# ON REGULARLY BRANCHED THREE-SHEETED COVERING RIEMANN SURFACES 

By Boo-Sang Lee ${ }^{1)}$

§ 1. Throughout this paper $D$ denotes either the domain $\{z||z|<\infty\}$ or $\{z|0<|z|$ $<\infty\}$, and the notations $T, m, N, N_{2}, N_{1}, \bar{N}_{1}$ and $T^{*}, m^{*}$, etc. on meromorphic function in $D$ are used in the sense of Nevanlinna [6].

Let $R$ be a Riemann surface and $\mathfrak{M}(R)$ the family of non-constant meromorphic functions on $R$. For $f \in \mathfrak{M}(R)$ we define $P(f)$ to be the number of values which are not taken by $f$ on $R$ and denote $\sup _{f \in \mathfrak{M}(R)} P(f)$ by $P(R)$. We call $P(R)$ Picard's constant of $R$, following Ozawa. Then for every open surface $R$ we have $P(R) \geqq 2$.

We confine our attention mainly to those open Riemann surfaces $R$ that are regularly branched three-sheeted covering surface defined by $y^{3}=g(z)$, where $g(z)$ is a single-valued transcendental regular function in $D$ having an infinite number of simple or double zeros. In this case we say that $g(z)$ is admissible for $S_{3}(D)$ where $S_{3}(D)$ denotes the class of all such surfaces $R$, and sometimes we simply say that $R$ is defined by $y^{3}=g(z)$. Then $\sqrt[3]{g(z)}$ is a three-valued regular algebroid function in $D$. Hence $P(R) \leqq 6$ from Selberg's theory [11].

In the present paper we shall characterize some of surfaces $R \in S_{3}(D)$ in an explicit form and study the existence problems of analytic mappings among them. For such work we shall list some notations and lemmas.

Lemma 1.1. (Borel [1]-Nevanlinna [5]) Let $a_{0}(z), a_{1}(z), \cdots, a_{n}(z)$ be meromorphic functions and $g_{1}(z), g_{2}(z), \cdots, g_{n}(z)$ regular functions in $r_{0} \leqq|z|<\infty$. Further suppose that for every $j(j=0,1, \cdots, n)$

$$
T\left(r, a_{j}(z)\right)=o\left(\sum_{\nu=1}^{n} m\left(r, e^{g_{\nu}(z)}\right)\right)
$$

holds outside a set of finite measure. If the identity

$$
\sum_{\nu=1}^{n} a_{\nu}(z) e^{g_{\nu}(z)}=a_{0}(z)
$$

Received October 23, 1967.

1) The material presented in this paper is from the author's doctoral dissertation at Washington Unıversity, St. Lcuis, prepared under the direction of Professor J. A. Jenkins. The author wishes to express his gratitude to Professors J. A. Jenkins and M. Ozawa for their inspiring teaching and patient guidance.
holds, then there are constants $c_{1}, c_{2}, \cdots, c_{n}$, not all zeros such that

$$
\sum_{\nu=1}^{n} c_{\nu} a_{\nu}(z) e^{g_{\nu}(z)}=0
$$

From Lemma 1.1 we have:
Lemma 1.2. Let $a_{0}(z), a_{1}(z), \cdots, a_{n}(z)$ be meromorphic in $r_{0} \leqq|z|<\infty$ and $e^{g(z)}$ be transcendental regular function there satisfying $T\left(r, a_{j}(z)\right)=o\left(m\left(r, e^{g(z)}\right)\right), j=0,1, \cdots, n$ as $r \rightarrow \infty$ outside a set of finite measure. If

$$
\sum_{i=1}^{n} a_{j}(z) e^{j g(z)}=a_{0}(z)
$$

holds, then $a_{j}(z) \equiv 0$ for all $j(j=0,1, \cdots, n)$.
Two transcendental regular functions $e^{I I(z)}$ and $e^{I(z)}$ in $r_{0} \leqq|z|<\infty$ are said to be mutually dependent if $m\left(r, e^{H(z)-L(z)}\right)=O(\log r)$ outside a set of finite measure.

Suppose $e^{H(z)}$ and $e^{L(z)}$ are two mutually dependent transcendental regular functions in $r_{0} \leqq|z|<\infty$ and let

$$
H(z)=\sum_{\nu=1}^{\infty} a_{\nu} z^{\nu}+a_{0}+\sum_{\nu=1}^{\infty} a_{-\nu} z^{\nu \nu} \quad \text { and } \quad L(z)=\sum_{\nu=1}^{\infty} b_{\nu} z^{\nu}+b_{0}+\sum_{\nu=1}^{\infty} b_{-\nu} z^{-\nu} .
$$

We write

$$
H_{p}=\sum_{\nu=1}^{\infty} a_{\nu} z^{\nu}, \quad H_{0}=a_{0} \quad \text { and } \quad H_{N}=\sum_{\nu=1}^{\infty} a_{-\nu} z^{-\nu}
$$

Ozawa proved the following lemma by using Lemma 1.1.
Lemma 1. 3. Let $a_{j}(z)(j=0,1, \cdots, n)$ be meromorphic and $a_{j}(z) \neq 0(j=1,2, \cdots, n)$ in $r_{0} \leqq|z|<\infty$ satisfying $T\left(r, a_{j}(z)\right)=O(\log r)$ as $r \rightarrow \infty$. Let $e^{g_{j}(z)}(j=1,2, \cdots, n)$ be transcendental regular function there such that

$$
\sum_{j=1}^{n} a_{j}(z) e^{g_{j}(z)}=a_{0}(z)
$$

Then the set $\left\{e^{g_{j}(z)}\right\}_{j=1,2, \ldots, n}$ is divided into a finite number of groups each of which consists of dependent functions, and $a_{0}(z) \equiv 0$.

Lemma 1.4. (Hiromi and Ozawa [3]) Let $L(z)$ and $g(z) \neq 0$ be regular functions in $1 \leqq|z|<\infty$ satisfying $m(r, g)=o\left(m\left(r, e^{L}\right)\right)$ as $r \rightarrow \infty$ outside a set of finite measure. Then $N_{2}\left(r, 0, e^{L}-g\right) \sim m\left(r, e^{L}\right)$ and $N_{1}\left(r, 0, e^{L}-g\right)=o\left(m\left(r, e^{L}\right)\right)$ as $r \rightarrow \infty$ outside a set of finite measure.

Lemma 1.5. (Ozawa [8, 9]) Let $G(z)$ be a transcendental regular function of $z$ in $1 \leqq|z|<\infty$ with infinitely many zeros and $h(z)$ regular there, then $m(r, h)$ $=o(N(r, 0, G \circ h))$ as $r \rightarrow \infty$ outside a set of finite measure.

Let $f_{1}(z)$ and $f_{2}(z)$ be two meromorphic functions. Let $N_{0}\left(r, 0, f_{1}, f_{2}\right)$ denote the $N$-function of common zeros of $f_{1}(z)$ and $f_{2}(z)$. Niino proved the following:

Lemma 1.6. (Niino [7]) Let $H(z), \phi_{j}(z),(j=1,2, \cdots, \mu)$ and $\phi_{k}^{*}(z)(k=1,2, \cdots, \nu)$ be regular functions in $D$ satisfying $m\left(r, \phi_{j}\right)=o\left(m\left(r, e^{H}\right)\right)(j=1,2, \cdots, \mu)$ and $m\left(r, \phi_{k}^{*}\right)$ $=o\left(m\left(r, e^{H}\right)\right)(k=1,2, \cdots, \nu)$ as $r \rightarrow \infty$ outside a set of finite measure. If the polynomials

$$
Q_{\mu}(h) \equiv h^{\mu}+\phi_{1}(z) h^{\mu-1}+\cdots+\phi_{\mu}(z)
$$

and

$$
Q_{\nu}^{*}(h) \equiv h^{\nu}+\phi_{1}^{*}(z) h^{\nu-1}+\cdots+\phi_{v}^{*}(z)
$$

are irreducible and $Q_{\mu}\left(e^{I I}\right) \not \equiv Q_{\nu}^{*}\left(e^{H}\right)$, then

$$
N_{0}\left(r, 0, Q_{\mu}\left(e^{H}\right), Q_{\nu}^{*}\left(e^{H}\right)\right)=o\left(m\left(r, e^{H}\right)\right)
$$

as $r \rightarrow \infty$ outside a set of finite measure.
§2. Let $R \in S_{3}(D)$ be defined by $y^{3}=g(z)$. Let $f$ be a three-valued regular algebroid function in $D$ which is single-valued regular on $R$, and let its defining equation be

$$
\begin{equation*}
F(z, f)=f^{3}-s_{1}(z) f^{2}+s_{2}(z) f-s_{3}(z)=0, \tag{2.1}
\end{equation*}
$$

where $s_{1}(z), s_{2}(z)$ and $s_{3}(z)$ are single-valued regular functions in $D$. Let $\omega \neq 1$ be a cubic root of 1 . We put $p_{1}=(z, y), p_{2}=(z, \omega y)$ and $p_{3}=\left(z, \omega^{2} y\right)$ and set

$$
\left\{\begin{array}{l}
f_{1}(z)=\frac{1}{3}\left\{f\left(p_{1}\right)+f\left(p_{2}\right)+f\left(p_{3}\right)\right\}  \tag{2.2}\\
f_{2}(z)=\frac{1}{3 y}\left\{f\left(p_{1}\right)+\omega^{2} f\left(p_{2}\right)+\omega f\left(p_{3}\right)\right\} \\
f_{3}(z)=\frac{1}{3 y^{2}}\left\{f\left(p_{1}\right)+\omega f\left(p_{2}\right)+\omega^{2} f\left(p_{3}\right)\right\}
\end{array}\right.
$$

Then $f_{1}(z)$ is a single-valued regular function in $D$, and $f_{2}(z)$ and $f_{3}(z)$ are singlevalued regular functions in $D$ except for all the multiple zeros of $g(z)$, at which $f_{2}(z)$ and $f_{3}(z)$ have poles at worst in such a way that if $z_{0}$ is a zero of $g(z)$ of order $3 k+l(0 \leqq k, 0 \leqq l \leqq 2)$, then $f_{2}(z)$ has at worst a pole at $z_{0}$ of order $k$ and $f_{3}(z)$ has at worst a pole at $z_{0}$ of order $2 k$ if $l \neq 2$ and $2 k+1$ if $l=2$.

From (2.2) we have

$$
\begin{equation*}
f(p)=f_{1}(z)+f_{2}(z) y+f_{3}(z) y^{2}, \quad \text { where } \quad p=(z, y) . \tag{2.3}
\end{equation*}
$$

Conversely, $f(p)$ defined by (2.3) with $f_{1}, f_{2}$ and $f_{3}$ having the described properties in the above is regular on $R$. From (2.3), we see that $f$ satisfies the equation (2.1) with

$$
\left\{\begin{array}{l}
s_{1}(z)=3 f_{1}(z)  \tag{2.4}\\
s_{2}(z)=3 f_{1}^{2}(z)-3 f_{2}(z) f_{3}(z) g(z) \\
s_{3}(z)=f_{1}^{3}(z)+f_{2}^{3}(z) g(z)+f_{3}^{3}(z) g^{2}(z)-3 f_{1}(z) f_{2}(z) f_{3}(z) g(z)
\end{array}\right.
$$

Mutō [4] established a necessary and sufficient conditioh for the existence of an analytic map between $R_{1}$ and $R_{2}$ when $D_{1}=D_{2}=\{z| | z \mid<\infty\}$ and $g_{i}(z)(i=1,2)$ has no zeros other than an infinite number of simple or double zeros. We extend the result as follows:

Lemma 2.1. A non-trivial analytic map $\phi$ of $R_{1}$ into $R_{2}$ exists if and only if there exists a single-valued non-constant regular function $h(z)$ in $D_{1}$ such that either $\nu^{3}(z) g_{1}(z)=g_{2} \circ h(z)$, or $\mu^{3}(z) g_{1}^{2}(z)=g_{2} \circ h(z)$, where $\nu(z)$ and $\mu(z)$ are single-valued meromorphic functions having the properties that their poles are all multiple zeros of $g_{1}(z)$ in such a way that if $a$ is a zero of $g_{1}(z)$ of order $3 k+l(0 \leqq l \leqq 2)$ then a is at worst a pole of $\nu(z)$ of order $k$ and $a$ is at worst a pole of $\mu(z)$ of order $2 k$ for $l=0,1$ and $2 k+1$ for $l=2$.

In particular, if $D_{2}=\left\{z|0<|z|<\infty\}\right.$ then $h(z)$ has the form $z^{n} e^{K(z)}$ where $K(z)$ is $a$ single-valued regular function in $D_{1}$ and $n$ is an integer ( $n=0$ when $D_{1}=\{z| | z \mid<\infty\}$ ).

Proof. The proof of this lemma is essentially the same as the proof due to Mutō [4].

If $D_{1}=D_{2}$ then $R_{1}$ and $R_{2}$ are conformally equivalent if and only if $h(z)$ in the lemma is one-to-one and onto. Thus we have the following:

Lemma 2.2. Let $R \in S_{3}(D)$ be defined by $y^{3}=g(z)$. Suppose $\nu(z)$ and $\mu(z)$ have the same properties as described in the Lemma 2.1. If $G_{1}(z)=\nu^{3}(z) g(z)$ is admissible for $S_{3}(D)$ and $R_{1} \in S_{3}(D)$ is defined by $y^{3}=G_{1}(z)$, then $R$ and $R_{1}$ are conformally equivalent. Similarly, if $G_{2}(z)=\mu^{3}(z) g^{2}(z)$ is admissible for $S_{3}(D)$ and $R_{2} \in R_{3}(D)$ is defined by $y^{3}=G_{2}(z)$, then $R$ and $R_{2}$ are conformally equivalent.

Proof. The proof follows directly from the fact that $G_{1}(z)=G_{1} \circ z$ and $G_{2}(z)$ $=G_{2} \circ$ z. (q.e.d.)
§3. In this section we begin with the special type of function $\Omega(z)$ given by

$$
\begin{aligned}
\Omega(z)= & d_{16} e^{3 H+3 L}+d_{15} e^{3 H+2 L}+d_{14} e^{2 I I+3 L}+d_{13} e^{3 H+L}+d_{12} e^{2 H+2 L}+d_{11} e^{H+3 L}+d_{10} e^{3 H} \\
& +d_{9} e^{2 H+L}+d_{8} e^{H+2 L}+d_{7} e^{3 L}+d_{6} e^{2 H}+d_{5} e^{H+L}+d_{4} e^{2 L}+d_{3} e^{H}+d_{2} e^{L}+d_{1},
\end{aligned}
$$

with the properties:
i) $d_{j}(z)(j=1,2, \cdots, 16)$ is meromorphic and $H(z), L(z)$ are non-constant regular functions in $D$ with $H_{0}=L_{0}=0$.
ii) If $H_{p} \neq 0$ then $T\left(r, d_{j}\right)=o\left(m\left(r, e^{H}\right)\right),(j=1,2, \cdots, 16)$ and $m\left(r, e^{H}\right) \sim m\left(r, e^{I}\right)$, and if $H_{N} \neq 0$ then $T^{*}\left(r, d_{j}\right)=o\left(m^{*}\left(r, e^{H}\right)\right),(j=1,2, \cdots, 16)$ and $m^{*}\left(r, e^{H}\right) \sim m^{*}\left(r, e^{L}\right)$ as $r \rightarrow \infty$ outside a set of finite measure,

We call $d_{J}(j=1,2, \cdots, 16)$ a coefficient and denote the term in $\Omega(z)$ with coefficient $d_{J}$ by $d_{j} e^{h_{j} H+l_{j L}}$ or simply $d_{\jmath} A_{j}$. We set

$$
A^{*}=\left\{\left(d_{16}\right),\left(d_{15}, d_{14}\right),\left(d_{13}, d_{12}, d_{11}\right),\left(d_{10}, d_{9}, d_{8}, d_{7}\right),\left(d_{6}, d_{5}, d_{4}\right),\left(d_{3}, d_{2}\right),\left(d_{1}\right)\right\}
$$

and

$$
\tilde{A}=\left\{\left(d_{7}\right),\left(d_{4}, d_{11}\right),\left(d_{2}, d_{8}, d_{14}\right),\left(d_{1}, d_{5}, d_{12}, d_{16}\right),\left(d_{3}, d_{9}, d_{15}\right),\left(d_{6}, d_{13}\right),\left(d_{10}\right)\right\} .
$$

If $d_{k} \neq 0$ and all other coefficients in the parenthesis in $A^{*}$ to which $d_{k}$ belongs are identically zero, then we write $d_{k} \equiv d_{k}^{*}$, and for the case of $\tilde{A}$ we write $d_{k} \equiv \tilde{d}_{k}$.

$$
\text { Set } \quad S^{*}=\left\{d_{k} \mid d_{k} \equiv d_{k}^{*}\right\} \quad \text { and } \quad \tilde{S}=\left\{d_{k} \mid d_{k} \equiv \tilde{d}_{k}\right\} .
$$

Under these notations and conditions on $\Omega(z)$, we have:
Lemma 3.1. (i) Suppose $\Omega(z) \equiv 0$. Assume $H_{p} \equiv 0$. Then $H_{p} \equiv-L_{p}$ if $S^{*} \neq \phi$, and $H_{p} \equiv L_{p}$ if $\tilde{S} \neq \phi$. If we assume $H_{N} \equiv 0$, then $H_{N} \equiv-L_{N}$ if $S^{*} \neq \phi$, and $H_{N} \equiv L_{N}$ if $\tilde{S} \neq \phi$. (ii) $\Omega(z) \neq 0$ if $S^{*} \neq \phi$ and $\tilde{S} \neq \phi$.

Proof. (1) Suppose that $d_{2} A_{i}+d_{j} A_{j} \equiv 0$ with $i \neq j, d_{i} \neq 0$ and $d_{j} \neq 0$. Assume $H_{p} \neq 0$. Then $d_{i} e^{\left(h_{i}-h_{j}\right) H} \equiv-d_{j}{ }^{\left(l_{j}-l_{i)}\right)}$. Now

$$
T\left(r, d_{i} e^{\left(h_{i}-h_{j j}\right) H}\right) \sim\left[\left|h_{i}-h_{j}\right|+o(1)\right] m\left(r, e^{H p}\right)
$$

and

$$
T\left(r,-d_{j} e^{\left(l_{j}-l_{i}\right) L}\right) \sim\left[\left|l_{i}-l_{j}\right|+o(1)\right] m\left(r, e^{L p}\right) .
$$

Hence $m\left(r, e^{H p}\right) \sim m\left(r, e^{L p}\right)$ gives $\left|h_{i}-h_{j}\right|=\left|l_{i}-l_{j}\right|$.
When $h_{i}-h_{\jmath}=l_{j}-l_{i}$, we have $H_{p} \equiv L_{p}$ in $D$. When $h_{i}-h_{\jmath}=l_{i}-l_{\jmath}$ we have $H_{p} \equiv-L_{p}$ in $D$.
(2) Suppose $\Omega(z) \equiv 0$ with some $d_{i} \neq 0$ for some $i$. Assume $H_{p} \neq 0$. Then we claim that $H_{p} \equiv L_{p}$ or $H_{p} \equiv-L_{p}$ in $D$. To show this we first notice that $d_{i} \neq 0$ for at least two $i$ 's $(1 \leqq i \leqq 16)$. We may assume that $d_{i} \neq 0$ for at least two $i$ 's $(2 \leqq i \leqq 16)$. Then we have

$$
d_{k_{1}} A_{k_{1}}+d_{k_{2}} A_{k_{2}}+\cdots+d_{k_{r}} A_{k_{r}}+d_{1} \equiv 0, \quad\left(k_{i} \neq k_{\jmath} \quad \text { for } \quad i \neq j \quad \text { and } \quad k_{j} \geqq 2\right)
$$

which is obtained from $\Omega(z) \equiv 0$ by discarding all the terms $d_{\imath} A_{2}$ 's with $d_{i} \equiv 0(i \geqq 2)$. If $d_{1} \neq 0$ then by Lemma 1.1 there are some constants $C_{i}^{(1)}$, at least two of them are not zero such that

$$
\sum_{i=1}^{r} C_{i}^{(1)} d_{k_{i}} A_{k_{i}} \equiv 0 .
$$

If $d_{1} \equiv 0$ then $\sum_{\imath=1}^{r} d_{k_{i}} A_{k_{i}} \equiv 0$. In any case we have

$$
\begin{equation*}
\sum_{i=1}^{r_{i}} d_{k_{i}}^{(1)} \Lambda_{k_{i}} \equiv 0 \quad\left(r_{1} \geqq 2, d_{k_{i}}^{(1)} \neq 0 \quad \text { for all } \quad k_{i}\left(1 \leqq i \leqq r_{1}\right)\right) . \tag{3.1}
\end{equation*}
$$

If $r_{1}=2$ then we have the desired results by (1). Suppose $r_{1}>2$. Write (3.1) into the form

$$
\sum_{i=1}^{r_{i}-1} d_{k_{i}}^{(1)}\left(\frac{A_{k_{i}}}{A_{k_{r_{1}}}}\right) \equiv-d_{k_{r_{1}}} \quad\left(d_{k_{r_{1}}} \neq 0\right)
$$

and apply Lemma 1.1. Then there are some constants $C_{i}^{(2)}$, at least two of them are not zero, such that

$$
\begin{equation*}
\sum_{i=1}^{r_{i}-1} C_{i}^{(2)} d_{k_{i}}^{(1)} A_{k_{i}} \equiv 0 \tag{3.2}
\end{equation*}
$$

Let $\sum_{i=1}^{r_{2}=1} d_{k_{i}}^{(2)} A_{k_{i}} \equiv 0$ be the result obtained from (3.2) after we discard all the terms with $C_{i}^{(2)}=0$. Then clearly $2 \leqq r_{2}<r_{1}$. If $r_{2}=2$, then we have the desired results. If $r_{2}>2$ then we repeat the process until we end up with the form: $d_{2}^{(n)} A_{k_{i}}+d_{j}^{(n)} A_{k_{j}} \equiv 0$ with $i \neq j, d_{2}^{(n)} \equiv 0$ and $d_{j}^{(n)} \equiv 0$. Then by (1) we have the results as claimed.
(3) Suppose $\Omega(z) \equiv 0$ and assume $H_{p} \neq 0$. Let

$$
\left\{\begin{array}{l}
b_{6}=d_{16} e^{3 H_{N}+3 L_{N}},  \tag{3.3}\\
b_{5}=d_{15} e^{3 H_{N}+2 L_{N}}+d_{14} e^{2 H_{N^{+}} 3 L_{N}}, \\
b_{4}=d_{13} e^{3 H_{N}+L_{N}}+d_{12} e^{2 H_{N_{N}+2} L_{N}}+d_{11} e^{H_{N^{+}}+3 L_{N}}, \\
b_{3}=d_{10} e^{3 H_{N}}+d_{9} e^{2 H_{N}+L_{N}}+d_{8} e^{H_{N}+2 L_{N}}+d_{7} e^{3 L_{N}}, \\
b_{2}=d_{6} e^{2 H_{N}}+d_{5} e^{H_{N_{N}+L_{N}}+d_{4} e^{2 L_{N}},} \\
b_{1}=d_{3} e^{H H_{N}}+d_{2} e^{L_{N}}, \\
b_{0}=d_{1},
\end{array}\right.
$$

and

By direct computation and Lemma 1 . 2, we see that $b_{i} \equiv 0$ for all $i(0 \leqq i \leqq 6)$ if $H_{p} \equiv L_{p}$, and $c_{i} \equiv 0$ for all $i(0 \leqq i \leqq 6)$ if $H_{p} \equiv-L_{p}$.

Suppose $S^{*} \neq \phi$ and assume $H_{p} \neq 0$. Then $d_{i} \in S^{*}$ for some $i$ and obviously $d_{i} \neq 0$. Hence by (2), $H_{p} \equiv L_{p}$ or $H_{p} \equiv-L_{p}$. But if $H_{p} \equiv L_{p}$, then $b_{i} \equiv 0$ for all $i(0 \leqq i \leqq 6)$.

Hence $d_{i} \equiv 0$, a contradiction. Hence $H_{p} \equiv-L_{p}$. Similarly, if $\tilde{S} \neq \phi$ and $H_{p} \neq 0$ then $H_{p} \equiv H_{p}$. Thus we proved the statement (i) in the lemma in the case $H_{p} \equiv 0$.
(4) If $H_{N} \neq 0$, then by interchanging $p$ and $N$, and replacing $m$ by $m^{*}, T$ by $T^{*}$ in the above whole argument, we see that $H_{N} \equiv-L_{N}$ if $S^{*} \neq \phi$, and $H_{N} \equiv L_{N}$ if $\tilde{S} \neq \phi$.
(5) Suppose $S^{*} \neq \phi$ and $\tilde{S} \neq \phi$. Assume $\Omega(z) \equiv 0$. If $H_{p} \neq 0$ then $H_{p} \equiv-L_{p}$ and $H_{p} \equiv L_{p}$. Hence $H_{p} \equiv 0$, a contradiction. Hence $H_{p} \equiv 0$ and $H_{N} \equiv 0$. But then we have again a contradiction. Thus $\Omega(z) \neq 0$. (q.e.d.)

Lemma 3. 2. Let $g_{i}(z)(i=1,2)$ be defined in $D$ by

$$
g_{i}(z)=z^{3 n_{i}} B_{i 3}(z) e^{3 H_{i}(z)}+z^{2 n_{i}} B_{i 2}(z) e^{2 H i(z)}+z^{n_{i}} B_{i 1}(z) e^{H i}(z)+B_{i 0}(z),
$$

with the properties: (i) $n_{i}$ is an integer, $B_{i j}(z)(j=0,1,2,3)$ meromorphic and $H_{i}(z)$ regular and non-constant in $D$ such that $H_{i 0}=0, B_{i 3} \equiv 1$ and $B_{i 0} \neq 0$. (ii) If $H_{1 p} \neq 0$ then $m\left(r, e^{H_{1}}\right) \sim m\left(r, e^{H_{2}}\right)$ and $T\left(r, B_{i j}\right)=o\left(m\left(r, e^{H_{i}}\right)\right),(j=0,1,2)$ and if $H_{1 N} \neq 0$ then $m^{*}\left(r, e^{H_{1}}\right) \sim m^{*}\left(r, e^{H_{2}}\right)$ and $T^{*}\left(r, B_{i j}\right)=o\left(m^{*}\left(r, e^{H_{i}}\right)\right)(j=0,1,2)$ as $r \rightarrow \infty$ outside a set of finite measure. Suppose that

$$
\begin{equation*}
g_{1}(z)=f^{3}(z) g_{2}(z), \tag{3.5}
\end{equation*}
$$

where $f(z)$ is meromorphic in $D$ such that if $H_{1 p} \neq 0$, then $T\left(r, f^{\prime} \mid f\right)=o\left(m\left(r, e^{H_{1}}\right)\right)$ and if $H_{1 N} \neq 0$, then $T^{*}\left(r, f^{\prime} \mid f\right)=o\left(m^{*}\left(r, e^{H_{1}}\right)\right)$ as $r \rightarrow \infty$ outside a set of finite measure. Then in $D$ we have either

$$
\begin{equation*}
H_{1}(z) \equiv H_{2}(z) \quad \text { and } \quad B_{1 j}(z) \equiv B_{2 j}(z) z^{(3-j)\left(n_{1}-n_{2}\right)} \quad(j=0,1,2) \tag{3.6}
\end{equation*}
$$

or

$$
\begin{equation*}
H_{1}(z) \equiv-H_{2}(z) \quad \text { and } \quad B_{1 j}(z) \equiv \frac{B_{2(3-j)}(z)}{B_{20}(z)} z^{(3-j)\left(n_{1}+n_{2}\right)} \quad(j=0,1,2) \tag{3.7}
\end{equation*}
$$

Proof. By differentiating $g_{1}=f^{3} g_{2}$, we have

$$
g_{1}^{\prime} g_{2}=g_{1}\left(3 \frac{f^{\prime}}{f} g_{2}+g_{2}^{\prime}\right) .
$$

Then this can be written as follows:

$$
\begin{align*}
\Omega(z) \equiv & a_{18} e^{3 H_{1}+3 H_{2}}+a_{15} e^{3 H_{1}+2 H_{2}}+a_{14} e^{2 H_{1}+3 H_{2}}+a_{13} e^{3 H_{1}+H_{2}} \\
& +a_{12} e^{2 H_{1}+2 H_{2}}+a_{11} e^{H_{1}+3 H_{2}}+a_{10} e^{3 H_{1}}+a_{9} e^{2 H_{1}+H_{2}}+a_{8} e^{H_{1}+2 H_{2}}  \tag{3.8}\\
& +a_{7} e^{3 H_{2}}+a_{6} e^{2 H_{1}}+a_{5} e^{H_{1}+H_{2}}+a_{4} e^{2 H_{2}}+a_{3} e^{H_{1}}+a_{2} e^{H_{2}}+a_{1} \equiv 0,
\end{align*}
$$

where if we set $a_{j} A_{j}=a_{j} e^{h_{j} H_{1}+l j H_{2}}$, then $a_{j}(z)$ is given by

$$
\begin{align*}
& a_{j}=B_{1 h_{j}} B_{2 l l_{j}} z^{h_{j} n_{1}+l l_{j} n_{2}}\left[\frac{B_{1 n_{j}}^{\prime}}{B_{1 h_{j}}}-\frac{B_{2 l_{j}}^{\prime}}{B_{2 l_{j}}}+\left(h_{j} H_{1}^{\prime}-l_{j} H_{2}^{\prime}\right)+\frac{h_{j} n_{1}-l_{j} n_{z}}{z}-\frac{3 f^{\prime}}{f}\right]  \tag{3.9}\\
& \text { ( } j=1,2, \cdots, 16 \text { ). }
\end{align*}
$$

We first notice that from (3.8) we have

$$
\begin{equation*}
\prod_{j=1}^{16} a_{j} \equiv 0 \tag{3.10}
\end{equation*}
$$

for otherwise $a_{j} \neq 0$ for all $j$, and, in particular, $a_{16} \in S^{*}$ and $a_{10} \in \tilde{S}$. Hence by Lemma 3.1, we have $\Omega(z) \neq 0$, a contradiction.

Suppose $a_{j}(z) \equiv 0$ and $B_{1 h_{j}} B_{2 l_{j}} \neq 0$, then from (3.9) and (3.5) we have

$$
\begin{equation*}
\Omega_{j}(z) \equiv \sum_{k=0}^{3}\left[B_{1 k} B_{2 l} z^{k n_{1}+l j n_{2}} e^{k H_{1}+l_{j} H_{2}}-C_{j} B_{1 h_{j}} B_{2 k} z^{h_{j} n_{1}+k n_{2}} e^{h j H_{1}+k H_{2}}\right] \equiv 0 . \tag{3.11}
\end{equation*}
$$

Suppose $B_{11} \neq 0$. Then $B_{11} B_{2 l} \neq 0$ for $l_{j}=0,3$. Assume $a_{j} \equiv 0$ for $j=11,3$. Since $B_{1 h_{j}} B_{2 l_{j}} \neq 0$ for $j=11,3$, we have $\Omega_{j}(z) \equiv 0$ for $j=11,3$. But in (3.11) $d_{16} \in S^{*}$ and $d_{7} \in \widetilde{S}$ when $j=11$, and $d_{1} \in S^{*}$ and $d_{10} \in \tilde{S}$ when $j=3$. Hence by Lemma 3.1 $\Omega_{j}(z) \neq 0$ for $j=11,3$. This is a contradiction.

Hence $a_{11} \neq 0$ and $a_{3} \neq 0$, if $B_{11} \neq 0$. By a similar reasoning we have the following table:

| If $B_{i j} \neq 0$ |  | then $a_{k} \neq 0$ | If $B_{i j} \equiv 0$ then $a_{k} \equiv 0$ |
| :---: | :---: | :---: | :---: |
| $B_{11}$ | $a_{11}, a_{3}$ | $B_{11}$ | $a_{11}, a_{8}, a_{5}, a_{3}$ |
| $B_{12}$ | $a_{14}, a_{6}$ | $B_{12}$ | $a_{14}, a_{12}, a_{9}, a_{6}$ |
| $B_{21}$ | $a_{13}, a_{2}$ | $B_{21}$ | $a_{13}, a_{9}, a_{5}, a_{2}$ |
| $B_{22}$ | $a_{15}, a_{4}$ | $B_{22}$ | $a_{15}, a_{12}, a_{8}, a_{4}$ |

There are two cases:
Case (I) $B_{11} B_{12} B_{21} B_{22} \neq 0$.
From (3.12) $a_{j} \neq 0$ for $j=15,14,13,11,6,4,3,2$. Hence (3.10) reduces to $\Pi_{j} a_{\jmath}=0$ where $j$ runs over $\{16,12,10,9,8,7,5,1\}$. But $\Pi_{0 \leqq i, j \leq 3} B_{i j} \neq 0$. Hence $\Pi_{j} \Omega_{j}(z) \equiv 0$ where $j$ runs over $\{16,12,10,9,8,7,5,1\}$.

Case (II) $\mathrm{B}_{11} B_{12} B_{21} B_{22} \equiv 0$. We divide into two subcases: subcase (A) $B_{11} \equiv 0$ and subcase (B) $B_{11} \neq 0$.

In the subcase (A), $\Omega_{j}(z) \equiv 0$ with $B_{1 h_{j}} B_{2 l_{j}} \neq 0$ for at least one of $j(j=16,12,10$, $9,7,1$ ). In the subcase (B), $\Omega_{j}(z) \equiv 0$ with $B_{1 h_{j}} B_{2 l_{j}} \neq 0$ for at least one of $j(j=16$, $12,9,8,7,5,1)$.

By summarizing the results obtained so far, we can conclude that: (3.8) implies that $\Omega_{j}(z) \equiv 0$ with $B_{1 h_{j}} B_{2 l_{j}} \neq 0$ for at least one of $j(j=16,12,10,9,8,7,5,1)$.

We first consider the case when $\Omega_{j}(z) \equiv 0$ and $B_{1 h_{j}} B_{2 l_{j}} \neq 0$ for $j=16,12,5,1$. Now $h_{j}=l_{j}=3,2,1$ and 0 for $j=16,12,5$ and 1 , respectively. Further $\tilde{S} \neq \phi$ in the equation $\Omega_{j}(z) \equiv 0$ for $j=16,12,5,1$. Thus for $j(j=16,12,5,1), \Omega_{j}(z) \equiv 0$ implies that $H_{1 p} \equiv H_{2 p}$ if $H_{1 p} \neq 0$, and $H_{1 N} \equiv H_{2 N}$, if $H_{1 N} \neq 0$, by Lemma 3.1. Assume $H_{1 p} \neq 0$. Then $b_{i} \equiv 0(i=0,1, \cdots, 6)$ where $b_{i}$ 's are given by (3.3). But in (3.11) we have $k+l_{j}=h_{j}+k(k=0,1,2,3)$ since $h_{\jmath}=l_{j}$. Hence we have

$$
\begin{equation*}
B_{1 k} B_{2 l} z^{k n_{1} l_{j n} n_{2}} e^{k H_{1 N}+l_{j} H_{2 N}} \equiv C_{j} B_{1 h_{j}} B_{2 k} z^{h j^{n_{1}+k n_{2}} e^{h_{j} H_{1 N}+k I_{2 N} N}} \quad(k=0,2,3) . \tag{3.13}
\end{equation*}
$$

Put $k=0$ and 3 in (3.13). Since $B_{10} B_{20} B_{1 h_{j}} B_{2 l_{j}} B_{13} B_{23} \neq 0$ and $h_{\jmath}=l_{\jmath}$ for $j=16,12,5$ and 1 , we have

$$
B_{1 k} \equiv B_{2 k} z^{(3-k)\left(n_{1}-n_{2}\right)} \quad(k=0,1,2) .
$$

Thus if $H_{1 p} \neq 0$ then $\Omega_{j}(z) \equiv 0(j=16,12,5,1)$ implies that $H_{1} \equiv H_{2}$ and $B_{1 k} \equiv B_{2 k} z^{(3-k)}$ ${ }^{\left(n_{1}-n_{2}\right)}(k=0,1,2)$. If $H_{1 p} \equiv 0$, then $H_{1 N} \equiv 0$. Then by interchanging $p$ and $N$ in the above argument we have the the same results.

It remains to examine the case when $\Omega_{j}(z) \equiv 0$ and $B_{1 h_{j}} B_{2 l_{j}} \neq 0$ for $j=10,9,8,7$. As before, we note that in (3.11) $S^{*} \neq \phi$ for $j=10,9,8,7$. Hence by Lemma 3.1, we see that $\Omega_{j}(z) \equiv 0(j=10,9,8,7)$ implies that $H_{1 p} \equiv-H_{2 p}$ if $H_{1 p} \neq 0$, and $H_{1 N} \equiv$ $-H_{2 N}$ if $H_{1 N} \neq 0$.

Assume $H_{1 p} \neq 0$. Then $H_{1 p} \equiv-H_{2 p}$ and hence $c_{i} \equiv 0(i=0,1, \cdots, 6)$ where $c_{\imath}$ 's are given by (3.4). We rewrite (3.11) into the following form:

$$
\begin{equation*}
\sum_{k=0}^{3}\left(B_{1 k} B_{2 l_{j}} z^{k n_{1} l^{n} n_{2}} e^{k H_{1}+l_{j} H_{2}}-C_{j} B_{1 h_{j}} B_{2(3-k)} z^{h_{j} n_{1}+(3-k) n_{2}} e^{h_{j} H_{1}+(3-k) H_{2}}\right) \equiv 0 \tag{3.14}
\end{equation*}
$$

By comparing (3.4) and (3.14) together with $l_{j}-k=(3-k)-h_{\jmath}$ for $k=0,1,2,3$ we have

$$
B_{2 l_{j}} B_{1 k} z^{z n_{1}+l l_{j} n_{2}} e^{k H_{1 N}+l_{j} H_{2 N}} \equiv C_{j} B_{1 h_{j}} B_{2(3-k)} z^{h_{j} n_{1}+(3-k) n_{2}} e^{h_{j} H_{1 N}+(3-k) H_{2 N}} \quad(k=0,1,2,3) .
$$

By essentially the same argument we have

$$
B_{1 k} \equiv \frac{B_{2(3-k)}}{B_{20}} z^{(3-k)\left(n_{1}+n_{2}\right)} \quad(k=0,1,2) .
$$

Now clearly (3.6) and (3.7) cannot hold simultaneously, for otherwise $H_{1} \equiv H_{2}$ $\equiv 0$, a contradiction. This completes the proof. (q.e.d.)

Lemma 3. 3. Suppose that

$$
\begin{equation*}
f^{3}(z)\left(e^{H(z)}-B_{1}(z)\right)\left(e^{H(z)}-B_{2}(z)\right)^{2}=\left(e^{L(z)}-A_{1}(z)\right)\left(e^{L(z)}-A_{2}(z)\right)^{2}, \tag{3.15}
\end{equation*}
$$

with the properties that: (i) $H(z)$ and $L(z)$ are non-constant regular functions in $D$ with $H_{0}=L_{0}=0$. (ii) $A_{i}(z)$ and $B_{i}(z)(i=1,2)$ are regular functions in $D$ such that $A_{i}(z) \neq 0, B_{i}(z) \neq 0, A_{1}(z) \neq A_{2}(z)$ and $B_{1}(z) \neq B_{2}(z)$. (iii) $m\left(r, A_{i}\right)=o\left(m\left(r, e^{L}\right)\right)$ if $L_{p} \neq 0$, and $m^{*}\left(r, A_{i}\right)=o\left(m^{*}\left(r, e^{L}\right)\right)$ if $L_{N} \neq 0$, and $m\left(r, B_{i}\right)=o\left(m\left(r, e^{H}\right)\right)$ if $H_{p} \neq 0$, and $m^{*}\left(r, B_{i}\right)$ $=o\left(m^{*}\left(r, e^{H}\right)\right)$ if $H_{N} \neq 0$, as $r \rightarrow \infty$ outside a set of finite measure. (iv) $f(z)$ is a meromorphic function in $D$. Then we have that either $H(z) \equiv L(z)$ and $B_{i}(z) \equiv A_{i}(z)$ for $i=1,2$, or $H(z) \equiv-L(z)$ and $B_{i}(z) \equiv 1 / A_{i}(z)$ for $i=1,2$.

Proof. Let $f(z)$ be meromorphic and $G(z)$ regular in $D$ such that $f^{3} G$ is regular. Let $N_{3}\left(r, 0, f^{3} G\right)$ be the $N$-function of double zeros of $f^{3} G$, counted simply. Then we have

$$
\begin{equation*}
N_{3}\left(r, 0, f^{3} G\right) \leqq N_{1}(r, 0, G) \tag{3.16}
\end{equation*}
$$

Set $G(z)=\left(e^{H}-B_{1}\right)\left(e^{H}-B_{2}\right)^{2}$ and $g(z)=\left(e^{L}-A_{1}\right)\left(e^{L}-A_{2}\right)^{2}$. Assume $H_{p} \neq 0$. Then by Lemma 1.4 and Lemma 1.6 we have (1-o(1))m(r, $\left.e^{H}\right) \sim N_{2}\left(r, 0, e^{H}-B_{1}\right)-N_{0}\left(r, 0, e^{I I}\right.$ $\left.-B_{1}, e^{H}-B_{2}\right) \leqq N_{2}(r, 0, G) \leqq N_{2}\left(r, 0, e^{L}-A_{1}\right)+N_{0}\left(r, 0, e^{L}-A_{1}, e^{L}-A_{2}\right)+2 N_{1}\left(r, 0, e^{L}-A_{1}\right)$ $+2 N_{1}\left(r, 0, e^{L}-A_{2}\right) \sim(1+o(1)) m\left(r, e^{L}\right)$, i.e., $(1-o(1)) m\left(r, e^{I I}\right) \leqq(1+o(1)) m\left(r, e^{L}\right)$ as $r \rightarrow \infty$ outside a set of finite measure. On the other hand, $N_{3}(r, 0, g) \geqq N_{2}\left(r, 0, e^{L}-A_{2}\right)$ $-N_{0}\left(r, 0, e^{L}-A_{1}, e^{L}-A_{2}\right) \sim(1-o(1)) m\left(r, e^{L}\right)$ and $N_{1}(r, 0, G) \leqq N_{1}\left(r, 0, e^{I I}-B_{1}\right)+N_{2}\left(r, 0, e^{I I}\right.$ $\left.-B_{2}\right)+N_{1}\left(r, 0, e^{H}-B_{2}\right) \sim(1+o(1)) m\left(r, e^{H}\right) . \quad$ From (3.16), $N_{3}\left(r, 0, f^{3} G\right)=N_{3}(r, 0, g)$ $\leqq N_{1}(r, 0, G)$. Hence $(1-o(1)) m\left(r, e^{L}\right) \leqq(1+o(1)) m\left(r, e^{H}\right)$ as $r \rightarrow \infty$ outside a set of finite measure.

Hence $m\left(r, e^{H}\right) \sim m\left(r, e^{L}\right)$ as $r \rightarrow \infty$ outside a set of finite measure.
Let $N_{1}^{\prime}(r, 0, G)$ be the $N$-function of zeros of $G$ of order at least three, counted multiply. Then $N\left(r, \infty, f^{\prime}\right) \leqq N_{1}^{\prime}(r, 0, G) \leqq 2 N_{1}\left(r, 0, e^{H}-B_{1}\right)+4 N_{1}\left(r, 0, e^{I I}-B_{2}\right)$ $+3 N_{0}\left(r, 0, e^{H}-B_{1}, e^{H}-B_{2}\right)=o\left(m\left(r, e^{H}\right)\right)$, and $N(r, 0, f) \leqq N_{1}^{\prime}(r, 0, g) \leqq 2 N_{1}\left(r, 0, e^{L}-A_{1}\right)$ $+4 N_{1}\left(r, 0, e^{L}-A_{2}\right)+3 N_{0}\left(r, 0, e^{L}-A_{1}, e^{L}-A_{2}\right)=o\left(m\left(r, e^{L}\right)\right)$. Hence $N\left(r, \infty, f^{\prime} \mid f\right)$ $=o\left(m\left(r, e^{H}\right)\right)$ as $r \rightarrow \infty$ outside a set of finite measure. But $m\left(r, f^{\prime} \mid f\right) \leqq O(\log r T(r, f))$ as $r \rightarrow \infty$ outside a set of finite measure (Nevanlinna [6]). Clearly, $T(r, f)=O\left(m\left(r, e^{I I}\right)\right.$ $\left.+m\left(r, e^{L}\right)\right)$ as $r \rightarrow \infty$. Hence $T\left(r, f^{\prime} \mid f\right)=m\left(r, f^{\prime} \mid f\right)+N\left(r, \infty, f^{\prime} \mid f\right) \leqq O(\log r T(r, f))$ $+o\left(m\left(r, e^{H}\right)\right)=o\left(m\left(r, e^{H}\right)\right)$, i.e., $T\left(r, f^{\prime} \mid f\right)=o\left(m\left(r, e^{H}\right)\right)$ as $r \rightarrow \infty$ outside a set of finite measure. Thus if $H_{p} \neq 0$, then $m\left(r, e^{H}\right) \sim m\left(r, e^{L}\right)$ and $T\left(r, f^{\prime} \mid f\right)=o\left(m\left(r, e^{H}\right)\right)$ as $r \rightarrow \infty$ outside a set of finite measure. We already assumed that $m\left(r, A_{2}\right)=o\left(m\left(r, e^{L}\right)\right)$ and $m\left(r, B_{i}\right)=o\left(m\left(r, e^{H}\right)\right)$ as $r \rightarrow \infty$ outside a set of finite measure. If $H_{p} \equiv 0$, then $H_{N} \neq 0$. By a similar argument for $N_{1}^{*}, N_{2}^{*}, m^{*}, T^{*}$, etc., we have the same results for $m^{*}$ and $T^{*}$. Further $B_{1}(z) B_{2}^{2}(z) \neq 0$ and $A_{1}(z) A_{2}^{2}(z) \neq 0$.

Thus we may apply Lemma 3.2 to (3.15) and we have either

$$
\left\{\begin{array}{l}
L \equiv H \\
-\left(A_{1}+2 A_{2}\right) \equiv-\left(B_{1}+2 B_{2}\right) \\
A_{2}^{2}+2 A_{1} A_{2} \equiv B_{2}^{2}+2 B_{1} B_{2} \\
-A_{1} A_{2}^{2} \equiv-B_{1} B_{2}^{2}
\end{array}\right.
$$

or

$$
\left\{\begin{array}{l}
L \equiv-H \\
-\left(A_{1}+2 A_{2}\right) \equiv-\frac{B_{2}^{2}+2 B_{1} B_{2}}{B_{1} B_{2}^{2}}, \\
A_{2}^{2}+2 A_{1} A_{2} \equiv \frac{B_{1} 2 B_{2}}{B_{1} B_{2}^{2}} \\
-A_{1} A_{2}^{2} \equiv-\frac{1}{B_{1} B_{2}^{2}}
\end{array}\right.
$$

i.e., either $H(z) \equiv L(z)$ and $B_{i}(z) \equiv A_{i}(z)$ for $i=1,2$, or $H(z) \equiv-L(z)$ and $B_{i}(z) \equiv 1 / A_{i}(z)$ for $i=1,2$. (q.e.d.)
$\S 4$ In this section we characterize $R \in S_{3}(D)$ with $P(R)=6$. The following theorem is an extension of a theorem due to Hiromi and Niino [2]:

Theorem 4.1. Let $R \in S_{3}(D)$. Then $P(R)=6$ if and only if $R$ is conformally equivalent to a surface $S \in S_{3}(D)$ defined by $y^{3}=\left(z^{n} e^{H(z)}-\gamma\right)\left(z^{n} e^{H(z)}-\delta\right)^{2}$, where (i) $H(z)$ is a non-constant regular function in $D$ with $H_{0}=0$. (ii) $\gamma$ and $\delta$ are constants such that $\gamma \delta(\gamma-\delta) \neq 0$. (iii) $n$ is an integer ( $n=0$ if $D=\{z| | z \mid<\infty\}$ ).

Proof. Suppose $R \in S_{3}(D)$ is defined by $y^{3}=g(z)$ and $P(R)=6$. Then there exists a meromorphic function $f \in \mathfrak{M}(R)$ with $P(f)=6$. We may assume that $0, a_{1}, a_{2}, a_{3}$, $a_{4}, \infty$ are the six values which are not taken by $f$. Then $f$ is a single-valued regular function on $R$. Hence $f$ satisfies (2.3) and the defining equation of $f$ is given by (2.1) where $s_{1}(z), s_{2}(z)$ and $s_{3}(z)$ satisfy (2.4). By Rémoundos' reasoning [10] we have

$$
\left(\begin{array}{l}
F(z, 0) \\
F\left(z, a_{1}\right) \\
F\left(z, a_{2}\right) \\
F\left(z, a_{3}\right) \\
F\left(z, a_{4}\right)
\end{array}\right)=(\mathrm{i})\left(\begin{array}{l}
P_{0} \\
P_{1} \\
P_{2} e^{H_{2}} \\
P_{3} e^{H_{3}} \\
P_{4} e^{H_{4}}
\end{array}\right) \text {, (ii) }\left(\begin{array}{l}
P_{2} e^{I I_{2}} \\
P_{0} \\
P_{1} \\
P_{3} e^{H_{3}} \\
P_{4} e^{H_{4}}
\end{array}\right)
$$

where $H_{j}(j=2,3,4)$ is a non-constant regular function in $D$ with $H_{j 0}=0$ and $P_{\jmath}=b_{j} z^{n_{j}}(j=0,1,2,3,4)$ with $b_{j}$ being a non-zero constant and $n_{\jmath}$ an integer (all $n_{\jmath}$ are zero when $D=\{z| | z \mid<\infty\}$ ).

Case (i). We have

$$
\left\{\begin{array}{c}
-s_{3}=b_{0} z^{n_{0}},  \tag{4.1}\\
a_{1}^{3}-a_{1}^{2} s_{1}+a_{1} s_{2}-s_{3}=b_{1} z^{n_{1}}, \\
a_{2}^{3}-a_{2}^{2} s_{1}+a_{2} s_{2}-s_{3}=b_{2} z^{n_{2}} e^{H_{2}}, \\
a_{3}^{3}-a_{3}^{2} s_{1}+a_{3} s_{2}-s_{3}=b_{3} z^{n_{3}} e^{H_{3}}, \\
a_{4}^{3}-a_{4}^{2} s_{1}+a_{4} s_{2}-s_{3}=b_{4} z^{n^{n}} e^{I 4}
\end{array}\right.
$$

Eliminating $s_{1}, s_{2}$ and $s_{3}$ from (1), (3), (4) and (5), we have

$$
\begin{aligned}
& a_{3} a_{4}\left(a_{3}-a_{4}\right) b_{2} z^{n_{2}} e^{H_{2}}-a_{2} a_{4}\left(a_{2}-a_{4}\right) b_{3} z^{n_{3}} e^{H_{3}}+a_{2} a_{3}\left(a_{2}-a_{3}\right) b_{4} z^{n_{4}} e^{I / 4} \\
= & \left(b_{0} z^{n_{0}}+a_{2} a_{3} a_{4}\right)\left(a_{2}-a_{3}\right)\left(a_{2}-a_{4}\right)\left(a_{3}-a_{4}\right) .
\end{aligned}
$$

We rewrite this equation into the form: $a_{2}^{\prime} e^{H_{2} p}+a_{3}^{\prime} e^{H_{3} p}+a_{4}^{\prime} e^{H_{4} p}=a_{1}^{\prime}$, where $T\left(r, a_{j}^{\prime}\right)$ $=O(\log r)$ as $r \rightarrow \infty$.

If two of $H_{2 p}, H_{3 p}$, and $H_{4 p}$ are identically zero then the remaining one is also identically zero. So $H_{2 p} \equiv H_{3 p} \equiv H_{4 p} \equiv 0$ in this case. Suppose $H_{2 p} \equiv 0$ and $H_{3 p} \equiv 0$. By Lemma 1.3 we may assume that $H_{2 p}$ and $H_{3 p}$ are dependent, i.e., $H_{2 p} \equiv H_{3 p}$ in
$1 \leqq|z|<\infty$. Then we have $\left(a_{2}^{\prime}+a_{3}^{\prime}\right) e^{H_{2} p}+a_{4}^{\prime} e^{H_{4} p}=a_{1}^{\prime}$. If $e^{H_{4} p} \equiv 0$ in $1 \leqq|z|<\infty$ then it would force $H_{2 p} \equiv 0$, a contradiction. Hence $e^{I I_{1} p} \equiv 0$ in $1 \leqq|z|<\infty$. Again by Lemma 1.3 we have that $a_{1}^{\prime} \equiv 0, H_{2 p} \equiv H_{4 p}$ and $a_{2}^{\prime}+a_{3}^{\prime}+a_{4}^{\prime} \equiv 0$ in $1 \leqq|z|<\infty$. Thus either $H_{2 p} \equiv H_{3 p} \equiv H_{4 p} \equiv 0$ and $a_{2}^{\prime}+a_{3}^{\prime}+a_{4}^{\prime}=a_{1}^{\prime}$ or $H_{2 p} \equiv H_{3 p} \equiv H_{4 p} \equiv 0, a_{1}^{\prime} \equiv 0$ and $a_{2}^{\prime}+a_{3}^{\prime}$ $+a_{4}^{\prime} \equiv 0$ in $1 \leqq|z|<\infty$. By a similar argument for the $H_{j N}$ in $a_{2}^{\prime}+a_{3}^{\prime}+a_{4}^{\prime} \equiv a_{1}^{\prime}$, we have the following:

$$
\left\{\begin{array}{l}
H_{2} \equiv H_{3} \equiv H_{4} \equiv H, n_{0}=0, n_{2}=n_{3}=n_{4}=n, b_{0}=-a_{2} a_{3} a_{4}  \tag{4.2}\\
a_{3} a_{4}\left(a_{3}-a_{4}\right) b_{2}-a_{2} a_{4}\left(a_{2}-a_{4}\right) b_{3}+a_{2} a_{3}\left(a_{2}-a_{3}\right) b_{4}=0 .
\end{array}\right.
$$

Next we eliminate $s_{1}, s_{2}$ and $s_{3}$ from (1), (2), (3) and (4) in (4.1), and then substitute $H_{2} \equiv H_{3} \equiv H, n_{3}=n_{4}=n$ and $n_{0}=0$. Then we have

$$
\left\{\begin{array}{l}
-a_{1} a_{3}\left(a_{1}-a_{3}\right) b_{2}+a_{1} a_{2}\left(a_{1}-a_{2}\right) b_{3}=0  \tag{4.3}\\
n_{1}=0 \\
a_{2} a_{3}\left(a_{2}-a_{3}\right) b_{1}-\left(b_{0}+a_{1} a_{2} a_{3}\right)\left(a_{1}-a_{2}\right)\left(a_{1}-a_{3}\right)\left(a_{2}-a_{3}\right)=0
\end{array}\right.
$$

From (4.1), (4.2) and (4.3), we have

$$
\left\{\begin{array}{l}
s_{1}=\frac{1}{a_{2}\left(a_{1}-a_{2}\right)} b_{2} z^{n} e^{H}+\left(a_{2}+a_{3}+a_{4}\right) \\
s_{2}=\frac{a_{1}}{a_{2}\left(a_{1}-a_{2}\right)} b_{2} z^{n} e^{H}+\left(a_{2} a_{3}+a_{3} a_{4}+a_{4} a_{2}\right) \\
s_{3}=a_{2} a_{3} a_{4}
\end{array}\right.
$$

Case (ii). By a similar argument and computation, we have

$$
\left\{\begin{array}{l}
s_{1}=-\frac{1}{a_{1} a_{2}} b_{2} z^{n} e^{H}+\left(a_{3}+a_{4}\right) \\
s_{2}=-\frac{a_{1}+a_{2}}{a_{1} a_{2}} b_{2} z^{n} e^{H}+a_{3} a_{4} \\
s_{3}=-b_{2} z^{n} e^{H}
\end{array}\right.
$$

By a similar method due to Hiromi and Niino [2] we have

$$
\left\{\begin{array}{l}
\nu^{3} g=A\left(z^{n} e^{H}-\gamma\right)\left(z^{n} e^{H}-\delta\right)^{2},  \tag{4.4}\\
\mu^{3} g^{2}=A\left(z^{n} e^{H}-\gamma\right)\left(z^{n} e^{H}-\delta\right),
\end{array}\right.
$$

where $A, \gamma$ and $\delta$ are non-zero constants with $A \gamma \delta(\gamma-\delta) \neq 0$ and $\nu(z)$ and $\mu(z)$ meromorphic functions in $D$ with the properties as described in Lemma 2.1.

Let $G_{1}(z)=\left(z^{n} e^{H}-\gamma\right)\left(z^{n} e^{H}-\delta\right)^{2}$ and $G_{2}(z)=\left(z^{n} e^{H}-\gamma\right)^{2}\left(z^{n} e^{H}-\delta\right)$. Then $G_{1}(z)$ and $G_{2}(z)$ are admissible for $S_{3}(D)$. Let $R_{1} \in S_{3}(D)$ and $R_{2} \in S_{3}(D)$ be defined by $y^{3}=G_{1}(z)$
and $w^{3}=G_{2}(x)$, respectively. Then by Lemma 2.2 we see that $R$ is conformally equivalent to $R_{1}$ and $R_{2}$.

The proof for the converse is the same as in [2]. (q.e.d.)
§5. For our convenience, we define the following: (i) $(m, H, \alpha, \beta)_{D}$ is a symbol where $H(z)$ is a non-constant regular function in $D$ with $H_{0}=0, m$ is an integer ( $m=0$ when $D=\{z| | z \mid<\infty\}$ ) and $\alpha, \beta$ are distinct non-zero constants. (ii) ( $m, H, \alpha, \beta)_{D}$ $\equiv(n, L, \gamma, \delta)_{D}$ if and only if $m=n, H \equiv L, \alpha=\gamma$, and $\beta=\delta$. (iii) $f(m, H, \alpha, \beta)_{D}$ $\equiv\left(z^{m} e^{I I}-\alpha\right)\left(z^{m} e^{I I}-\beta\right)^{2}$. (iv) $S(m, H, \alpha, \beta)_{D}$ is a surface in $S_{3}(D)$ defined by $y^{3}$ $=f(m, H, \alpha, \beta)_{D}$.

Suppose $R \in S_{3}(D)$ is defined by $y^{3}=g(z)$ and $P(R)=6$. Then from (4.4) there exists a symbol ( $m, H, \alpha, \beta)_{D}$ such that $g(z)$ satisfies

$$
\left\{\begin{array}{l}
\nu_{1}^{3}(z) g(z)=f(m, H, \alpha, \beta)_{D},  \tag{5.1}\\
\mu_{1}^{3}(z) g^{2}(z)=f(m, H, \beta, \alpha)_{D},
\end{array}\right.
$$

where $\nu_{1}(z)$ and $\mu_{1}(z)$ are meromorphic functions in $D$ with the properties as described in Lemma 2.1.

Suppose there exists another symbol $(n, L, \gamma, \delta)_{D}$ such that $g(z)$ satisfies

$$
\left\{\begin{array}{l}
\nu_{2}^{3}(z) g(z)=f(n, L, \gamma, \delta)_{D},  \tag{5.2}\\
\mu_{2}^{3}(z) g^{2}(z)=f(n, L, \delta, \gamma)_{D},
\end{array}\right.
$$

where $\nu_{2}(z)$ and $\mu_{2}(z)$ have the same properties as $\nu_{1}(z)$ and $\mu_{1}(z)$, respectively. From (5.1) and (5.2) we have

$$
\nu^{3}(z)\left(e^{H}-\frac{\alpha}{z^{m}}\right)\left(e^{H}-\frac{\beta}{z^{m}}\right)^{2}=f(n, L, \gamma, \delta)_{D}, \quad \text { where } \quad \nu(z)=\frac{\nu_{2}(z)}{\nu_{1}(z)} z^{m} .
$$

By Lemma 3. 3, we have either
$H \equiv L, \frac{\alpha}{z^{m}} \equiv \frac{\gamma}{z^{n}} \quad$ and $\quad \frac{\beta}{z^{m}} \equiv \frac{\delta}{z^{n}}, \quad$ or $\quad H \equiv-L, \frac{\alpha}{z^{m}} \equiv \frac{z^{n}}{\gamma} \quad$ and $\quad \frac{\beta}{z_{m}} \equiv \frac{z^{n}}{\delta}$.
Thus either $(m, H, \alpha, \beta)_{D}=(n, L, \gamma, \delta)_{D}$ or $(m, H, \alpha, \beta)_{D}=(-m,-L, 1 / \gamma, 1 / \delta)_{D}$. By Lemma 2.2 we see that $R$ is conformally equivalent to the following four surfaces in $S_{3}(D)$ :

$$
S(n, L, \gamma, \delta)_{D}, \quad S(n, L, \delta, \gamma)_{D}, \quad S\left(-n,-L, \gamma^{-1}, \delta^{-1}\right)_{D} \quad \text { and } \quad S\left(-n,-L, \delta^{-1}, \gamma^{-1}\right)_{D}
$$

Let $\left(n^{*}, L^{*}, \gamma^{*}, \delta^{*}\right)_{D}$ be the one of the following four symbols: $(n, L, \gamma, \delta)_{D}$, $(n, L, \delta, \gamma)_{D},\left(-n,-L, \gamma^{-1}, \delta^{-1}\right)_{D}$ and $\left(-n,-L, \delta^{-1}, \gamma^{-1}\right)_{D}$ such that $\left|\gamma^{*}\right| \leqq\left|\delta^{*}\right|$ and $0 \leqq \arg \gamma^{*} \leqq \arg \delta^{*}<2 \pi$. We denote $\left(n^{*}, L^{*}, \gamma^{*}, \delta^{*}\right)_{D}$ simply by $(n, L, \gamma, \delta)_{D}^{*}$. Then for given $g(z)$, if $R \in S_{3}(D)$ is defined by $y^{3}=g(z)$ and $P(R)=6$, then there corresponds a unique symbol $(n, L, \gamma, \delta)_{D}^{*}$ such that $g$ and $f(n, L, \gamma, \delta)_{D}^{*}$ have the relation (5.1). To emphasize this fact, we sometimes denote ( $n, L, \gamma, \delta)_{D}^{*}$ which is determined by
$g(z)$ by $(n, L, \gamma, \delta ; g(z))_{D}$.
Now the problem of the existence of analytic maps among surfaces $R \in S_{3}(D)$ which are defined by $y^{3}=g(z)$ with $P(R)=6$ may be carried over to the same type of problem among surfaces $S(n, L, \gamma, \delta ; g(z))_{D}$.

Let $R_{1} \in S_{3}\left(D_{1}\right)$ and $R_{2} \in S_{3}\left(D_{2}\right)$ be given with $P\left(R_{1}\right)=P\left(R_{2}\right)=6$ where $R_{2}(i=1,2)$ is defined by $y^{3}=g_{i}(z)$, respectively. Here $D_{1}$ is either the domain $\{z||z|<\infty\}$ or $\left\{z|0<|z|<\infty\}\right.$, and so is $D_{2}$. Suppose there is a non-trivial analytic map from $S\left(m, H, \alpha, \beta ; g_{1}(z)\right)_{D_{1}}$ into $S\left(n, L, \gamma, \delta ; g_{2}(z)\right)_{D_{2}}$. Then by Lemma 2.1 there is a singlevalued non-constant regular function $h(z)$ in $D_{1}$ such that either $\nu^{3}(z) G_{1}(z)=G_{2} \circ h(z)$, or $\mu^{3}(z) G_{1}^{2}(z)=G_{2} \circ h(z)$, where $\nu(z)$ and $\mu(z)$ have the properties as described in the lemma and $G_{1}(z)=f(m, H, \alpha, \beta)_{D_{1}}$ and $G_{2}(z)=f(n, L, \gamma, \delta)_{D_{2}}$.

If $\nu^{3}(z) G_{1}(z)=G_{2} \circ h(z)$ holds, then $\nu^{3}(z)\left(z^{m} e^{H}-\alpha\right)\left(z^{m} e^{I I}-\beta\right)^{2}=\left(h^{n} e^{L \circ h}-\gamma\right)\left(h^{n} e^{L \circ h}-\delta\right)^{2}$, which can be written in the form:

$$
\begin{equation*}
f_{1}^{3}(z)\left(e^{Q(z)}-B_{1}(z)\right)\left(e^{Q(z)}-B_{2}(z)\right)^{2}=\left(e^{H(z)}-A_{1}(z)\right)\left(e^{H(z)}-A_{2}(z)\right)^{2} \tag{5.3}
\end{equation*}
$$

where

$$
\begin{array}{lll}
f_{1}(z)=\frac{h(z) e^{(L \circ h)_{0}}}{z^{m} \nu(z)}, & Q=L \circ h-(L \circ h)_{0}, & B_{1}(z)=\frac{\gamma}{h^{n}(z) e^{(L \circ h)_{0}}}, \\
B_{2}(z)=\frac{\delta}{h^{n}(z) e^{(L \circ h)_{0}}}, & A_{1}(z)=\frac{\alpha}{z^{m}} \quad \text { and } & A_{2}(z)=\frac{\beta}{z^{m}} .
\end{array}
$$

If $\mu^{3}(z) G_{1}^{2}(z)=G_{2} \circ h(z)$ holds, then

$$
\begin{equation*}
f_{2}^{3}(z)\left(e^{Q(z)}-B_{1}(z)\right)\left(e^{Q(z)}-B_{2}(z)\right)^{2}=\left(e^{I(z)}-A_{2}(z)\right)\left(e^{I(z)}-A_{1}(z)\right)^{2}, \tag{5.4}
\end{equation*}
$$

where

$$
f_{2}(z)=\frac{h(z) e^{(L \cdot \hbar)_{0}}}{z^{m}\left(z^{m} e^{H}-\beta\right) \mu(z)}
$$

and $Q, B_{1}, B_{2}, A_{1}$ and $A_{2}$ are the same as in (5.3).
If $D_{2}=\{z| | z \mid<\infty\}$ then $n=0$ and if $D_{2}=\{z|0<|z|<\infty\}$, then $h(z)$ omits zero. Hence in both cases, $B_{1}(z)$ and $B_{2}(z)$ are regular in $D_{1}$. Similarly, $A_{1}(z)$ and $A_{2}(z)$ are regular in $D_{1}$. Clearly $Q(z)$ is a non-constant regular function in $D_{1}$ with $Q_{0}=0$, and $f_{1}(z)$ and $f_{2}(z)$ are both meromorphic functions in $D_{1}$.

Suppose $Q_{p} \neq 0$. Now $e^{Q^{(z)}}-a(a \neq 0)$ is a transcendental regular function in $1 \leqq|z|<\infty$ with infinitely many zeros. Hence by Lemma 1. 5, $m(r, h)=o\left(N\left(r, 0, e^{Q}-a\right)\right)$. But $N\left(r, 0, e^{Q}-a\right) \leqq N_{2}\left(r, 0, e^{Q}-a\right)+2 N_{1}\left(r, 0, e^{Q}-a\right) \sim(1+o(1)) m\left(r, e^{Q}\right)$. Hence $m(r, h)$ $=o\left(m\left(r, e^{Q}\right)\right)$. Thus $m\left(r, B_{i}\right)=o\left(m\left(r, e^{Q}\right)\right)$ for $i=1,2$, as $r \rightarrow \infty$ outside a set of finite measure. Clearly $m\left(r, A_{i}\right)=o\left(m\left(r, e^{H}\right)\right)$ for $i=1,2$, if $H_{p} \neq 0$.

If $Q_{p} \equiv 0$ then $Q_{N} \neq 0$. By a similar argument, we have $m^{*}\left(r, B_{i}\right)=o\left(m^{*}\left(r, e^{Q}\right)\right)$, as $r \rightarrow \infty$ outside a set of finite measure. If $H_{N} \neq 0$, then $m^{*}\left(r, A_{i}\right)=o\left(m^{*}\left(r, e^{H}\right)\right)$ for $i=1,2$.

Hence we may apply Lemma 3.3 to each of (5.3) and (5.4) and have that in
the case (5.3), either $Q \equiv H, B_{1}(z) \equiv A_{1}(z)$ and $B_{2}(z) \equiv A_{2}(z)$, or $Q \equiv-H, B_{1}(z) \equiv 1 / A_{1}(z)$ and $B_{2}(z) \equiv 1 / A_{2}(z)$, i.e., either $H \equiv L \circ h-(L \circ h)_{0}$ and $\gamma / \alpha=\delta / \beta \equiv c h^{n}(z) z^{-m}$, or $H \equiv-L \circ h$ $+(L \circ h)_{0}$ and $\alpha \gamma=\beta \delta \equiv c h^{n}(z) z^{m}$, where $c=e^{(L \circ h)_{0}}$.

If one of $m$ and $n$ is zero then so is the other. Hence either $m=n=0$ or $m n \neq 0$.
If $m=n=0$, then we have either $H \equiv L \circ h-(L \circ h)_{0}$ and $\gamma / \alpha=\delta / \beta=c$, or $H \equiv-L \circ h$ $+(L \circ h)_{0}$ and $\alpha \gamma=\beta \delta=c$. If $m n \neq 0$, then either

$$
H \equiv L\left(a z^{q}\right), m=n q, \quad \frac{\gamma}{a^{n}}=\alpha \quad \text { and } \quad \frac{\delta}{a^{n}}=\beta,
$$

or

$$
-H \equiv L\left(a z^{q}\right),-m=n q, \frac{\gamma}{a^{n}}=\frac{1}{\alpha} \quad \text { and } \quad \frac{\delta}{a^{n}}=\frac{1}{\beta} .
$$

In the case (5.4) we have the results which are obtained from the results in the case (5.3), by interchanging $\alpha$ and $\beta$.

Thus we proved the necessity part of the following:
Theorem 5.1. Suppose $R_{1} \in S_{3}\left(D_{1}\right)$ and $R_{2} \in S_{3}\left(D_{2}\right)$ are defined by $y^{3}=g_{1}(z)$ and $w^{3}=g_{2}(x)$, respectively, and $P\left(R_{1}\right)=P\left(R_{2}\right)=6$. Let $\left(m, I f, \alpha, \beta ; g_{1}(z)\right)_{D_{1}}$ and $(n, L, \gamma, \delta ;$ $\left.g_{2}(z)\right)_{D_{2}}$ correspond to $g_{1}(z)$ and $g_{2}(z)$ respectively.

Then there exists a non-tivial analytic map from $R_{1}$ into $R_{2}$ if and only if one of the following two statements is true:
(i) $m=n=0$ and there exists a single-valued non-constant regular function $h(z)$ in $D_{1}$ such that

$$
\left(0, L \circ h-(L \circ h)_{0}, \quad \frac{\gamma}{e^{\left(L^{\circ} \circ h\right)}}, \quad \frac{\delta}{e^{\left(L^{\circ} \circ\right)_{0}}}\right)_{D_{1}}^{*}=\left(0, H, \alpha, \beta ; g_{1}(z)\right)_{D_{1}}
$$

(ii) $m n \neq 0$ and there exist a non-zero integer $p$ and non-zero constant $c$ such that

$$
\left(n p, L\left(c z^{p}\right), \quad \frac{\gamma}{c^{n}}, \quad \frac{\delta}{c^{n}}\right)_{D_{1}}^{*}=\left(m, H, \alpha, \beta ; g_{1}(z)\right)_{D_{1}}
$$

Proof. We need to prove only sufficient part, and it is easy.

## References

[1] Borel, E., Sur les zéros des fonctions entières. Acta Math. 20 (1897), 357-396.
[2] Hiromi, G., and K. Nino, On a characterization of regularly branched threesheeted coverıng Riemann surfaces. Kōdai Math. Sem. Rep. 17 (1965), 250-260.
[3] Hiromi, G., and M. Ozawa, On the existence of analytic mappings between two ultrahyperelliptıc surfaces. Kōdai Math. Sem. Rep. 17 (1965), 281-306.
[4] Mutō, H., On the exıstence of analytıc mappıngs. Kōdaı Math. Sem. Rep. 18 (1966), 24-35.
[5] Nevanlinna, R., Einige Eindeutigke1tssätze in der Theorie der meromorphen
[6] Nevanlinna, R., Eindeutige analytische Funktionen. Berlin (1936).
[7] Nino, K., On regularly branched three-sheeted covering Riemann surfaces. Kōdai Math. Sem. Rep. 18 (1966), 229-250.
[8] Ozawa, M., On the exıstence of analytıc mappings. Kōdaı Math. Sem. Rep. 17 (1965), 191-197.
[9] Ozawa, M., On the existence of analytic mappings, II. Kōdai Math. Sem. Rep. 18 (1966), 1-7.
[10] Rémoundos, G., Extension aux fonctions algébroides multiformes du théorème de M. Picard et de ses généralisatıons. Mém. Sci. Math. Paris (1927).
[11] Selberg, H. L., Algebroide Funktionen und Umkehrfunktionen Abelscher Integrale. Avh. Norske Vid Akad., Oslo 8 (1934), 1-72.

University of Kentucky.

