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ON REGULARLY BRANCHED THREE-SHEETED
COVERING RIEMANN SURFACES

By Boo-SANG LEg®

§1. Throughout this paper D denotes either the domain {z||z|<oo} or {z|0<|z|
< oo}, and the notations T, m, N, N,, N1, N1 and T*, m*, etc. on meromorphic func-
tion in D are used in the sense of Nevanlinna [6].

Let R be a Riemann surface and M(R) the family of non-constant meromorphic
functions on R. For feM(R) we define P(f) to be the number of values which
are not taken by f on R and denote supsemry P(f) by P(R). We call P(R) Picard’s
constant of R, following Ozawa. Then for every open surface R we have P(R)=2.

We confine our attention mainly to those open Riemann surfaces R that are
regularly branched three-sheeted covering surface defined by y®=g¢(z), where ¢(z) is
a single-valued transcendental regular function in D having an infinite number of
simple or double zeros. In this case we say that ¢(z) is admissible for Sy(D) where
Ss(D) denotes the class of all such surfaces R, and sometimes we simply say that
R is defined by 3*=g¢(2). Then ¥¢(z) is a three-valued regular algebroid function
in D. Hence P(R)=6 from Selberg’s theory [11].

In the present paper we shall characterize some of surfaces ReSs;(D) in an
explicit form and study the existence problems of analytic mappings among them.
For such work we shall list some notations and lemmas.

LEmMA 1.1. (Borel [1]-Nevanlinna [5]) Let ao(2), ai(2), -+, ax(2) be meromorphic
Junctions and ¢.1(2), 92(2), +++, 9a(2) vegular functions in ry=|z|<co. Further suppose
that for every j (7=0,1, ---, n)

T(r, afz)=0 < é}l mir, e”v(z’)>

lholds outside a set of finite measure. If the identity

n
2. @(2)e? P =ay(2)
v=1
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holds, then there are constants ci, Cs, *++, Ca, n0t all zeros such that
2. 6a(2)e?@ =0,
v=1

From Lemma 1.1 we have:

LemMmA 1. 2. Let ayz), ai(z), +++, an(z) be meromorphic in ry=|z|<oco and e'® be
transcendental regular function there satisfying T(r, a;(2))=o(m(r, ¢?®)), j=0,1, -, n
as r—oo outside a set of finite measure. If

n
2. ai(2)e"P=ay(2)
1=1

holds, then ai(2)=0 for all 7 (7=0,1, -, n).

Two transcendental regular functions e¢Z® and e™® in 7,=]|z|<co are said to
be mutually dependent if m(r, e2@~-L®)=(0 (log 7) outside a set of finite measure.

Suppose eZ® and eL® are two mutually dependent transcendental regular
functions in 7,=|z|<co and let

HE@)= Y az+art 3 a e and  L@)= 3 bz +bot 30z,
v=1 v=1 y=1 v=1
We write
Hy=3 a2, Hy=a, and Hy= i a_z™".
y=1

Ozawa proved the following lemma by using Lemma 1. 1.

Lemma 1. 3. Let aiz) (=0, 1, ---, n) be meromorphic and a,z)=0 (j=1, 2, ---, n)
in ro=|z|<co satisfying T(r, a;(2))=0 (log ¥) as r—oo. Let e%® (j=1,2, ---,n) be
transcendental rvegular function there such that

n
23 ai(2)e? D =aqy(2).
=1

Then the set {€%9®};_1.s....n is divided into a finite number of groups each of which
consists of dependent functions, and a,(z)=0.

Lemma 1. 4. (Hiromi and Ozawa [3]) Let L(z) and ¢(z)x0 be regular func-
tions in 1=|z|<oo satisfying m(r, 9)=o(m(r, eL)) as r—oco outside a set of finite
measure. Then Ny(r, 0, eL—g) ~m(r, e¥) and Ny(r, 0, eF—g) = o(m(r, e¥)) as r—co
outside a set of finite measure.

LemMma 1. 5. (Ozawa [8,9]) Let G(2) be a tramnscendental regular function of
z in 1=|z]<co with infinitely many zeros and I(z) regular there, then wm(r, h)
=0o(N(r, 0, Goh)) as r—oco outside a set of finite measure.
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Let fi(2) and f2(2) be two meromorphic functions. Let Ny(7, 0, f1, f2) denote the
N-function of common zeros of fi(z) and f3(2). Niino proved the following:

Lemma 1. 6. (Niino [7]) Let H(z), ¢,2), (=1, 2, ---, p) and ¢¥(z) (k=1, 2, -+, v)
be regular functions in D satisfying m(r, ¢;)=o(m(r, e?)) (j=1, 2, ---, p) and m(r, ¢¥)
=o(m(r, ef)) (k=1, 2, -+, v) as r—oo outside a set of finite measure. If the polynomials

QM) =R+ gD+ ¢u(2)
and
QX =R+ FH ™+ + ()
are irreducible and Q. (e™)=Q¥(e™), then
No(r, 0, Qu(e™), @(e™)=o(m(r, ™))
as r—oo outside a set of finite measure.

§2. Let ReSi(D) be defined by %*=g¢(z). Let f be a three-valued regular
algebroid function in D which is single-valued regular on R, and let its defining
equation be

@1 F(z, N)=1*—s12)f*+s:2) f—s5(2)=0,

where $1(2), sx(2) and ss(z) are single-valued regular functions in D. Let w1 be
a cubic root of 1. We put p1=(z, v), po=(2, 0y) and p;=(z, w*y) and set

F@= B+ ()41 (50},

@.2) ) fz<z>=gly—{f<p1)+w2f<p2>+wf<m>},

)= 1%; )+ B+ (b))

Then fi(z) is a single-valued regular function in D, and fx(z) and f3(z) are single-
valued regular functions in D except for all the multiple zeros of g¢(z), at which
f2(2) and fi(2) have poles at worst in such a way that if z, is a zero of ¢(z) of order
3k+1(0=<Ek, 0=[=<2), then fx(z) has at worst a pole at z, of order 2 and fi(z) has
at worst a pole at z, of order 2k if /32 and 2k+1 if [=2.

From (2. 2) we have

2.3) fD)=H)+ 2y +Ss(2)y?,  where  p=(3, v).

Conversely, f(p) defined by (2. 3) with f3, f> and f; having the described properties
in the above is regular on R. From (2. 3), we see that f satisfies the equation (2. 1)
with
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51(2)=3/1(2),
2.4 52(2)=3S1(2)—3/(2) f5(2)9(2),
53(2)=11(2)+/2)9(2)+3(2)9%(2)—3/1(2) f2(2) f5(2)9(2).

Muto [4] established a necessary and sufficient conditioh for the existence of an
analytic map between R, and R, when D;=D,={z||z|<oo} and ¢i(2) ({=1, 2) has no
zeros other than an infinite number of simple or double zeros. We extend the
result as follows:

Lemma 2.1. A non-trivial analytic map ¢ of R. into R, exists if and only if
there exists a single-valued non-constant regular function h(z) in D, such that either
v (2)01(2)=g20h(2), or p*(2)942)=0:0k(2), where v(2) and (z) are single-valued mero-
morphic functions having the properties that their poles are all multiple zeros of
g1(2) in such a way that if @ is a zervo of 9.(z) of order 3k+I1(0=I[=2) then a is al
worst a pole of v(2) of order k and a is at worst a pole of 1(z) of order 2k for
=0, 1 and 2k+1 for [=2.

In particular, if D,={z|0<|z|<co} then h(z) has the form z"eX® where K(2) is
a single-valued regular function in D1 and n is an integer (n=0 when D,={z||z|<oo}).

Proof. The proof of this lemma is essentially the same as the proof due to
Muto [4].

If D,=D; then R, and R, are conformally equivalent if and only if %(z) in the
lemma is one-to-one and onto. Thus we have the following:

LEMMA 2.2. Let ReSs(D) be defined by y*=g(z). Suppose v(z) and p(z) have
the same properties as described in the Lemma 2. 1. If G1(2)=1*(2)¢(2) is admissible for
Ss(D) and R:1€Ss(D) is defined by y¥*=G1(2), then R and R, are conformally equivalent.
Similarly, if Gx(2)=p*2)9%(z) is admissible for Sy(D) and R.€Ry(D) is defined by
y*=Go(2), then R and R: are conformally equivalent.

Proof. The proof follows directly from the fact that Gi(z)=G.cz and Ga(z)
=(Gyo2. (q.e.d.)

§3. In this section we begin with the special type of function £2(z) given by

Q(Z):leeSH+8L+dlseSH+2L+d148211+8L+dlse3H+L+dlze2H+2L+dueH+SL+dmeBH

+d932H+L+dseH+2L +d7eBL+d682H+d5eII+L+d462L+dseH+d2eL_'_dh

with the properties:

i) dyz) (j=1, 2, ---, 16) is meromorphic and H{(z), L(z) are non-constant regular
functions in D with Hy=L,=0.

i) If Hy,x0 then T(r, dj)=o0(m(r, e®)), (7=1, 2, ---,16) and m(r, e?)~m(r, e™),
and if Hy=x0 then T*(, dj)=o0(m*(r, e™)), (=1, 2, ---, 16) and m*(r, e)~m*(r, ") as
r—co outside a set of finite measure,



174 BOO-SANG LEE

We call d, (=1, 2, ---, 16) a coefficient and denote the term in £2(z) with coef-
ficient d, by d;e"H+'L or simply d,A,, We set

A*={(d16)’ (d157 d14)$ (d13r dlzr dll)) (dl(): d9: ds, d’l)y (de d5; d4), (ds, dZ)y (dl)}
and
A={(dv), (ds, dv), (ds, ds, drs), (ds, ds, iz, die), (ds, do, dis), (ds, drs), (o)}

If dr=0 and all other coefficients in the parenthesis in A* to which dj belongs
are identically zero, then we write dx=d¥, and for the case of A we write dy=d;.

Set S*={dilds=d}} and S={di|di=d:}.
Under these notations and conditions on £2(z), we have:

LemMma 3.1. (i) Suppose 2(z)=0. Assume Hp=x0. Then Hy=—L, if S*x¢,
and Hy=L, if §ﬂ;¢. If we assume Hy=0, then Hy=—Ly if S*x¢, and [Iy=Ly
if Sx¢. (i) 2(2)=0 if S*x¢ and Sx4¢.

Proof. (1) Suppose that d,A;+d,A;=0 with ixj, dix0 and d;=0. Assume
H,x0. Then djetitpH=—d;%~ WL Now

T(r, die"i~2PH)~[|;— hj| 4-0(1)]m(r, e¥P)
and
T(r, —djetwE)y~[|l;—1;|+oL)]m(r, e*?).

Hence m(r, eIP)~m(r, eI?) gives |h;—hj|=|l;—1;].

When #A;—h,=I0;—1,, we have Hpy=L, in D. When hi—h,=l;—I, we have
Hy=—L, in D.

(2) Suppose 2(z)=0 with some d;=0 for some i. Assume H,%x0. Then we
claim that Hy=L, or Hy=—L, in D. To show this we first notice that d;%0 for
at least two 7's (1=:/=<16). We may assume that d;=0 for at least two #’s (2=i=<16).
Then we have

iy AryF Ay Ayt +di, A, +di =0, (kixk, for ixj and £k;=2)
which is obtained from £2(z)=0 by discarding all the terms d,A4,’s with d;=0 (i1=2).

If dy%0 then by Lemma 1.1 there are some constants C{®, at least two of them
are not zero such that

3 CPd, Ay, =0.
=1
If di=0 then X7_.dr,Ax;=0. In any case we have

3.1) SAOAL=0  (n=2,d0x0 for all k; (1=i=r).
=1
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If =2 then we have the desired results by (1). Suppose 7;.>2. Write (3. 1)
into the form

r3—1
£ an( Axs )=—de,  (@x0)

and apply Lemma 1.1. Then there are some constants C{®, at least two of them
are not zero, such that

ri—1
@3.2) igl CPAP Ay =0.

Let X72,d2Ar,=0 be the result obtained from (3.2) after we discard all the
terms with C®=0. Then clearly 2=7,<r.. If 7.=2, then we have the desired
results. If 7,>2 then we repeat the process until we end up with the form:
AP A, +d§P A ;=0 with ixj, d{°=x0 and d§°=0. Then by (1) we have the results
as claimed.

(3) Suppose 2(z)=0 and assume H,=x0. Let

be =d1388HN+3LN,

bs :dlsesHN+2LN+d14eZHN+3LN’

ba=d13e* VLN -, ,02HN+2LN |, oHN+3LN
(3.3) b= Nt dog NN - Ay NN | o,
b2=dee2HN+dseHN+LN+d492LN,

b1=ds€HN+dzeLN,

b0=d1,
and
06=d763LN,
cs=d,e?LN - d,,eIN+3LN,
Co=dpe™V 4 dseHN+ILN 4, g HN+SLN,
3.4 cs=d;+dseBN LN 4,0 ENVILN |-, (@S HN+3LN,

Co=dseEN4-doye*HNT LN - ;0PN +2LN,

Cl=d692HN+d1383HN+LN

Co=d1oesHN.

By direct computation and Lemma 1.2, we see that b;=0 for all ; (0=<i/<6) if
Hy=L,, and ¢;=0 for all  (0=i=<6) if Hy=—L,.

Suppose S*=¢ and assume H,x0. Then d;€S* for some i and obviously d;=0.
Hence by (2), Hy=L, or Hy=—L,. But if H,=L,, then ;=0 for all i (0=i=6).
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Hence d;=0, a contradiction. Hence H,=--L,. Similarly, if Sx¢ and H,%0 then
Hy,=H, Thus we proved the statement (i) in the lemma in the case H,=0.

(4) If Hy=0, then by interchanging p and N, and replacing m by m*, T by
z‘* in the above whole argument, we see that Hy=—Ly if S*x¢, and Hy=Ly if
S=4¢.

(5) Suppose S*x¢ and Sx¢. Assume 2(z)=0. If H,%0 then H,=—L, and
Hp=L, Hence H,=0, a contradiction. Hence Hp,=0 and Hy=0. But then we
have again a contradiction. Thus £2(2)=0. (q.e.d.)

LemMmA 3. 2. Lel gi(z) (i=1, 2) be defined in D by
9i(2)=2"" B;3(2)e* 1™ - 22" Byp(2)e*H 1™ - 2" By (2)e1® + Byy(2),

with the properties: (1) n; is an integer, B;j(z) (=0, 1, 2, 3) meromorphic and Hz)
regular and non-constant in D such that Hy=0, Bis=1 and Byx0. (i) If Hip=x0
then m(r, e®)~m(r, e®2) and T (v, Bij)=o(m(r, %)), (7=0,1,2) and if Hix=<0 then
m*(r, eIy ~m*(r, e22) and T*(r, Bi))=o(m*(r, ef?)) (=0, 1, 2) as r—oo outside a set
of finite measure. Suppose that

(3.5) 91(2)=/*(2)92(2),

where f(z) is meromorphic in D such that if Hipx0, then T, f'[f)=o0(m(r, 1)) and
if Hin=x0, then T*(@, f'|f)=o0(m*(r, efY)) as r—oco outside a set of finite measure.
Then in D we have either

(3. 6) H(2)=Hy(2) and Bij(2)=By(z)z 2™ (j=0,1, 2)
or
. _ Bra_j(?) (38— 7) (Mg 47 .
3.7 H()=—Hz) and Bi2)= =g =200 (j=0,1,2).
Biy(z)

Proof. By differentiating ¢,= f%g., we have

’
g§92291(3 fT 9>t gz{)-

Then this can be written as follows:
Q(Z)Edle@8H1+sH2+al5esH1+2H2+a1432H1+3H2+01368H1+H2
(3.8) b @@ H L g HIYSH2 | pSH) | gy g2 HIVH | g pHi+2H,
+ae* i+ ase® 1+ aget ot g 02 He+ aze™+ ape™ + a, =0,
where if we set a,A,=a;e"H1*lf2 then a,(z) is given by

’ ’ My — 4
3.9) a]:Blthzljzhj’"ﬁlj”z[_glhi — ﬂt + (B H,—1;H)+ M — if_]

1hj 21 j 4 J

(j=1,2, -, 16).
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We first notice that from (3. 8) we have

(3.10) [ aj

J=1

=

il

0,

for otherwise ;%0 for all j, and, in particular, @;seS* and aneS. Hence by
Lemma 3.1, we have £2(z)%0, a contradiction.
Suppose @;(z)=0 and BBy ,;=0, then from (3.9) and (3. 5) we have

3
3.11) Q42)= 3, I:Blszljzkn1+ljnZekH1+le2_ CjBlthzkzhjnl+kn26hj11'1+kH2] =0.

Suppose Biix0. Then Bi1Bux0 for [,=0,3. Assume ;=0 for j=11, 3. Since
BthBngé'cO for =11, 3, we have Q,(2)=0 for j=11,3. But in (3.11) dic€S* and
d:eS when j=11, and d,eS* and dyeS when j=3. Hence by Lemma 3.1 2,(2)=x0
for =11, 3. This is a contradiction.

Hence a:;%0 and a;%0, if B;;=0. By a similar reasoning we have the follow-
ing table:

If Bi;=0 then axx0 If B;;=0 then ;=0
By @41, @3 By @11, @, s, A3
3.12) Bz @14 Qg By, Q14 Q12 Ay, Qg
By, Q13 Qg By, 13, @y, A5, Ap
By, @15, Ay By Q15 A12s Agy Ay ‘

There are two cases:

Case (I) BuBlzBmBzz"ﬁO»

From (3.12) ;=0 for j=15, 14, 13, 11, 6, 4, 3, 2. Hence (3. 10) reduces to
II;a,=0 where j runs over {16, 12, 10, 9, 8 7, 5, 1}. But ITpx;,<3B:;%0. Hence
I1;2,(2)=0 where j runs over {16, 12, 10, 9, 8, 7, 5, 1}.

Case (II) Bi1Bi2B21By:=0. We divide into two subcases: subcase (A) B =0
and subcase (B) Bii=0.

In the subcase (A), 2;(z)=0 with Bis ;B ;%0 for at least one of j (=16, 12, 10,
9,7,1). In the subcase (B), 2,(z)=0 with Bis,Bx,%0 for at least one of j (=16,
12,9, 8, 7, 5, 1).

By summarizing the results obtained so far, we can conclude that: (3. 8) implies
that 2,(z)=0 with B B0 for at least one of j (=16, 12, 10, 9, 8, 7, 5, 1).

We first consider the case when 24(2)=0 and Bis;Byu,%x0 for j=16, 12, 5, 1.
Now #£,=[,=3,2,1 and 0 for j=16,12,5 and 1, respectively. Further Sx¢ in the
equation £2,(2)=0 for j=16, 12,5, 1. Thus for j (=16, 12, 5, 1), 2,(z)=0 implies that
H,=H,y if Hip%0, and Hiy=Hey, if Hixyx0, by Lemma 3.1. Assume H;p=0.
Then 5;=0 (:=0, 1, -+, 6) where b;s are given by (3.3). But in (3.11) we have
k+l,=h;+k (k=0, 1, 2, 3) since 4,=1,. Hence we have

(3.13) BlszljzknlljngekH1N+lezNECjBlthzkzhjn1+knzeth1N+k112N (=0, 1, 2, 3).
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Put £=0 and 3 in (3.13). Since BmBzoBlthzszmst:—‘_\:O and %,=/, for j=16,12,5
and 1, we have

Bip= Bz @ (u=np (E=0, 1, 2).

Thus if H;,%0 then 24(2)=0 (=16, 12, 5, 1) implies that Hi=H, and Bz =Bz ®
m=m) (=0, 1, 2). If Hi,=0, then Hiy=x0. Then by interchanging p and N in the
above argument we have the the same results.

It remains to examine the case when 2;(z)=0 and Bis,;Bu,%0 for j=10,9, 8, 7.
As before, we note that in (3. 11) S*=¢ for 7=10,9,8,7. Hence by Lemma 3.1,
we see that 242)=0(;j=10,9,8,7) implies that H,=—H,, if Hi,=0, and Hixy=
—H,y if Hiyx0.

Assume H,px0. Then H,p=—H,, and hence ¢;=0 (=0, 1, -+, 6) where ¢,’s are
given by (3.4). We rewrite (3.11) into the following form:

3
(3. 14) Z <BlklejzlcmljnzekHrHsz_CjBlthz(3_k)zhjn1+(3—k)nzeth1+ (3—Ic)H2> =(.
=0

By comparing (3. 4) and (3. 14) together with [;—k=(3—k)—h, for k=0,1, 2, 3
we have

BZljBlkzknl+ljnZech1N+le2NECjBlthz(3—k)zhjnl+(3—k)n2€hj}111v+(3—k)}Iz1v (k:O’ 1’ 2’ 3).

By essentially the same argument we have
Bu= Ezfﬂ)_z(s—k)(nﬁ"z) (k=0,1, 2).
B

Now clearly (3. 6) and (3. 7) cannot hold simultaneously, for otherwise H,=H,
=0, a contradiction. This completes the proof. (q.e.d.)

LeMMA 3. 3. Suppose that
(3.15) FH2) (e ® — By(2))(e#® — By(2))*=(eL® — A1(2))(eF® — Ay(2))?,

with the properties that. (i) H(z) and L(z) are non-constant regular functions in D
with Hy=L,=0. (i) Aiz) and B«2) (=1, 2) are regular functions in D such that
Ay(2)=0, Bi(2)=0, A1(2)= Ax(2) and Bi(2)xBy(z). (i) m(r, A)=o0(m(r, e-)) if L,=x0,
and m*(r, A;)=o0(m*(r, e¥)) if Lx=x0, and m(r, B;)=o(m(r, ¢¥)) if Hpx0, and m*(r, B;)
=o(m*(r, e®)) if Hy=x0, as r—co outside a set of finite measure. (iv) f(z) is a
mevomorphic function in D. Then we have that either H(z)=L(z) and Bi(2)=Aiz)
for i=1, 2, or H()=—L(z) and Bi(z)=1/A(z) for i=1, 2.

Proof. Let f(z) be meromorphic and G(z) regular in D such that /3G is regular.
Let Ny(7, 0, f3G) be the N-function of double zeros of f3G, counted simply. Then
we have

(3. 16) Ny(r, 0, PG)=Ni(r, 0, G).
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Set G(z)=(e"—B)(e®—B,)? and ¢(z)=(e*—A)(et—Az)?. Assume [I,%0. Then by
Lemma 1.4 and Lemma 1. 6 we have (1—o(L)ym(z, eZ)~Ny(r, 0, e — B,)— Ny, 0, eX
— By, 2 —B)=Ny(r, 0, G)= Ny, 0, eL— A,)+ Ny, 0, eL— Ay, eL— A,)+2Ny(7, 0, eL— A,)
+2N1(7, 0, eZ— A2)~A+ o1 )ym(r, e~), ie., (1—ol))m(r, eT)=1+o(1))m(r, et) as r—oo
outside a set of finite measure. On the other hand, Ni(7, 0, 9)=Ny(7, 0, e£— A,)
—Ny(7, 0, eL— A,, eZ— Ay)~(1—o(1))m(r, eX) and Ni(7, 0, G)=Ny(7, 0, e — B,) -+ Ny(7, 0, e
— Bo) 4 Ni(r, 0, e¥ — By) ~ (1 + o()m(r, ). From (3. 16), Nu(r, 0, f3G)=N.(r, 0, ¢)
=Ny, 0, G). Hence (1—o))m(r, eL)=(1+o1))m(z, e¥) as r—oo outside a set of finite
measure.

Hence m(r, e)~m(r, e~) as r—oo outside a set of finite measure.

Let Ni(r, 0, G) be the N-function of zeros of G of order at least three,
counted multiply. Then N(r, oo, f)=N.(, 0, G) = 2Ni(7, 0, eZ — B,)+4Ny(7, 0, ¢L —I3,)
+ 3Ny, 0, e — By, e — By)=o(m(r, e?)), and N(r, 0, /)=N\(, 0, 9) =2Ny(7, 0, e-—A,)
+4Ny(7, 0, eX — Ap) + 3Ny(7, 0, e — A,, L — Az)=o0(m(7, e¥)). Hence N(z, oo, f']f)
=o(m(r, ef)) as r—oo outside a set of finite measure. But m(r, '/ f)=0(og rT(r, f))
as 7—oo outside a set of finite measure (Nevanlinna [6]). Clearly, T'(z, f)=00mn(r, ¢™)
+m(r, eL)) as r—oo. Hence T'(v, f'[f)=mr, f'|f)+ Nz, oo, f'[f) = Olog rT(r, f))
+o(m(r, e))=o0(m(r, ef)), i.e., T(r, f'|f)=0(m(r, e¥)) as r—oo outside a set of finite
measure. Thus if H,%0, then m(r, e?)~m(r, e¥) and T(r, f'[f)=o(m(r, e¥)) as r—co
outside a set of finite measure. We already assumed that m(r, A.)=o0(m(r, e%)) and
m(r, By)=o(m(r, ef)) as r—co outside a set of finite measure. If H,=0, then Hy=0.
By a similar argument for N¥, N¥, m*, T*, etc., we have the same results for m*
and T*. Further Bi(z)B¥z)=0 and A(2)A%z)=0.

Thus we may apply Lemma 3. 2 to (3. 15) and we have either

L=H,
—(A1+2A45)=—(B1+2853),
A3+2A,A:=B3+-2B. B,
—A,Ai=—B,B},

or
L=—H,
Di+-2B, B,
—(Av2ag=— SRS
2
-{
Ai+2A.A.= %23%:
12
1
— 2= _
AlAz— BlBﬁ )

i.e., either H(z)=L(2) and Biz)=A(z) for i=1, 2, or H(z)=—L(2) and Bi(2)=1/A:(2)
for i=1, 2. (q.e.d.)
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§4 In this section we characterize ReSy(D) with P(R)=6. The following
theorem is an extension of a theorem due to Hiromi and Niino [2]:

THEOREM 4. 1. Let ReSy(D). Then P(R)=6 if and only if R is conformally
equivalent to a surface SeSy(D) defined by y*=(2"e"® —y)(2"eH® —5)2, where (1) H(z)
is a non-constant regular function in D with H,=0. (ii) y and o are constants such
that yo(y—0)x0. (iil) » is an integer (n=0 if D={z||z|<oo}).

Proof. Suppose ReSy(D) is defined by y*=g¢g(2) and P(R)=6. Then there exists
a meromorphic function feM(R) with P(f)=6. We may assume that 0, ai, @, as,
ai, oo are the six values which are not taken by f. Then f is a single-valued
regular function on R. Hence f satisfies (2. 3) and the defining equation of f is
given by (2.1) where s:(2), s2(z) and sy(z) satisfy (2.4). By Rémoundos’ reasoning
[10] we have

F(z0) P, Pellz
F(z, a1) Py P,
F(z, ax) |=Q) | Pe: |, (i) | P
F(z, as) Pyells Pyells
F(z, ay) Pt Pt

where H, (j=2,3,4) is a non-constant regular function in D with H;=0 and
P,=b;2"1(j=0,1, 2, 3, 4) with b, being a non-zero constant and #, an integer (all
n, are zero when D={z||z|<co}).

Case (i). We have

—S3=b2™, (1)

B—ais+ a8, — s;=bi2™, (2)

4.1) a3— a2, @8, — S, = b,2™2e e, (3)
&—ais,+ a5, —S;= bz e, (4)
a—ais,+a,s,—Ss;=bzMe, (5)

Eliminating s;, s: and s; from (1), (3), (4) and (5), we have
a3a4(a3—m)bzz"ze’fz—41204(a2——a4)b3z"3eH3—[—agag(az—aa)b4z"‘e"‘
:(bozno—l‘0203614)(612‘—'03)(612—04)(03—614).

We rewrite this equation into the form: aje?:r+ajefsr+aje?sr=qa], where T(r, a})
=0(log 7) as r—oo.

If two of H,p, Hsyp, and H,, are identically zero then the remaining one is also
identically zero. So H.p=H;p,=H,,=0 in this case. Suppose H;,%0 and H;p=0.
By Lemma 1.3 we may assume that H,, and H;, are dependent, i.e., Hp=Hs, in
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1=|z|<oco. Then we have (a;+aj)ef2r+ajeir=qg]. If e®'»=0 in 1=|z|<oco then
it would force H,,=0, a contradiction. Hence e”#?x0 in 1=|z|<oco. Again by
Lemma 1.3 we have that a/=0, H.p=H,p and aj+a;+a{=0 in 1=|z|<oco. Thus
either Hyp=Hypy=H,ip=0 and a;+ai+aj=a] or Hyp=Hsp=H,,x0, a{=0 and @}+a;
+a;=0 in 1=|z|<oco. By a similar argument for the H,y in a}+ai+a;=a}, we have
the following:

(4 2) J\ HZEH;;EH;EH; %020, No=MN3=Ny—MN, b():—ﬂzaglh and

@3a4(As— Ay)br— a2a4(@s— ay)bs+ asas(@s— as)b,=0.

Next we eliminate s;, s, and s; from (1), (2), (3) and (4) in (4. 1), and then
substitute Hy=Hs;=H, ns=n,=n and n,=0. Then we have

—a1a3(@1— @3)be+ a1a:(@y— @3)b; =0,
(4 3) (5] =0,
A2 @s(Aa— a3)0y—(bo+ @1a2a3) (a1 — @)@y — as) @y — as) =0.

From (4.1), (4. 2) and (4. 3), we have

1
= ———bgz"e”+(dz+d:;+a4)y
axa1—as)
41 M oIl
Sg= -——bzz e +(aza3+0804+a402)y
ax(a1—as)
Ss=20304.

Case (ii). By a similar argument and computation, we have

S1=— bez"e - (as+ay),
ai1q2
a1t+a,
Sp=— ———bp2"e" t+wyu,
a1as

Sa=—byz"eH,

By a similar method due to Hiromi and Niino [2] we have

Vig=A(2"e" —y)(2"e® —0)?,
4. 4) {

1g*= A(Z"e" —y)(z"e" —0),
where A, y and § are non-zero constants with Ayd(y—d)=0 and »(z) and u(z) mero-
morphic functions in D with the properties as described in Lemma 2. 1.

Let Gi(z)=(2"eZ—7)(2"e” —5)* and Ga(2)=(2"e—7)*(z"e”—d). Then Gy(z) and
G4(2) are admissible for Sy(D). Let Ri€S:(D) and R,eSs(D) be defined by y2=Gi(2)
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and w®=Gy(z), respectively. Then by Lemma 2.2 we see that R is conformally
equivalent to R; and R..
The proof for the converse is the same as in [2]. (q.e.d.)

§5. For our convenience, we define the following: (i) (m, H, a, B)p is a symbol
where H(z) is a non-constant regular function in D with H,=0, m is an integer
(m=0 when D=({z||z|<oo}) and «, B are distinct non-zero constants. (i) (m, H, a, B)p
=, L,7,0p if and only if m=un, H=L,a =17, and B=0. (iii) f(m, H, &, f)p
=(@"eT—a)gmeT—p)%  (iv) Sim, H, a, B)p is a surface in Sy(D) defined by v*
=f(m, H, a, P)p.

Suppose ReSiy(D) is defined by y*=g¢(2) and P(R)=6. Then from (4. 4) there
exists a symbol (m, H, a, f)p such that g(z) satisfies

{ vi(2)g(z)=f (m, H, a, B)p,
1(2)9%(2)=Ff (m, H, B, a)p,

where v(2) and p(2) are meromorphic functions in D with the properties as
described in Lemma 2. 1.
Suppose there exists another symbol (%, L, 7, 6)p such that g(z) satisfies

5.1

{ Ug(Z)g(Z)-:f(n, Ly 7 5)17;
(5.2

Pg(z)gz(z)=f(”; L; 67 T)D’

where 1»(2) and p(2) have the same properties as vy (z) and p.(2), respectively.
From (5.1) and (5. 2) we have

8 g_ % H.__ _‘8_ : — — _”3@ m
v (z)(e P> )(e z”‘) f(n, L, 7, 0)p, where v(z) @) 2™,
By Lemma 3. 3, we have either
H=L, %EL" and imz—%—, or H=-L, _am_Ez_ and —Q—E—z——.
z z z P4 z 7 Zn 0

Thus either (m, H, a, Bp=, L, 7, d)p or (m, H, &, Bp=(—m, —L, 1/, 1/0)p. By
Lemma 2. 2 we see that R is conformally equivalent to the following four surfaces
in S.;(D)

S, L, 1, dp, S, L, d, 1)p, S(—n, —L, v, 6 )p and S(—xn, —L, ™, y ).

Let (n*, L*, y*,6%)p be the one of the following four symbols: (%, L, 7, d)n,
(n, L, 6, ), (—n, —L, v, 6 p and (—n, —L, 574, y™))p such that |7*|=[0*| and
O0=<arg y*= arg 0*<2z. We denote (n*, L*, y*, 0%)p simply by (%, L, 7, )5. Then for
given ¢(2), if ReSy(D) is defined by v*=g¢(z) and P(R)=6, then there corresponds
a unique symbol (%, L, 7, 6)% such that ¢ and f(x, L, 7, 3% have the relation (5. 1).
To emphasize this fact, we sometimes denote (%, L, 1, 8)% which is determined by
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g(Z) by (”) L: g 5’ g(z)).D-

Now the problem of the existence of analytic maps among surfaces ReSy(D)
which are defined by ¥*=g¢(z) with P(R)=6 may be carried over to the same type
of problem among surfaces S(#, L, 7, J; ¢(2))p.

Let RieSy(D;) and R:€Si(D:) be given with P(R,)=P(R.)=6 where R, (i=1, 2)
is defined by %°=gi(2), respectively. Here D; is either the domain {z||z|<oco} or
{2|0<|2|<oo}, and so is D, Suppose there is a non-trivial analytic map from
S(m, H, a, B; 9:(2))p, into S, L, 7, 6; 92(2))p,. Then by Lemma 2. 1 there is a single-
valued non-constant regular function 4(z) in D; such that either v3(2)Gi(2)=Gzok(2),
or (¥(2)Gi2)=Gsoh(2z), where v(z) and p(z) have the properties as described in the
lemma and G.(2)=f(m, H, a, B)p, and G«(2)=f(n, L, 7, 6)p,.

If 13(2)G1(z)=G:0k(z) holds, then v¥(z)(z2™e” —a)(z™e” —B)2=(h"el*— 1) (A el —0)?,
which can be written in the form:

(5.3 S (2) (€™ — Bi(2))(e9® — By(2))*=(e# > — Ax(2))(e” @ — Ax(2))*

where

(Leh)g

fa=200 QeLeh—Wo B@)= G
0 o ﬁ

By(2)= T @DeT0 Ai(z)= - and Ax(z)= o

If (2)Gi(2)=G2oh(z) holds, then
6.4 3(2)(e9® — B1(2))(e®™ — By(2))* = (e%® — Ax(2))(e" ® — Ai(2))?,
where

h(2)e Lm0
2™(2"e —P)u(z)’

and Q, By, B;, A; and A; are the same as in (5. 3).

If D,={z||z]<oo} then =0 and if D,={z|0<|z|<co}, then A(z) omits zero.
Hence in both cases, Bi(z) and Bi(z) are regular in D,. Similarly, A.(z) and As(2)
are regular in D,. Clearly Q(z) is a non-constant regular function in D; with Q,=0,
and fi(z) and fi(z) are both meromorphic functions in D;.

Suppose Q,x0. Now ¢¢®—g (¢x0) is a transcendental regular function in
1=|z| <o with infinitely many zeros. Hence by Lemma 1. 5, m(r, £)=0(N(r, 0, e?—a)).
But N(r, 0, e?—a)=Ny(7, 0, e9—a)-+2Ni(7, 0, e@—a)~(1+o))m(r, ¢?). Hence m(r, k)
=o(m(r, e?)). Thus m(r, B;)=o0(m(z, e?)) for i=1, 2, as r—oo outside a set of finite
measure. Clearly m(r, A,)=o0(m(r, e¥)) for i=1, 2, if H,=0.

If Q,=0 then Qx=x0. By a similar argument, we have m*(», B;)=o(m*(7, e?)),
as 7—oo outside a set of finite measure. If Hxx0, then m*(r, A.)=o0(m*(r, ef)) for
i=1, 2.

Hence we may apply Lemma 3.3 to each of (5. 3) and (5. 4) and have that in

f 2(2)=
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the case (5. 3), either Q=H, Bi(2)=A1(2) and Bx2)=Ax(2), or Q=—H, Bi(2)=1/A:(2)
and Bi(2)=1/A.(z), ie., either H=Loh—(Lok), and y/a=0/B=ch™(2)z"™, or [I=—L-h
+(Loh), and ay=po=ch™(z)z", where c=eL"mo,
If one of m and » is zero then so is the other. Hence either m=n=0 or mn==0.
If m=n=0, then we have either H=LoZ—(LoA), and y/a=d/p=c, or H=—L-h
+(Leok)y and ay=po=c. If mn=0, then either
T —

0
H=L(az%), m=ng, = and yo =5,

or

—H=L(az"), —m=ng, =——i—— and —aiT:_‘[l;"-

Q§|N

In the case (5.4) we have the results which are obtained from the results in
the case (5. 3), by interchanging « and .
Thus we proved the necessity part of the following:

THEOREM 5. 1. Suppose R,€Sy(D:) and R,€Si(D:) are defined by y*=g.(2) and
w*=gx(z), respectively, and P(R)=P(R,)=6. Let (m, I, a, B; 9(2))p, and (%, L, 7, J;
g2(2))p2 corvespond to gi(z) and gx(z) respectively.

Then there exists a non-tivial analytic map from R, into R, if and only if one
of the following two statements is true:

(1) m=n=0 and there exists a single-valued non-constanl regular function h(z)
in Dy such that

5 *
(0, Leh—(Loh)y, —go, ——(L.,,,) =(0, H, a, B; 0:(2)n,-
e M e /)y

(ii) mn=x0 and there exist a non-zero integer p and non-zero constant ¢ such
that

o\ *
(npr L(Czp)’ 77;,,—’ _C—T>D :(m; H; a, ﬁ; gl(z))Dl-

Proof. We need to prove only sufficient part, and it is easy.
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