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SEMI-CONTINUOUS CHANNELS WITH A PAST HISTORY

BY HIROSHI NEGISHI AND KEN-ICHI YOSHIHARA

1. Summary.

In this paper, we shall prove coding theorems for semi-continuous channels
with a past history. The main object is to generalize the results obtained by
Wolfowitz in [2], Section 6.5.

2. A semi-continuous channels with a past history.

Let random variables Xlf X*> ••• be input letters which are independently and
identically distributed and take their values in the set {1, •••, a}, respectively. Let
random variables Fi, Y2, ••• be output letters which take their values in the real
line (R, 35). Furthermore, let μ be a (not necessarily finite) measure such that

(1) P{Y2^Λ\Y1=ylfX2=i} = \ w(y2\yui)μ(dy2) (i=l,--,a)
JA

hold for any set ^4e55.
Next, let / be any positive integer. Let

(2) ' i = l , 2 , •••, ad inf.
i, ,F«),

Let Qf be the probability distribution of C/i, and for u=(xu •••,#*), v=(yh —,yi)

and tf=(yi,—,yl-i,yo) define

(3) Kv\v',u)=
J = l

and

( 4 ) qQ<v\v')= Σ ζ

Suppose that

( 5 ) (CΛ, Vi), (U2, F2), •'•

is a Markov chain with the transition function Q'(u)h(v\v', u) and

( 6 ) YiuY*,-

Received June 30, 1966.

53



54 HIROSHI NEGISHI AND KEN-ICHI YOSHIHARA

constitute a Markov chain. Thus, V% depend only on F « - D I and Ulf so we
have Conditional Prob. dens. { V% = v\ Vt-i = v', U% = u) = Conditional Prob. dens.
{Vt=v\Y^^ι=yθ9 Uι=u}y that is, h(v\v',u)=h(v\yo,u).

ASSUMPTION I. For any /, each of Markov chains (5) and (6) has only one
ergodic set and has no cyclically moving sets.

Under Assumption I, we have "stationary" distribution vQ>(A) (A €33) for the
Markov chain (6).

We remark here that Assumption I is satisfied for the indecomposable channel
defined in [2].

Define the random variable

UQ',y«) l £,,„„ KVi\V>-i,ut) 1 f .

C=sup sup Γ i r ,e,(^Γlog ί φ ^ Q'ΊΊ.

n n (A & qQ(Vi\ Vι.ι) n i£ ^ qQ,(Vi\

where Yo=yo, and put

( 8 )

We assume that C is finite.

We shall prove the following

THEOREM 1. Let ε>0 and α, 0 < α ^ l , be arbitrary. Let w{ | , ) be
channel probability density function which satisfies Assumption I. Then, for
fixed y^R} when n is sufficiently large, there exists an (n, 2nω~ε\ a) code for this
semi-continuous channel with w ( | , ).

Proof. Since from Assumption I, we can apply the strong law of large number
to the Markov chain (5), so for any Q'

holds with probability one. Thus, we can prove the theorem by the Wolfowitz's
method used in [2].

3. A special channel.

In this section, we shall consider the strong converse theorem for a special
channel with the following assumption. (This channel is a generalization of the
channel studied by Wolfowitz in [2], Section 6. 5.)

ASSUMPTION II. Let μ be a finite measure for which the relations (1) hold.
For each i (l^i^a), there is a constant K such that

( 9 ) -£F ̂ U)(y2\yu i)^K for all yι and y2.
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If Assumption II holds, then clearly Assumption I is satisfied.
For a (finite or infinite) sequence x=(xu ~-,xm, ~)> we put

S oo poo

\ wiy^yo, Xi)w(y2\yi,:

LEMMA 1. Under Assumption II,

(10)

m-u xm)μ(dy1)μ(dy2) -μ(dym-i).

/or all x and for almost all y, z and η where

P=l-~M(R)>0.

Proof. By a simple modification of the usual method, we easily get the lemma.
Next, for an (/+w)-sequence u=(xu •• ,xm+ι), we define

(ID

(12)

and

(13)

?„ y, η0: u) Π
1=1

)= Σ Q

—oo J —oo
Γ
J —o

-μ(dη0) ••• / ί ( ^ i )

where ηω=(ηi, —,ηι).

LEMMA 2. L^ί ε>0 ̂  arbitrary. Letm be sufficiently large. Then for any Q'

(14) \T?+n(y,u)-Ti*+lKz,u)\<e.

Proof.

<m\y, z)

.Γ hίm\y,ψ,vm:u)
J-oo

log- μ(dη0)

S
oo poo

— oo J—oc

=71+72+/8.

'(2/, Vo, Vω)
ί̂ X ,̂ ΐo, vm)

μ(dη<>)- - μ(dr)ι)
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Let δ<0 be arbitrary. We choose m0 so large that

y, η\u)
- 1(15)

(The existence of m0 is assured by Lemma 1.) From (15), we have that for all

(16)

and

(17)
ψ(y, Voy ηω)

- 1

We are now in a position to evaluate Ilf I2 and /3. Let
arbitrarily. We have that from (16) and (17)

be fixed

(18) i ^ | log (1-5 and

On the other hand, by Assumption II, we have that Λ(m)(y, 570, yω: u)^Kι+1 and
0\v, Vo, vω)^l/Kι+1 for all y, η,, τ?ω and u. Thus, from (16), we have

•ΓΓ
J — o o j —ex

z,Vo, ηω:u) log-

(19)

Combining (18) and (19), we obtain

V ί " J== m+l

for all tn^ΐHo. Thus, we have the lemma.

LEMMA 3.

{2| log (1-5)| +25(/+l) logK}

J—00 ,7=771+1—00 J—00 ,7=771+1

(20)

X
J-00 J-oo.;=i

μ(dym)

for all y and u=(xlf •••, xm+ι)
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Proof. To prove this inequality, it is sufficient to show that

57

(21)

and

(22)

m+l

ίVo, Vm, (Vm+l, •", Vm+l))
log K

for any (y0, , ym+ι) and u.
The first inequality is the direct consequence of Assumption II. We shall

prove the second inequality. Since, by Assumption II,

log -2 J=1

= log

piVo, Vm, (ym+1, •••, Vm+l))

m+l

Σ Q'{u) Π uKvAvj-u χj)
u 1

Σ Q' ym
u •••, Vm+ι): u)

m+l

-ΣQ'(«) Π

Ku>(Vj\Vj-i, Xj.

and

- l o g — -

m+l

}(2/0, Vm, (Vm+l, ~, Vm+l))

X

\>VmΛVm+l, '",Vm+l)) u

P^iVo, Vm' U)

Vo, Vm9 (Vm+U ) : U)

log

so we obtain the inequality (22). From (21) and (22), we have the lemma.

LEMMA 4. Let e>0 be arbitrary. Then, for sufficiently large I and m

(23)
l+m

log
KVι\y,u) Ή0' - ^ log

KVi\z,u)
Q
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for all y, z, u=(xlf •••, xi+m) and Qf.

Proof. Since

so, (23) is easily obtained by Lemmas 2 and 3, for sufficiently large / and m.

To prove the theorem 2, we use the following theorem proved in [3].

THEOREM A. Let a, 0 ^ α < l , be arbitrary. Let E be a set of inputs and let
{(uly Z?i), •••, (UN, BN)\ (Ui^E, z=l, •••, N) be any code. If we can choose a positive
number Θ such that

L
then N must satisfy the relation

—a

Here,

Au(θ)={v\ log ̂ ^ >θ}, (cf. [3]).

We now prove the strong converse theorem.

THEOREM 2. Let ε>0 and α, 0 ^ α < l , be arbitrary. Let w( | , ) be the
channel probability density function for which Assumption II is satisfied. For
all n sufficiently large, any (n, N, a) code for the semi-continuous channel with
w( I , ) must satisfy

Proof. At first, we choose two positive integers / and m such that Lemma 4
holds for ε/8. Put ^=0r(ΐ-iKz+m)+i, •••, Xia+m-)) and ua:>=(ulf •••, Uk) and, similarly,
Vi=(Y(i-i)α+»>+i, - , Yicι+n») and V™=(Vu - , Vk).

Let um be any sequence. Define N(u\um) as the number of element u in ua:>

and define Qr by

kQ'(μ)=N(u\u™).

Then, we have
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:& 2-1 JL = l

2/o,

A(F*|yo,«*)

and consequently,

yo, « t t ), Q']

' +
k(ί+m)s

(24) JI^O, «)
+

k(ί+m)ε

g *(/+«) Ĉ+ -|- j +*(/+«) -J

= *(/+m)^C+jj.

On the other hand, since, from Assumption II,

h(v2\vu u2)log'

so, we have

(25) log Γ U

59

+

(\ogK)\

Combining (24) and (25), we obtain

for sufficiently large k.

Let {(u$\ Aoι), •••, (u$l, A0M)} be a (&, M, α)-code such that, for all u

N(u\uίβ>)=N(u\u™)f i = l , •••, M.

It follows from Theorem A that

(26) ^j J.
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Now the total number of Q'-vectors whose components are integral multiples of
Ilk is less than (k+1). For each such Q'-vector (26) holds. Consequently, we can
conclude that for sufficiently large k

N<(k+lf+m ^-exp^Kί+m) fc+ -|-) J

(27)

Thus the theorem is proved for sufficiently large n of the form k{l+m).
Finally, suppose n=k(l+m)+t, with k an integer and l^t<l+m. Then, writ-

ing n'=(k+ΐ)(l+m), from (27) we have that

JV<2π'CCf+4e

for n sufficiently large. This completes the proof.
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