) , &€{1,2}, is
(strictly) linearly separable, i.e. there exists (N+T)-dimensional vector 5* such that
(s*, 2*)>0 for any g*€Gία)*U(-GίC2)*), where GίC1)*={g*-(g, 1); g€Gί(1)} and
-GtC2r={-g* = {-g, -1); ^€Gί(2)}. Then the learning algorithm (e.g. [2]) is
applicable, which iteratively "improves" the (iV+l)-dimensional "state" vector sn as
follows: set s0 arbitrarily, and put s»+i=s»+0i!; if (sn, β#)^0, sn^i=sn if (sn, ot)>O, where
{ΰn, n=0,1, •••}, g£eGtay\J{—Gί(2)*) is generated according to a training pattern
sequence {fn, n=0,1, •••}, each training pattern in Ft=Ftw U F ί ( 2 ) being presented
to / infinitely often in this sequence. This completes the recognition ability for
any pattern in the training pattern set Fιc:F, with "finite" learning, i.e. there
exists a finite integers* such that {sn} converges to sn* so that sn*=sn*+1=sn*+2~ -
and (sn , 0*)>O for every g*€Gί(1)*U(—Gί(2)*) (An identification problem for the
"solution" state sn* is discussed in [9]). If {Ftw, F ίC2)} itself is linearly separable,
we may take φ as the identity mapping. If not, we must generally take N larger
than n. Specifically, for example, we may take N=Σj=i{7j)=2n—-U and take the
component functions of ψ (taken L=l) in such forms as φi{f)=σi1σi2- σίj

0-^J^s), f=σv σn, for non-negative integers ii,i2,--,ij satisfying l^zΊ<*"2<
<ij^n, choosing a suitable positive integer 5 such that {GίC1), GίC2)} is linearly
separable. Since N becomes very large when {Fa\ F ( 2 )} has a complicated
separating structure, the speed of learning convergence, which strongly depends
on the unknown pattern structure, seems to be redundantly very slow. And
furthermore the extrapolating or generalizing ability (i.e. the ability to recognize
patterns in F—Fι) seems to be weak except for cases of very simple pattern
structure. These defects might be more undesirable if either the number of
categories becomes large or the condition that the pattern generating channel is
lossless is modified.
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In the present work we treat patterns with more general character as reflected
in setting a general statistical structure on the input pattern space, fully applying
a randomly interconnected system, and indicate a potential direction toward systems
capable of recognizing a wider class of patterns.

Now let us not ask for a while what kind of structure the random net
between / and O in the Fig. 1 has, but only regard it as a "black box" or an
unknown mapping φ\ F—>G, where G is the output pattern space comprising of
all possible 2N output patterns or transformed patterns observed at O. (Although
φ might be a "noisy" or probabilistic transformation of input patterns due to, for
example, malfunctioning of basic organs in the net, we shall later assume ψ to be
deterministic, hence we can only observe at most 2n distinct output patterns each
with positive probability.) The random net may be considered as a kind of
information channel Λ characterized by φ with sending signal space F and receiv-
ing signal space G. Denoting by Γo the pattern generating channel, then the two
channels are cascaded: ΓiΓ0: C—• F-+G. The channel matrix t^oi=((??))> keC,
.7=0,1, •••, 2N—1, for this cascaded channel is, therefore, determined by the matrix
3ίo=(Pic)) and ψ. We must take N as N^n, for otherwise ΓiΓ0 may become
more noisy that the original Γo due to the transformation φ, hence more erroneous
in pattern classification decision (such as a decision method described soon). And
even if we planned to perform the pattern classification decision based on 3ί0

without using random net, it would be absolutely impractical, when n is large, to
learn by a proper mechanism the gigantic matrix 3io and to use it for real
decisions. More impractical for the decision based on 3i01, since N^n.

Now for each category k^C, put the output of the /-th basic organ on the
output level O (/=1,2, —,JV) as a random variable xψ\ and put Q$ = Piκ>{xψ>=σ}
(σ=0,1), which is a conditional probability that the output symbol of /-th basic
organ is σ, given category k. Hence

Qί?+Q8 ) = l, ktC, 1=1, 2,-, N.

Suppose now that the iΓx iV-matrix 3ί = (Qιo) is calculated (or estimated) by some
learning mechanism which for example might be a method of mere sampling of
patterns from F followed by indicating or teaching to which category each sample
pattern (or training pattern) belongs. Generally however 3i can not completely
specify 3ίoi, since the &-th row of Jttoi, (q?\ q?\ •••, q$_d> *s a i o m t probability
distribution of N random variables x?\xψ\—,xψ, and (Q%\ Q{£\ •• ,Q$) is a
marginal probability distribution of (q?\ q?\ •• , ^ _ 1 ) . But if, for each category kf

random variables x[k\ xik\ •• ,x^) are mutually independent, then 3ioi is completely
determined by 31, since any element qf* in 3ίoi is represented by all elements
in the β-th row of 3t, i.e.

(l) qr=ΏmΎ-σι'[i-Q%Ύι,
1=1

if the observed pattern g^G is σiσ2~-σN (^=0,1).
This is why we use random net to gain independent output component signals
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x[k\ xik\ '•-, xψ for each keC. The complete statistical independence, however,
should be considered to be unable to be obtained by any finite scale random net,
because, generally speaking, " distance" between any two out of K distributions
(pf\Pt\- ,Pf2_^), kzC, on F is not small and each distribution itself is a fairly
sufficiently informative reflection of each category, and thus, for each category,
strong correlations or dependences among n components constituting input patterns
exist. Therefore we have to show in a certain type of random net that we can
attain arbitrarily near independence to the complete one by suitably enlarging the
scale or dimension of the net. This is our first requirement for our random net.

Next consider the decision problem how the pattern classification can be
performed. Our pattern classification method is simply the usual a posteriori
probability method [3]. We know the matrix M and furthermore the probability
distribution (pw,pC2\ •• ,^>CX)) on the category space C, both of which are supposed
to be estimated by learning. We can then procede the decision as follows:

(A) When an unknown input pattern is presented to / of the random net,
the corresponding output pattern ĝ  eG is observed.

(B) Compute p™-qf,p™'qf, ,Pcκy qf> by (1) using the matrix JA.
(C) Find the maximal subset C{g3)dC such that every category k in C(g3)

gives the maximum value among p^qψ, PC2:>QfC2:>Qf\ pcκ^q(jK)
qj

(D) Decide that the unknown input pattern belongs to one of categories in C(g3)
Let us denote this decision on g3 by £D[gj]=C(gj). Note that since

Prob(& I gj) Prob(gy) =p«»qf,

where Frob(g3), the absolute probability of the pattern gJf is independent of k,
C(g3) is the set of all categories which give the same maximum value among a
posterioή probabilities, Proh(k\gj), kzC.

Although the direct decision <3)\fί\ on input pattern f% without using our
random net can not be performed for the reason as noted above when n, the
number of input points, becomes large (as usual case), if we could take ψ\ F-^G
(or equivalently the net structure) to be one-to-one function, we should have W[fi]
= <D[φ(fi)] as a trivial corollary of the following general (i.e. permitting ψ to be
probabilistic) proposition.

PROPOSITION. If the pattern transforming channel A is lossless, then W[f]
and g€φ(f)={g: Prob (

Proof. Since Λ is lossless, we have G= U / € ^( / ) , φ(f)Πφ(f')=0 ( / # / 0 , and
Prob(p(/)|/) = 1. Suppose ^ [ / * ] = C ( / * ) for / * e F , then p^'Pfl>p^-pfP for
&€C(/*), k'zC—C(/*), where pjl is the conditional probability of / * , given k. For
arbitrary pattern g*€^(/*) we have

p<» - qψ =p™ - Σ Prob(g* | /) -pf
f<=F

I /*) -pjl >pW) Prob(g* | f*)p<f?
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Similarly we have p™q$=p<*">q^ if k,k'sC(f*). This means that
for every g*€φ(f*).

But we should consider that because of the characteristics which the random
net has the complete one-to-one φ could not always be obtained. Hence it is
desirable that the probability for ψ to be one-to-one can be arbitrarily near one.
This is the second requirement for our random net.

In summary we want to have a random net which has the following two
properties, assuming that the net has a certain learning mechanism which can
estimate matrix 3i and K-l probabilities pcl\pC2\ •• ,i>c*~1), hence KN+(K-1)
probabilities in all.

( a ) statistically almost independence among output component signals.
(b) statistically almost one-to-one correspondence between input pattern space

and output pattern space.

3. The random net with AND-neurons and OR-neurons.

We shall call basic organs contained in a random net simply neurons. The
random net considered in the present work has as its neurons only AND-neurons
and OR-neurons. Each of these two kinds of neuron has two " input lines" which
receive stimuli (signals) 0 and/or 1, and one " output line" which emits signal 0
or 1 by performing the following Boolean operation on the input signals. AND-
neuron receives signals σlf σ2 (=0 or 1) and emits 1 if and only if oι=σ2 = l (hence
threshold value 2) and emits 0 otherwise, i.e. emits σiΛ^2, while OR-neuron emits
0 if and only if σ1=σ2=0 and emits 1 otherwise (hence threshold value 1), i.e.
emits σ{\/σ2.

σιAσ2

AND-neuron OR-neuron

Fig. 3

But the random net does not have these elements in order to do some logical
calculations, but use them only for transforming signals (compare with [13] or
with the role of these basic organs in the general automata or logical net
theory in this respect.).

Now our random net has the following structure having the equal number of
AND-neurons and OR-neurons (Fig. 4). The layer £λ comprises or 7VΊ/2 AND-
neurons and Ni/2 OR-neurons. Each neuron in this layer has its two input lines
(uniformly) randomly connected to two (with repetition) out of n input points of
I=X0. We have thus a "random subnet" between the layer χ0 with n input
points and the layer χx with 7VΊ neurons in all. The third layer χ2 has N2/2
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AND-neurons and N2/2 OR-neurons, each of which has its two input lines (uni-
formly) randomly connected to two (with repetition) out of Ni output lines from
the layer χx as if these output lines were " new " input points. We thus have a
new random subnet between χ0 and X2. Continue this construction, then we
have our random net which has L + l layers, χ0, Xi, •••, XL. This random net in
the whole has n input points and NL output points.

Fm. 4

Note that we must take n^Ni^N2^--^NL to gain (b) in the preceding
section. Note also the input pattern space may be successively mapped into L
pattern spaces as: F—>Gi-*G2-> >GL where Gr is the pattern space observed at
the layer χr, l ^ r ^ L . Since the net can be considered as the net which has
" independent" L random subnets in series, by considering only one of them we
might know inductively the whole net characteristics. Thus the problem is to
investigate what properties about the net can be obtained if n and L become
large.

The random subnet between the layers χrv Xr2 (Q^n<r2^L) will be denoted
by 37 (ri, r2) in the following sections.

4. An assumption on the pattern space structure.

Any input pattern fsF is completely defined by the set of all stimulated
points in the set / of input points, hence a subset itself of / will sometimes be
called a pattern.

We assume the following structure on the pattern space F, but this assump-
tion never loses the generality of the pattern variety, if we take n a little larger.

Now decompose the set/into four disjoint non-empty subsets: TWiUΛU/sUΛ,
where
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/ 2 ={»i+l, ~,ni+n2},

Is={n1+n2+lf ••

h= {n1-\-n2-\-nB-\-l>

^, and ^2 will be specified by the following definitions.

If generally we denote by π(A) the number of elements in a finite set A, then
an external {input) pattern will be defined as a subset / c / i which satisfies
0^nί^π(J)^n! where n[ is a pre-defined constant integer. In other words, any
external pattern / with 0^π(J)<nί is observed (or presented to /) only with pro-
bability 0 for each category, and any external pattern / with n{^π(J)^ni is
observed with strictly positive probability for some category.

All of the n% input points in /3 are always stimulated whichever external
pattern is presented, and the ratio n3/n will be called constantly stimulating area
or simply c.s-area. While all of the ns input points in h are always non-stimu-
lated irrespective to which external pattern is presented to /, and the ratio n%\n
will be called constantly non-stimulating area or simply c.s-area, hence c.s-area
= c.s-area=r.

The subset I2 might be called a regulating or normalizing part of /, in which
every external pattern is " normalized" as follows. If an external pattern J with
π(f) = v is observed, input points « i+l , ^i+2, •••, nλ-\-(nx—v)zl2 are then stimulated
(if v=ni, any point in I2 is not stimulated) and remaining points in 72 are not
stimulated, hence we shall take n2=nι—n[.

Therefore, as the whole, to any external pattern / there uniquely corresponds
input pattern / ( / ) c / , such that π(/(/)) = π(/)-f(wi — π(J))Jrn 3 = n1^Γns'. constant.
The ratio p=(ni-\-n*)ln will be called stimulating area or simply s-area, and the
value 1—p will be called non-stimulating area or simply s-area. Note p+τ+γ=l
where γ=(ni—n[)ln.

Now by above mentioned structure we newly define the input pattern space F
as the set of all patterns each having s-area=io>0 and c.s-area=c.s-area=r>0.

5. Changes of the stimulating area.

Before we consider how the s-area of an input pattern will change as it passes
through the random net, we remark a simple (but essential in our theory) property
of each AND-neuron and OR-neuron. If input signals σu σ2 received through the
two input lines of a neuron are mutually independent and satisfy: Prob(σi=l)
=Prob(<72=l)=Jo, then its output obeys Prob(^iΛ^2=l)=iθ2 for AND-neuron and
Frob(σ1Vσ2=l) = 2p-p2 for OR-neuron, hence (l/2)p2+(l/2)(2p-p2)=p (Fig. 5).

Now consider the random subnet 22(0, 1). Divide the Xλ layer into two sub-
layers, AND-layer consisting of iVΊ/2 AND-neurons and OR-layer consisting of JVi/2
OR-neurons. Suppose an arbitrary pattern fGF (which has s-area=p) is presented
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Fig. 5

to / of the net, then the corresponding pattern observed within the AND-layer can
be considered as a realization of a Bernoulli trial of success probability p2, because
of the random connections between / and the AND-layer. In other words the
number of 1 (stimulated) in the pattern within AND-layer is a realization of a
random variable which obeys normal ditribution

iv(-fv,

when n, hence Nu is taken sufficiently large. Similarly the number of 1 in the
pattern observed within OR-layer is a realization of another random variable
which obeys normal distribution

Since the above two random variables are clearly independent, the number of
stimulated points in the pattern observed at the whole Xι layer, is only a realiza-
tion of a certain random variable obeying the convolution of the above two
normal distributions, hence obeying

=N(NIP, NlPa-p)a-p+p*)).

Therefore, when any pattern is presented to /, then the corresponding pattern
observed at χx has an s-area (i.e. the number of Γs in the pattern divided by M)
which is a realization of a variable obeying N(p, (l/NOpil—ρ)(l—ρ+ρ2)).

Let us denote by π(/) the number of Γs (stimulated components) in a pattern
/€F , and by p(f) the s-area of a pattern fzF (hence p(f)=p for every fsF).
Then we may also write π(g), p(g)=π(g)/N1 for a pattern g€Gu where Gi is the
pattern space comprising of all patterns observable at χx. Denote, furthermore,
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symbolically by h£R,*N(rn, σ2) the proposition that the value h is a realization of a
variable which obeys a certain distribution with the same mean m but with
variance less than or equal to σ2, when this distribution is compared with normal
one N(m, σ2).

Then the above argument gives that for every geGh

since ί;(/o) = /o(l~/o)(l-io+/o
2)^3/16=^(1/2), O^p^l.

Now proceed to the random net 32(0, 2). Every input pattern f$F is first trans-
formed by the 37(0,1) into a pattern g^d with s-area p(gi)m,*N(p, (3/16)/(l/iVΊ)),
and then transformed by the net 37(1,2) into a pattern g2€G2 which is observed
at χ2 with N2 neurons. Since, by an analogy to the above argument, π(g2) is a
realization of a variable obeying

N(N2p(gi),

hence π(g2)3ί*N(N2p(gi), (3/16)JV2), we need the following lemma.

LEMMA 1. //* <z random variable x obeys N(m, σ2), and if, for a fixed x,
another random variable y{x) obeys N(ax+b, δ2), a, b constants, then the mean of
y(x) with respect to x obeys N(am+b, (aσ)2~\-δ2).

Proof

Γ°° 1 f 1 / x-m\2}
\ /^rn

 e χP ~ -y (•
J-ooV Δπ σ [ Δ \ σ / ]

1 \ l_(y-(am+biγ\
Λ/ 2π */(aσ)2+δ2 6 X P \ 2 W (aσ)2+δ2 ) ]'

In this lemma, put m=pN1, σ2=(3/16)N1, a=N2/Nl9 6=0, 32=(3/16)iV2, then we
easily have π{g*)3l*N(N2p, (3/16)M(Wi+W 2)), hence p(g2)£l*N(p, (3/16)(l/M+W2)).

The argument is now readily extended inductively to the whole net 32(0, L).
That is, the solution of the system of the following difference equations,

_(Nr+Λ
mr+ι—1 Jmr,

with m1=pNu pl=(3llβ)Nh gives:
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LEMMA 2. For the input pattern space F each of whose patterns has s-area p,
every output pattern QZGL of the random net 22(0, L) has its s-area p(g) such that

p(g)3t*N(p: }' 16 V N! + •
NL

We conclude this section with the following remark. We know that in our
random net the s-areas of the patterns observed at any layer are distributed
around p (and their deviations from p will be found in the next section to be
arbitrarily small when n is taken large, by showing the convergence of the series
l/Ni-\-l/N2-\—). This is of course due to our choice of AND-neurons and OR-
neurons with equal numbers among possible neurons. If instead we choose only
majority neurons each of which has 2s+1 (s^l) input lines and one output line,
and is excited (output 1) if and only if at least 5+1 input lines are stimulated.
Therefore, when every input line is stimulated independently of others with pro-
bability p, the probability that the output becomes 1 is

(see Fig. 6). When a pattern feF is transformed into gi^Gi by the net 22(0, 1),
its corresponding patterns g2^G2, g^GSf ••• through layers χ2, J73, have respec-
tive s-areas u(p(gx))f u(u{p(gj)),' in the means. But this sequence will rapidly
converge to 0 or 1 according as ^(giXl/2 or io(gi)>l/2. This "degenerating"
phenomenon seems to be quite inappropriate for our random net approach to
pattern recognition problems. It is interesting, in this respect, to note that the
Fig. 6 shows, conversely, the fundamental importance in controls of transient
malfunctions of neurons in automata [13].

6. One-to-oneness.

First consider the random subnet 22(0,1), as usual, and remark that any input
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pattern feF is completely specified by the subset / i lJΛc/of input points, since h
and L are always stimulated and non-stimulated respectively irrespective to which
pattern is presented to /.

A neuron in the layer Xι will be called proper to the input point ye/ iU4 if
and only if one input line of the neuron is connected to v, and another input line
is connected to some input point in /3 or h according as this neuron is AND or
OR. We have then,

LEMMA 3. In the random subnet Xi{0, 1) if each input point in h U h has at
least one proper neuron in Xlf then the pattern space F and the corresponding {trans-
formed) pattern space d can be made one-to-one correspondent.

Proof. Suppose the neuron 1/ in the layer Jd is a proper one to the input
point v. Then the set of such proper neurons {!/, 2', •••, n[, («i+l)', •••, {niJrn2Y}
gives the complete replica of every input pattern restricted to /1U/2.

Denote by Prob(l—1) the probability of one-to-one correspondence between F
and Gi, and by Prob(proper) the probability that the assumption of the lemma 3
is true, then Prob(l—l)^Prob(proper). Now Prob(proper) can be calculated as
follows. It is easily seen that the probability for an input point in /1U/2 to have
at least one proper neuron out of iVΊ neurons in the layer χ1 is approximately

-ίl-2r τ) '
where τ is c.s-area or c.s.-area defined in Section 4 according as the proper neuron
is AND or OR. Since each neuron in layer χx is connected to / independently of
other neurons in χl9 we have

Prob(proper)~ [l-(l-2r 1 ) ' ] [l-(l-2r i

[
1

JVri-Cl-2r)w+i

if n is taken large. Now take Ni=(l/τ)nlogn (estimated sufficiently large) then,
neglecting 2r(l-2r)^l/4,

Prob(proper)^ (l- -\Y « e~1/n.
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Take

(2) Nr+i= — NrlogNr,

and get back to lemma 2 in Section 5. Then it is easily seen that the series
l/iVi+l/iV2+ converges to a limit which can be made arbitrarily small if n
taken large. Therefore for n sufficiently large the s-area for any input pattern
will be maintained to be p through the entire net 37(0, L), even if L becomes
infinitely large.

By noting Fig. 5 and applying the argument in Section 5 to c.s-area and c.s-
area, we may also conclude that both of these areas can be maintained to be τ
through the whole net. This means that by (2) the probability of one-to-one corre-
spondence between F and the output pattern space GL has a lower bound of order

e-l/n . e-l/N1. e~l/N2 . . . 0-l/iVZ-i = g-Cl/n+l/Ni H/iV2 H +l/2Vz_i)

which can be made arbitrary near 1 if n is taken large, and even if L becomes
infinitely large. In summary we have

LEMMA 4. If the number of neurons in the Xr+i is taken as Nr+ι = {llτ)Nr log Nr,
O^r^L—1, N0 = n, and if n is sufficiently large, then the s-area for any input pattern
is maintained to be p up to an arbitrary small variance through the whole net with
arbitrary number of layers, and the probability of one-to-one correspondence between
F and GL can be made arbitrarily near 1.

7. Changes of the intersecting stimulating area.

The lemma 4 in the preceding section says that, if n is large, the s-area of
any input pattern is maintained always to be p up to an arbitrarily small variance
irrespective to how many times the pattern might be transformed through the
net. We therefore in the following sections may regard the s-area to be main-
tained precisely to be p in order not to make our following argument inessentially
complicated.

First, again, consider the random subnet 32(0, 1). Denote by σ{fp\ff) the
intersecting s-area (simply denoted as i.s-area) of the two s-areas of arbitrary input
patterns f,ffzF. The object of the present section is to investigate how this i.s-
area changes when the patterns pass through the whole net. The answer to this
problem will be applied to our " statistical independence" problem discussed in
Section 8.

We consider only two fixed input patterns/,f r whose i.s-area is σ(fΓ\f')=σ.
Now just as in Section 5 we divide the layer J7i into AND-layer and OR-layer.
The output of any AND-neuron will be stimulated by both / and / / with pro-
bability σ2 through the random connection operation. Hence the number of AND-
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neurons which are stimulated by both / and / ' is a realization of a random
variable which obeys JV((M/2)σ2, (M/2)<J2(1-<J2)). While OR-neuron in the OR-
layer may be seen, by a simple combinatorial argument, to be stimulated by both
/ and / ' with probability 2σ—σ2+2(ρ—σ)2 through the random connection opera-
tion. Hence the number of OR-neurons which are stimulated by both / and f is
a realization of another random variable which obeys

Therefore, if g,g'£Gi corresponds to / , / ' respectively, the number π(gΠg') of
neurons in the whole layer Xλ which are stimulated by both / and f is only a
realization of the random variable, which is the sum of the above two independent
random variables, obeying

+ ip-σ)2), N, (±Wl(σ)(χ-Wl(σ)) + ~

where Wi(σ)=<72, w2(σ) = 2σ-σ2+2(p-σ)2. We therefore have π(gΓ\g')3l*N(Ni(σ
+(p-<r)2), (l/4)iVΊ), since (1/2)^(1 -w1)-h(l/2)w2(l-w2)^1/4 in the square O^w^l,
0^w2^l, hence σ(gΠg')3l*N(σ+(p-σ)2, (1/4)

The mean value of i.s-area then changes as

(3) σr+i=σr+(ρ—σr)
2, O^r^L—1, σo=σf

where σr is the mean i.s-area of two patterns in Xr corresponding to /, / ' , hence
OL—»p as L-^oo. But the variance of the i.s-area is also less than (1/4)(1/M+1/A^H—)
with "good approximation", since the non-linear transformation (3) is well ap-
proximated by a linear transformation in the small neighbourhood of σrt hence
lemma 1 may be applicable with an argument similar to that given in Section 5.
We now have the following lemma.

LEMMA 5. For n sufficiently large the i.s-area σ for input patterns f fr is
changed through the net by the following recursive formula with arbitraήly small
deviations:

And the limit σL—*p(L-*oo) is independent of the choice of input patterns /, / ' .

8. Independence.

Although there are defined K categories on the input pattern space F, it is
clear from the fact that K is finite that the possible considerations for answering
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the question (a) given at the end of Section 2 should preferably be performed
under the condition that one but arbitrarily fixed category is given, i.e. one pro-
bability distribution Pe{P ( 1 ) , , P ( Z ) } is given. The net symbol 57(0, L), in this
section, will also be meant the set of all possible random nets (including extremely
degenerated ones) constructed between layers χ0 and XL. The set 32(0, L) is
called the net space. On the net space 32(0, L) there is defined a natural pro-
bability measure which is introduced onto the space by the random connection
operation. We thus see, for example, that the subset c32(0, L) of all possible nets
each of which has the property that the first neuron in the layer X% has its first
input line connected to the 10th neuron and the second input line connected to the
23th neuron in the layer X2 has probability mass (l/N2)

2, etc.. Thus on the
product space F® 32(0, L) there is defined the product probability measure of two
measures: P on F and the above measure on 32(0, L). Therefore the output value
x(=Q, 1) of any neuron contained in the layer XL is a random variable defined on
the space F® 32(0, L) with the corresponding probability measure.

Now take s(2^s^=NL) neurons from χL with sλ AND-neurons and s2 OR-
neurons, s=Si+s2, and denote their output random variables by xu x2, •••, xSl for
AND-neurons and by xSl+i, •••, xSl+s2 for OR-neurons. We denote, furthermore, by
E the expectation operation over the pattern space F for a fixed net in 32(0, L),
and by β that over the net space 32(0, L) for a fixed pattern in F. We are
interested in evaluating the " average behavior " of the absolute value of

Uc*>=E[xi ••• Xsl

over the net space, i.e. β[\U<*>\], For this we first evaluate β[Uc*>]2, since

(4) βlU^^eiE^xx ••• x9]]-2β[E[x1

We are going to evaluate three terms in (4) separately. Denoting by #$(/)
the random variable Xi on the net space 32(0, L) given pattern /, then we see

since for fixed patterns /, / ' , xu x2, •••, xs are mutually independent. By a similar
fashion, we have

xAElx!].- E[x,]]

and
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= Σ P(f)P(f')£[χi(f)χi(f')] - Σ P(f)P(f')£[χs(f)χs(f')l

Now the value β[xι{f)xi{f')]=Vτdb{xi{f)=l, xt(f') = !}, l^i^s, is the probability
that the output of the i-th neuron is stimulated by both / and / ' , in the case

', and by only /, in the case / = / ' . Therefore we have, from Section 7, if /=*?/',

=Pάfyff) if z-th neuron is AND,

\2σr.-Λ— <72L-ι-\-(p—σL-ι)2 = qL(f,f) if i-th neuron is OR

and, if / = / ' ,

(p2 if f-th neuron is AND,
S[xi(f)xi(ff)] = \

if i-th neuron is OR.

But by lemma 5 it is readily seen that, if we take pL=mmf^flpL(f1f
/) and

qL=mmf*f,qL(f,f'), then

PL ΐ p2, qL \^p—p2 as L—>oo.

T h u s we have

hence

S [ UCS) ] 2 ̂  2 {(ρ2)Sl(2ρ—|O2)S2 —ps^q2} —*0, L—>oo,

therefore

]—>0, L—>oo.

Now this time conversely take s arbitrarily but fixed, and consider the
net space 37(0, L) where L^s. And fix a net in 3Z(0, L). For this fixed net the
probability distribution P on the pattern space F defines a joint probability
distribution p(xi=εly •••, Xs=εs), ε*=0,1, and a product probability distribution
Pi(xi=£i)'-ps(xs=εs), εt=0,1, on the 5 output random variables xu x2, ••-, xs.
Denote by φ(tly •• ,ί s), ψ(t1} -"fts) the s-dimensional characteristic functions for />(•••),
Pi(-)-•-Ps( ) respectively, i.e.

ψ(fu - , « = Σ ^ ^

ψ(.tu-,t.)= Σ eit^
•i.-.'j
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Then we see that

\φ(tu-,ts)-φ(tu-,Q\

Note that both sides of this inequality are considered as random variables on the
net space 22(0, L) and to depend on L. Then taking expectation 8 over the entire
net space, we have

where

aL= m a x e[\E[xh ••• Xiv]-E[xh] ••• E[xiv]\].

But for arbitrary but fixed bounded domain | ί i | + |ί2 |H \-\ts\^T, we have

^ l - T ) ^ O ( L - o o ) ,

which is valid for arbitrary s.
Hence by Levy's continuity theorem [10] we have

LEMMA 6. For a given category, the output component signals constituting
output patterns in the layer £L becomes mutually independent as L—»oo, in ίhe
sense of the average over the net space 22(0, L).

9. Conclusion.

As a summary of our study and several lemmas we have made so far, we
might give the following result as a form of theorem. Since a random net which
satisfies our two requirements (a), (b) stated at the end of Section 2 is pattern
recognizable, we have

THEOREM. In the random net which has as its all basic organs AND-neurons
and OR-neuronSy if n, the number of input points, and L, the number of layers,
of the net, are taken sufficiently large, then the random net becomes pattern
recognizable.

We note lastly that in actual situations, however, it seems plausible that the
value ΣftFP2(f) becomes rapidly 0 as n taken large. Considering this in estimating
(4), it is seen without difficulty that the " almost independence " may be obtained
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before L becomes large, since i.s-areas for pairs of patterns will soon be almost

identical. (Refer to my forthcoming paper which is to appear in the Reports.)
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