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SURFACES OF CURVATURES λ=μ=0 IN E4

BY KATSUHIRO SHIOHAMA

Introduction. A complete surface of Gaussian curvature G=0 in Euclidean
space Ez of dimension 3 is a cylinder. This fact was proved by W. S. Massey.
The purpose of this paper is to prove the following theorem:

THEOREM. A complete surface M2 in Euclidean space E4 of dimension 4 with
the curvatures λ=μ=0 is a cylinder.

The definition of a cylinder in an Euclidean space is given by the following:
Through each point of a curve on it, there passes a straight line which has the
constant direction and the curve is not equal to one of these straight lines. The
method of the proof is due to the idea of the Frenet-frames given by Professor
Otsuki. In § 1, we study the local properties of M2 in E* without completeness.
A global study of complete surfaces of the curvatures λ=μ=0 is given in §2 with
the aid of the universal covering space. The above theorem will be proved in this
section. The author expresses his deep gratitude to Professor Otsuki who encouraged
him and gave him a lot of useful suggestions.

§ 1. In the following we consider 2 dimensional, connected, oriented and class
C4 Riemannian manifold M2 immersed in E* with the principal and secondary
curvatures λ=μ=0. By the definition of the Frenet-frame (p,eue2,e^eϊ) for any
surface M2 in £ 4 , we have the following:

(1.1) dp=e1ω1+e2ω2, deA=ΣωAjej+ωA^e3+ωAίeh A=l, 2,3,4, j=l, 2,

(1.2)

(1.3)

(1.4) λ+μ=G, λ^μ,

where ωuω2 and ω12=—ω2i are the basic forms and the connection form of M2 re-
spectively, λ and μ are the principal and secondary curvatures of the surface respective-
ly, and G is the Gaussian curvature of M2. In our case we cannot define the
uniquely determined Frenet-frame, but we suitably take such a frame (p, eu e2, eS} e*)
from the first Putting ωir=ΣAr%jω3 where /,y=l,2, r=3,4 and ArιJ=Arji we get
by the hypothesis

(1.5) rank ( Λ y ) ^ l , rank (A«j)g.l.

Then we could define the two sets:
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(1. 6) Mo= {ptM2: rank {A3lJ{p))=xank (A4<//>))=0},

(1. 7) M^lpeM2: rank GW/>))=1, or ran

It is clear that Mo is closed and Mi is open.
Now suppose that M^φ, and peMi and rank(A4iX/>))=l. Any tangent vector

v is written as v=Σvιei. Then we can define the unique direction at p as follows:
ΣAujVτv%=ΰ. This direction is called the asymptotic direction with respect to #4.
The asymptotic lines with respect to eA are defined by the integral curves of the
field of unit vectors with this directions. Let ex be one of the unit tangent vectors
at p with the asymptotic direction with respect to e4, and we select the unit tangent
vector e2 at p orthogonal to e± so that the orientation of (elf e2) is coherent with
the one of M2. Then we can define a field of such frames in a neighborhood Up

of p. According to the definition of the frame, we have

(1.8) CA4</)=L \ or ω1 4=0, ωu=aω2y

where a is a continuous everywhere non-zero function defined in Up. By (1. 1)
and Λ=0, we get

(1.9) <Mi8=0, ω2Z=βω2,

where β is a continuous function defined in Up. Since the second fundamental
form with respect to any unit normal vector £=£ 3 cos0+£ 4 s in0 at p is given as

(1.10) d2p-e=(β cos θ+a sin θ)ω2ω2,

the asymptotic direction at p is independent of the choice of the unit normal
vector at p.

By using (1. 8), (1. 9) and structure equations we have the following:

(1. 11) (Oi2=yω2, (Oi=dUy cϋu—df,

where γy u,f are continuous functions defined in Up. Putting ef=e3cosφ-\-eiS'mφf

£*=—08sin$0+04cos$0, we get ω*=(def, ef)=d(f+φ). By selecting es, <?4 such that

(1.12) φ=—f+COΏSt,

we have the torsion form ω 3 4=0. Using only such es, e4 we get the following:

' dp=e1du+e2ω2,

dex= γe2ω2,

(1. 13)

des= —βe2ω2,

—αe2ω2.

The above equation shows that any asymptotic line is a straight line or its segment
and all the tangent planes are constant along it.
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LEMMA 1. Suppase that Mχ^φ, then any asymptotic line extends to infinitely
or to the boundary of M2 in E*.

Proof. By virtue of the structure equations, (1. 8), (1. 9) and (1.11), we have
along an asymptotic line as follows:

(1.14) α ( 0 )

r(O)s+i'

(i. 16) r(s)=

where α(0), /3(0), γ(0), are the values of α,β,γ, at pzMλ (u=0) respectively. Since we
can consider that Up is a convex neighborhood we can define the Frenet-frames in
a neighborhood of an asymptotic line with vanishing torsion by virtue of (1.12).
Now let /be the asymptotic line through p and be written as x=x(s)f s=u-{-const.,
and 0^5<5 0 , χ(0)=p. Suppose that limsts0 #(s)€M2, we get at once lims t *<> #(s)€Mi
by (1.14). This implies a contradiction.

For any set A, A means the largest open set contained in A.

LEMMA 2. If M0^φf then each connected component of Mo is a piece of plane.

Because we can select eΆ and <?4 such that ωu=0, eB and e4 are constant vectors.
This fact implies the lemma.

§ 2. In this section M2 is supposed to be complete. A point of a cylinder is
called proper if there does not exist any neighborhood of the point which is con-
tained in the plane. A cylinder is called proper if all the points of it are proper.
The completeness and Lemma 1, implies that each asymptotic line is a full straight
line. Then (1.16) hold for — oo<s<oo, but since γ is continuous we must have
^ΞO, i.e., deι=0. On the other hand we have de2=(βes-sraeA) ω 2^0. Then we have
the following lemma:

LEMMA 3. // M^φ, then Mi consists of proper cylinders.

Let us denote by M[ the set of all boundary points of Mλ in M2. Since M2

is complete and G=0, the universal covering space of M2 is a Euclidean plane E2

y

and the covering map is written as π. A connected open set contained in the
plane is called stripe if for each point of the set, there exists a straight line which
has the constant direction and is contained entirely in the set.

LEMMA 4. // M0^φ, then Mo consists of stripes in E4.

Proof. If M^φ, then M 2 is a plane in E\ Suppose that Mi*φ. Since π~\Mx)

consists of parallel stripes in E2, E2—π~\Mι) also consists of parallel stripes in E2.
On the other hand we have by the property of covering map,
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(2 1) E^^1)=ϊr^)=π-\M0).

Let V be a connected component of Mo. Since π~\V) consists of parallel stripes
in E2, V must be a stripe in E* by Lemma 2.

LEMMA 5. /f Mi^φ, then for each point of M[ there exists a unique straight
line contained entirely in M{,

Proof. Because π is local isometry, we get the following;

(2.2) *r-Wί)=(a

Let q be any fixed point of Mi, then there exists a sequence {qn}n in Mi such that
lim qn=q. Let q be a point in £ 2 such that π{q)=qy and <?w be a point of £ 2 such
that lim qn=q, π(q)=qn- There exists a unique straight line ln through each qn in
π-\Mλ) with the fixed direction such that π(ϊn) is the asymptotic line of M2 through
qn. Now let / be a straight line through q in E2 which is parallel to lny then we
have the following:

(2. 3) /c(π-Wi))' .

Because π is local isometry π(/) is a geodesic in M2 and the above discussion shows
that the arclength of π(l) between q and r€π(/) is equal to the distance between q
and r in E\ i.e., π(J) is a straight line in E*.

Let us prove the theorem. We have proved that for each point of M2 there
exists a unique straight line contained in M2. We can take a coordinate system
(x, y) in E2 such that all the images of y—const, under π are these straight lines
in M2. We can define a unit tangent vector field eΊ over M2 such that

(2.4) * -

where <iπ is the differential map of π. Then we get by Lemma 3,

(2.5)

because £i=+£i. By virtue of Lemma 4, we get

(2.6) α(enio)=0.

Therefore we have ^ 0 = 0 in M2.
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