ON THE SOLUTION OF THE FUNCTIONAL EQUATION $f \circ g(z)=\boldsymbol{F}(z)$

By Mitsuru Ozawa

1. In this note we shall prove the following three theorems:

Theorem 1. The functional equation $f \circ g(z)=F(z)$ has no pair of two transcendental entire solutions f and g, if $F(z)$ is an entire function of finite order and it has a finite Picard exceptional value.

Theorem 2. The functional equation $f \circ g(z)=F(z)$ has no pair of two transcendental entire solutions f and g, if $F(z)$ is an entire function of finite order and it admits two perfectly branched values. Here a perfectly branched value w of F means that $F(z)-w$ has a finite number of simple zeros and has an infinite number of multiple zeros.

Theorem 3. The functional equation $f \circ g(z)=F(z)$ has no pair of two transcendental entire solutions f and g, if $F(z)$ is an entire function of finite order and there are p disjoint continuous curves Γ, which extend to infinity and on which all the zeros of F lie and along which F is bounded.
2. Proof of theorem 1. By Pólya's result [3] and by our assumption on the order of $F(z)$ and by the transcendency of $f(z)$ and $g(z), f(z)$ is of order zero and $g(z)$ is of finite order. Let A be a finite Picard exceptional value of $F(z)$. Since $f(z)$ is of order zero and transcendential, $f(z)=A$ has an infinite number of solutions $\left\{z_{j}\right\}$. Hence there is an infinite number of roots of the equation $g(z)=z_{j}$ excepting at most one z_{\jmath}. These solutions are the solutions of the equation $F(z)=A$. This is impossible.
3. Valiron's theorem. In order to prove theorem 2 we need the following theorem, which had been prove by Valiron [5, p. 76]. For completeness we shall give a detailed proof of it, which is essentially the same as Valiron's.

Valiron's theorem. If the order of $f(z)$ is finite and not a positive integral multiple of $1 / 2$, there can only be one perfectly branched value.

Proof. Assume that there are two such values, which we may suppose to be 1 and -1 . Consider

$$
\theta(z)=\frac{Q_{1}(z) Q_{2}(z) f^{\prime}(z)^{2}}{f(z)^{2}-1}
$$

[^0]where Q_{1} and Q_{2} are polynomials formed by the simple zeros of $f(z)-1$ and $f(z)+1$, respectively. The $\theta(z)$ does not have any pole in $|z|<\infty$. Now consider the proximity function $m(r, \theta)$ of θ. Then
\[

$$
\begin{aligned}
m(r, \theta) & \leqq O(\log r)+m\left(r, \frac{f^{\prime}}{f-1}\right)+m\left(r, \frac{f^{\prime}}{f+1}\right) \\
& =O(\log r)+O(\log r m(r, f))+O(\log r m(r, f)) \\
& =O(\log r)
\end{aligned}
$$
\]

since $f(z)$ is of finite order. Hence $\theta(z)$ must be a polynomial. This implies that

$$
\begin{aligned}
\frac{f^{\prime}(z)^{2}}{f(z)^{2}-1} & =\frac{\theta(z)}{Q_{1}(z) Q_{2}(z)} \\
& =A_{p} z^{p}+\cdots+A_{0}+\sum_{j=1}^{n} \frac{B_{j}}{z-w_{j}},
\end{aligned}
$$

since $Q_{1} Q_{2}$ has only simple zeros $\left\{w_{j}\right\}$.
If $A_{p} \neq 0$, by making the indefinite integral around $z=\infty$ and taking the inverse function we have

$$
f(z)=\cos \left(\sqrt{ } \overline{A_{p}} z^{(p+2) / 2} \Phi_{1}(z)\right)
$$

where $\Phi_{1}(z)$ is regular at $z=\infty$.
If $A_{p}=\cdots=A_{0}=0$ and $\sum_{\rho=1}^{n} B_{\rho} \neq 0$, then

$$
f(z)=\cos \left(\sqrt{\sum_{j=1}^{n} B_{j}} z^{1 / 2} \Phi_{2}(z)\right)
$$

where $\Phi_{2}(z)$ is regular at $z=\infty$.
If $A_{p}=\cdots=A_{0}=0=\sum_{\jmath=1}^{n} B_{\jmath}$, then

$$
f(z)=\left\{\begin{array}{l}
\cos \left(\sqrt{\sum_{j=1}^{n} B_{j} w_{j}} \log z+\Phi_{3}(z)\right), \quad \text { when } \sum_{j=1}^{n} B_{j} w_{\jmath} \neq 0, \\
\cos \left(\Phi_{3}((z)), \quad \text { when } \sum_{\jmath=1}^{n} B_{j} w_{\jmath}=0\right.
\end{array}\right.
$$

where $\Phi_{3}(z) \rightarrow 0$ as $z \rightarrow \infty$. Hence in these cases for a suitable k

$$
\frac{f(z)}{z^{k}} \rightarrow 0
$$

as $z \rightarrow \infty$. Therefore $f(z)$ does reduce to a polynomial, which may be omitted in our present case. Thus the order of $f(z)$ must be an integral (positive) multiple of $1 / 2$.
4. Proof of theorem 2. Let w_{1} and w_{2} be two perfectly branched values of F. Consider the equations $f(z)=w_{\jmath}, j=1,2$. If $f(z)=w_{1}$ has an infinite number of simple zeros $\left\{z_{1, n}\right\}$, then $g(z)=z_{1, n}$ must have only a finite number of simple zeros. Hence $g(z)$ has an infinite number of perfectly branched values $\left\{z_{1, n}\right\}$, which contradicts the well-known Nevanlinna's ramification relation [2]. Hence w_{1} must be a perfectly branched value of $f(z)$. The same holds for w_{2}. Then by Valiron's theo-
rem the order of $f(z)$ must be a positive integral multiple of $1 / 2$, which contradicts that the order of $f(z)$ is equal to zero.

An application. The functional equation $f \circ g(z)=\sin z$ has no transcendental entire solutions f and g, since $\sin z$ has two perfectly branched values 1 and -1 .
5. Proof of theorem 3. $f(z)$ has zero order by Pólya's theorem. Hence there is an infinite number of zeros of $f(z)$. Let $\left\{w_{j}\right\}$ be the set of zeros of $f(z)$ and $\left\{z_{j n}\right\}$ be the set of the solutions of $g(z)=w_{\rho}$. By the assumption the set $\left\{z_{j n}\right\}$ lies on $\cup_{1}^{p} \Gamma_{j}$. Hence the set $\left\{w_{j}\right\}$ lies on $\cup_{1}^{p} g\left(\Gamma_{j}\right)$. Evidently w_{j} tends to infinity when j tends to ∞. Hence at least one $g\left(\Gamma_{j}\right)$ is not bounded. By the assumption $f(z)$ must be bounded on this $g\left(\Gamma_{j}\right)$, which implies that the order of f is not less than $1 / 2$, since for an entire function of order less than $1 / 2$ there is a sequence of values of r tending to infinity through which

$$
\min _{|z|=r}|f(z)| \rightarrow \infty .
$$

This is a contradiction.
An Application. The functional equations $f \circ g(z)=F(z)$ for $F(z)=\left(e^{z}-\gamma\right)\left(e^{z}-\delta\right)$, $(\sin \sqrt{ } \bar{z}) / \sqrt{ } \bar{z},(\sin z)^{n}$, etc. have no transcendential entire solutions.
6. A variant. Now we shall give a variant of theorem 1.

Theorem 4. The functional equation $f \circ g(z)=F(z)$ has no pair of two transcendental entire solutions f and g, if $F(z)$ is an entire function of finite order and $F^{\prime}(z)$ admits 0 as a Picard exceptional value..

Proof. Evidently $f(z)$ and hence $f^{\prime}(z)$ are of order zero. Consider the functional equation

$$
f^{\prime} \circ g^{\prime}(z) \cdot g^{\prime}(z)=F^{\prime}(z)
$$

Then $f^{\prime}(w)=0$ has an infinite number of solutions $\left\{w_{j}\right\}$ and $g(z)=w_{j}$ has an infinite number of solutions $\left\{z_{, k, k}\right\}$ for each j with at most one exception. Evidently $F^{\prime}\left(z_{\jmath, k}\right)=0$, which is a contradiction.

An application. The functional equation $f \circ g(z)=F(z)$ for

$$
F(z)=\int_{0}^{z} e^{-t^{p}} d t, \quad p: \text { a positive integer, }
$$

has no transcendental entire solutions.
7. Remarks. Our theorems cannot use for $f \circ g(z)=1 / \Gamma(z)$.

Baker [1] has given an interesting result for the functional equation $f \circ f(z)=F(z)$. For this equation there are lots of bibliography [1], [4].

It should be remarked that our results do lose their effectivity when F is of order less than $1 / 2$. So far as the present author concerns, there seems to be no result for an entire function F of order less than $1 / 2$, which is not a polynomial, up to the present time.

References

[1] Baker, I. N., The iteration of entire transcendental functions and the solution of the functional equation $f\{f(z)\}=F(z)$. Math. Ann. 129 (1955), 174-180.
[2] Nevanlinna, R., Eindeutıge analytische Funktionen. Berlin (1936).
[3] Pólya, G., On an integral function of an integral function. Journ. London Math. Soc. 1 (1926), 12-15.
[4] Thron, W. J., Entire solutions of the functional equation $f(f(z))=g(z)$. Canadian Journ. Math. 8 (1956), 47-48.
[5] V 1 liron, G., Lectures on the general theory of integral functions. Toulouse (1923).

Department of Mathematics,
Tokyo Institute of Technology.

[^0]: Received September 25, 1967.

